The Ecology and Management of Wood in World Rivers

Geomorphic Effects of Wood in Rivers

David R. Montgomery, Brian D. Collins, John M. Buffington, and Timothy B. Abbe

doi: https://doi.org/10.47886/9781888569568.ch2

Abstract.—Wood has been falling into rivers for millions of years, resulting in both local effects on channel processes and integrated influences on channel form and dynamics over a wide range of spatial and temporal scales. Effects of stable pieces of wood on local channel hydraulics and sediment transport can influence rates of bank erosion, create pools, or initiate sediment deposition and bar formation. At larger spatial scales, changes in the supply of large wood can trigger changes in both river-reach morphology and the interaction between a river and its floodplain. Over long time scales, wood-rich rivers may retain more sediment and have lower sediment transport rates and steeper slopes than comparable wood-poor channels. Most geomorphic effects of wood in rivers arise from large, stable logs that catalyze changes in the routing and storage of both smaller wood and sediment. The size of a log relative to the channel provides a reasonable gauge of the potential stability of in-channel wood. Channels with a high supply of large, potentially stable wood may experience substantial vertical variability in bed elevation independent from external forcing (e.g., climate variability, temporal variations in sediment supply, or tectonic activity). In some river systems, changes in the wood regime, as described by the size and amount of wood supplied to a river, can result in effects as great as those arising from changes in the sediment supply or the discharge regimes. Consequently, an understanding of the geomorphic effects of wood is crucial for assessing the condition and potential response of forest channels.