The American Fisheries Society, the Western Division of AFS, and the AFS Alaska Chapter submitted a joint comment letter this week to the U.S. Army Corps of Engineers on the Pebble Mine Draft Environmental Impact Statement (DEIS). The comments note that impacts and risks to fish and their habitats are underestimated and are not supported by the data or analysis provided, and that critical information is missing. PDF of joint comment letter June 13, 2019 Program Manager US Army Corps of Engineers 645 G Street, Suite 100-921 Anchorage, AK 99501 Via [email protected] Re: Pebble Mine Draft Environmental Impact Statement Dear Sir or Madam: On behalf of the members of the American Fisheries Society (AFS), the Western Division of AFS, and the Alaska Chapter of AFS, we respectfully submit the following comments in response to the Pebble Mine Draft Environmental Impact Statement (DEIS) released by the U.S. Army Corps of Engineers (USACE) for public comment on March 1, 2019. AFS represents over 7,500 professional fishery scientists and resource managers who work in the private sector, in academic institutions, and in Tribal, state, and federal agencies. Our common mission is to improve the conservation and sustainability of fishery resources and aquatic ecosystems by advancing fisheries and aquatic science and promoting the development of fisheries professionals. The American Fisheries Society, the Western Division, and Alaska Chapter seek to ensure the best available science is considered throughout the environmental review and permitting for Pebble Mine. Because of the scope of the proposed Pebble Mine, its probable expansion into a larger mine and mining district (Chambers et al. 2012), and the uniqueness of the Bristol Bay region (Woody 2018), AFS and the Western Division of AFS provided comments in 20141 and do so again with the Alaska Chapter of AFS. Bristol Bay is extraordinary because it produces about half of the world’s wild Sockeye Salmon supply with runs averaging 37.5 million fish per year (Chambers et al. 2012; USEPA 2014; Woody 2018). The wild salmon fishery in Bristol Bay has been managed in a sustainable manner since 1884 and was valued at $1.5 billion in 2010. In addition to Sockeye Salmon, Bristol Bay and the watershed support one of the world’s largest remaining wild Chinook Salmon runs and healthy Coho, Chum, and Pink Salmon runs (Johnson and Blossom 2018). These salmon, as well as resident trout, sustain lucrative commercial and recreational fisheries and provide jobs and food security to 25 rural Alaska Native villages and thousands of people. The high salmon production brings huge levels of marine-derived nutrients to the watersheds in which salmon spawn, fueling sustainable populations of grizzly bears, moose, estuarine birds, and indigenous Yup’ik and Dena’ina peoples. The latter peoples represent two of the planet’s last salmon-based subsistence cultures, which were once widespread along the entire North American Pacific Coast. These wilderness-compatible economic sectors support 14,000 workers, including 11,500 in commercial fisheries, 850 in sport fisheries, and 1,800 in sport hunting and recreation (Chambers et al. 2012; USEPA 2014; Woody 2018). Based on our review of the DEIS, we find it fails to meet basic standards of scientific rigor in a region that clearly demands the highest level of scrutiny and thoroughness. The DEIS is an inadequate assessment of the potential impacts of the project. Specifically, as described below, we find the DEIS is deficient because 1) impacts and risks to fish and their habitats are underestimated; 2) many conclusions are not supported by the data or analysis provided; and 3) critical information is missing. 1. Impacts and risks to fish and their habitats are underestimated. Mine Footprint: We have serious concerns about the limited scope of the DEIS. An environmental impact statement is expected to fully disclose the risks and options for safely advancing or altering a proposed project. The limited scope considered for the mine footprint in the DEIS vastly underestimates the threats to fish, fisheries, and the human populations that rely on them. It is misleading to constrain the DEIS to a mining plan that only extracts 12% of the known resource and to ignore Pebble Limited Partnership’s planned expansion and stated purpose to make the mine commercially viable (Chambers et al. 2012). The DEIS acknowledges that the Pebble Project Expansion—a 55% of known resource mine, which would need additional tailings storage, additional water storage, new waste rock storage facilities, a concentrate pipeline, and a deep-water loading facility—is reasonably foreseeable (Table 4.1-1). This profitable mining plan appears to be a 78 to 98-year mine prior to closure as opposed to the 20-year mine prior to closure covered in the DEIS (Chambers et al. 2012). Further, it is reasonably foreseeable that the Pebble Project Expansion would begin within the timeframe of the proposed 20-year mine. The DEIS relegates the expansion to “possible future action” status rather than considering it a practicable alternative. As a consequence, this more likely profitable scenario with its much larger mining footprint is not evaluated for direct or indirect effects but more narrowly for cumulative effects only, thus underestimating the impacts on fish, fish habitat, and humans. Since the Pebble Project Expansion would be 1) dependent on the approval of this initial permit, 2) could not proceed unless this permit is approved previously, and 3) is classified as an “expansion” or an interdependent part of the larger Pebble Mine action and thus depends on the larger action for its justification; it should be evaluated as a potential connected action in the indirect impacts analysis (40 CFR 1508.25 (a)(1)(i-iii).) Diversity of Life History Strategies: The Bristol Bay watershed is pristine with exceptionally high-water quality and habitat diversity, closely connected surface-ground water systems, and an absence of channel fragmentation by roads, pipelines, or dams (Woody 2018). These factors lead to extremely high levels of genetic diversity among hundreds of locally adapted unique salmonid populations, which in turn support high levels of salmon production and system-wide stability. Because of this portfolio effect, there is remarkable annual productivity regionally despite considerable fluctuation in any single river system or any