
43

Fish Population Dynamics: 
Mortality, Growth, and Recruitment

Micheal S. Allen and Joseph E. Hightower

 
2.1 INTRODUCTION

Fisheries management is a rewarding career because it is challenging and fun and, most 
importantly, has a real impact on the quality of people’s lives. Decisions made by fisheries 
managers about a commercial fishery directly affect the income of fishers. Decisions about 
a recreational fishery can influence angler satisfaction and the level of participation, which 
has direct economic effects on tackle shops, motel and restaurant owners, and fishing guides. 
Because these decisions can have an impact on a community or region, it is critical to have 
the best available information about fisheries resources, including habitat quality and species 
interactions, as well as the needs of human users of a resource. Methods to evaluate many of 
these factors are described in other chapters of this text.

The focus of this chapter is the use of quantitative methods to evaluate how management 
actions regarding harvest may influence fish abundance, the size of fish in a population, angler 
catch, and total yield (i.e., biomass of fish removed from a population). Assessment of these basic 
population characteristics enables a fisheries manager to detect changes occurring in a population 
in response to fishing. Diagnosing the condition of overfishing is an important step in fisheries 
management, and identifying management actions that can improve fish abundance and angler 
catches is obviously required for sustaining and improving fisheries. Thus, fish population dy-
namics and assessment are literally where “the rubber meets the road” in fisheries management.

Assessment of fish populations usually contains much uncertainty. John Shepherd’s adage 
that “fish are like trees, except they are invisible and they move,” provides a first look at the 
difficulties in evaluating fish populations. Fish are not typically visible, and thus our “view” 
of a fish population usually comes from a variety of sources, including anglers, commercial 
fisheries, and different sampling gears. All sampling gears have inherent sampling biases, and 
fisheries managers almost always work with incomplete information about fish stocks.

The literature contains a wide range of complex methods to analyze fish populations from 
sampling data, and reading through the latest journal articles can be discouraging to students 
trying to gain a basic understanding of fish population dynamics. Although some facets of 
fisheries assessment require highly quantitative methods and sophisticated software programs, 
we contend that most fish population assessments can be relatively straightforward and require 
only simple mathematics and practice with spreadsheet software. Canned software packages 
are useful, but they are not as helpful in learning how methods work and are often inflexible 
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in their analysis options. In contrast, the spreadsheet methods presented here can be used to 
tailor population models to specific needs of investigators. The objective of this chapter is to 
summarize the basics of fish population dynamics and the skills needed to evaluate fisheries 
management scenarios. Spreadsheet examples are provided so the reader can learn by doing 
the analyses and apply them (see http://fishweb.ifas.ufl.edu/allenlab/courses.html for spread-
sheets).

 
2.2 OVERVIEW OF DYNAMICS IN INLAND FISH POPULATIONS

The abundance of fish (or any animal) is limited by available resources. Fish populations 
in new reservoirs and farm ponds previously devoid of fish will exhibit a brief period of un-
limited exponential population growth. This occurs because resources are initially unlimited, 
but as the fish population expands, food and space resources become limiting and fish abun-
dance is then regulated by density-dependent growth and (or) survival. A common representa-
tion of this process is the logistic growth model:

			          			            , 				              (2.1)
 

where B is the biomass at time t, r is the maximum population growth rate, and K represents 
the carrying capacity, the maximum equilibrium biomass that can be supported by the re-
sources available in the system. Notice from equation (2.1) that if Bt is low, the population 
will grow rapidly because resources are not limited (i.e., 1 – Bt / K is close to 1). This period 
of unlimited population growth is considered the exponential growth phase (Figure 2.1), and 
the rate of increase is determined by the parameter r. As Bt approaches K, population growth 
is slowed by density dependent processes until the population reaches K (Figure 2.1).

