Black Bass Diversity: Multidisciplinary Science for Conservation

Inferred Reproductive Behavior of Captive Guadalupe Bass

Dijar Lutz-Carrillo, Chris Thibodeaux, Megan Elliott, Nicholas A. Rathjen, Carl Kittel, Loraine T. Fries, and Gary P. Garrett

doi: https://doi.org/10.47886/9781934874400.ch41

Abstract.—Attempts to infer mating systems in wild fish populations can be limited by the logistics of locating nests and thoroughly sampling offspring and potential participants. Captive populations are more easily evaluated but may exhibit modified behavior. We used microsatellites (17 loci) to determine parentage among production offspring and infer the mating system of raceway spawning Guadalupe Bass Micropterus treculii, which are part of a supplemental stocking program. Offspring were collected over the course of two production seasons (n = 303 and 492). Spawning activity was nonrandom, with respect to location and time in most compartments, and individuals that spawned were significantly larger, by length and weight, than individuals that did not. During the first year of captivity, significantly fewer males (21 of 60) than females (49 of 61) spawned. Inequalities between the number of nest locations used and the numbers of spawning males and females suggest that males recruited females to spawning sites. While most spawning females (61%) participated with a single mate, most spawning males (90%) participated with multiple females and only 3% of mating pairs were monogamous. This predominantly polygynous mating system contrasts with the primarily monogamous systems of wild congeners and resulted in an effective number of breeders (Nb) less than 30% of the number of penned broodfish. Quarantining particularly prolific males to separate pens during the second year of captivity had little effect on mating behavior, as other males filled their roles. This represents the first documentation of mate choice and fidelity in Guadalupe Bass and provides a template for expected reproductive behavior in a standard hatchery setting. Understanding mating systems, including the effects of captivity on behavior, should enhance restoration efforts, particularly when supplemental stocking programs are involved.