However, the biomass of fish populations does not remain static but fluctuates around an 
average abundance due to changes in environmental conditions, habitat quality and quantity, 
fishing mortality, and interactions with other species such as predators or competitors (Figure 
2.1). Fishing can hold average fish biomass well below the carrying capacity for the system, 
but in these cases random fluctuations in biomass still occur due to variation in fish recruit-
ment. Most fisheries managers attempt to manage fish stocks that are varying around some 
average abundance, which may or may not be close to K.

The specific factors that influence fish abundance and biomass are typically described by 
three dynamic rate functions: mortality, growth, and recruitment. Mortality is usually divided 
into two categories: death due to fishing and death due to natural causes. Fishing mortality is 
often the focus of fisheries managers because it can be controlled with management actions. 
Natural mortality is almost always unobserved and is often outside managers’ control. Growth 
is the increase in size of individual fish and can be measured in terms of length or weight. 
Growth affects a fish’s vulnerability to predation and fishing, as well as the food resources 
available to each individual fish. Recruitment refers to young fish entering the population, 
and from a management perspective it usually means recruitment to the fishable stock. If new 
recruits are not replacing losses due to mortality, then the population will eventually decline 
to zero. Recruitment and growth both increase the biomass of a cohort (year-class), whereas 
mortality causes both the number of fish and total biomass of a cohort to decline.
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A good understanding of fish population dynamics (i.e., how mortality, growth, and re-
cruitment interact to affect abundance) is required for informed fisheries management. An 
example of how important these factors can be is illustrated by the case of the endangered 
Kootenai River white sturgeon (Paragamian et al. 2005). Surveys have shown that this popu-
lation has had essentially no recruitment since the early 1970s. Harvest was prohibited in 
1984 to help protect the remaining adult stock. The fishery closure substantially reduced an-
nual mortality, but the population still declined by about 9% each year. Field studies have 
been conducted to learn where and when spawning occurs and what habitat changes may be 
causing the lack of recruitment. Population models have been developed to predict future 
abundance of the population and to understand how releases of small fish produced in hatch-
eries contribute to the overall population. The hope is to use all these sources of information 
to bring about the population’s recovery.

Studies of population dynamics usually involve the development of models. Some fisher-
ies managers are skeptical about the use of models to inform management decisions; however, 
an experienced manager generally has an idea of how the population or fishery operates. Con-
structing a model with numbers and equations forces the investigator to be explicit about the 
hypothesized processes that influence fish population size. Thus, population models should 
be viewed as hypotheses for management and future research needs. For example, rather than 
speculating that low recruitment is limiting the abundance of fish in a population, construct-
ing a model can highlight the need to estimate recruitment trends to evaluate the impacts. The 
model can help identify data gaps and can guide future research toward the areas of greatest 
uncertainty. When managers do have a good understanding of a stock’s dynamics or how a 
fishery operates, the model serves as a repository for knowledge and experience that may 
have been gained over many years (Hilborn et al. 1984). Many fish population models are 
fairly simple because managers rarely have enough data to justify elaborate population mod-
els. In many cases, relatively simple population models perform better for management than 
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Figure 2.1. Example of a logistic population growth model with maximum growth rate, r, equal to 
0.5 and carrying capacity, K, equal to 100. The inflection point indicates the change from exponential 
to decreasing incremental population growth. Random fluctuations after 20 years demonstrate a fish 
population whose abundance fluctuates around an equilibrium biomass value.



46			   Chapter 2

do complex models because of the high uncertainty associated with numerous parameters 
required by complex models (Walters and Martell 2004).

Population models are usually developed for exploited species. One reason for this pat-
tern is that it is easier to justify the cost of conducting surveys and catch sampling programs 
for a species that supports an important fishery. Modeled scenarios can be used to examine 
potential effects of fishing and to predict how harvest regulations may increase population 
size or fishery yield (i.e., biomass of fish harvested). Often the purpose of a population model 
is to determine whether overfishing is occurring. Overfishing is generally defined as a fish-
ing mortality rate above some target level; for example, the rate that is estimated to result in 
the maximum long-term (sustainable) yield. Overfishing may occur in two ways—growth 
overfishing or recruitment overfishing. Growth overfishing results in reduced yield because 
fishing mortality is too high on young or small fish. If the rate of fishing is reduced or the size 
at first harvest is increased, fish would have additional time to grow before being harvested 
and long-term average yields would increase. Recruitment overfishing means that fishing has 
reduced the spawning stock (large adult fish) to a level at which recruitment is limiting popu-
lation abundance. If recruitment overfishing continues, the population will decline to very 
low levels, eventually causing the collapse of the fishery. If the rate of fishing can be reduced, 
the spawning stock will increase, resulting in higher recruitment and sustainable long-term 
yield.

Population models also play an important role in the study of rare or threatened species. 
As in the case of exploited populations, when managing for threatened fishes the need is to 
understand which factors regulate abundance. The difference is that the information is used 
not to regulate harvest but to aid in rebuilding the population to a viable level. There is no 
fishery in the case of rare species, so biological data generally come from research or manage-
ment surveys rather than commercial or recreational harvest.

 
2.3 METHODS OF ESTIMATING POPULATION PARAMETERS

 
2.3.1 Expressions of Mortality

Estimates of mortality are an essential part of assessing fish populations. Fish populations 
typically exhibit very high mortality during larval and juvenile life stages (often exceed-
ing 99%), followed by lower mortality rates during adult life. Most fisheries investigations 
are concerned with fish mortality during adulthood, and thus managers emphasize adult fish 
mortality rates. Estimates of mortality are required to understand how fishing influences fish 
abundance, angler harvest (numbers of fish), and yield (weight of fish). We begin with some 
expressions of mortality rates that are commonly used in fisheries investigations, describe 
how estimates of mortality rates are obtained, and then discuss the advantages and disadvan-
tages of various methods. Definitions of all symbols are found in Table 2.1.

Mortality is typically separated into two components: fishing mortality and natural mor-
tality. Fishing mortality can be controlled via length and creel limits, closed seasons, closed 
areas, or restrictions on fishing effort (see Chapter 7). Thus, managing fishing mortality is one 
of the most common practices of fisheries managers. Natural mortality occurs due to preda-
tion, disease, parasitism, and any other natural cause. Natural mortality of adult fish is not 
typically controlled by fisheries management actions, but the level of natural mortality is very 
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important for establishing harvest criteria. We provide some basic mortality expressions here, 
and detailed analysis methods are described by Miranda and Bettoli (2007).

First, we describe finite and instantaneous mortality rates. Finite mortality rates are the 
fraction of the fish stock that dies in a finite time period (e.g., a year). Instantaneous mortality 
rates can be calculated from finite rates and are useful for estimating the number of fish at any 
continuous time interval (e.g., fractions of a year). For a cohort (year-class) of fish, the decline 
in numbers over time usually follows an exponential pattern (Figure 2.2).

The change in cohort size (N) per unit time (t) depends on the total instantaneous mortal-
ity rate (Z) and population size (more deaths per unit time when N is large):

					                  , 				              (2.2)

After integration, we obtain an exponential decline in N per unit time as:

				            Nt = N0e
–Zt , 				             (2.3)

 
where Nt = number alive at time t, No = number alive initially (at to), Z = instantaneous total 
mortality rate, and t = time units since t0.

Fisheries managers frequently work in time step units of a year. Given a finite time step 
of 1 year, the annual total survival rate is: S = Nt+1 /Nt. The value of Z can be determined by 
S = e–Z and thus Z = –loge (S). Box 2.1 shows an example of how to work between finite and 
instantaneous rates.

Table 2.1. Population parameters, their definitions, and common methods for estimation of each 
parameter.

Parameter symbol	 Definition			   Estimation methods

Z			   Instantaneous total mortality	 Catch curve, tagging study, F + M
M			   Instantaneous natural mortality	 Tagging study, surrogate methods, 
							       subtraction (M = Z – F)
F			   Instantaneous fishing mortality	 Tagging study (angler reported or 
							       telemetry), catch or population size 
							       estimates, catch-at-age methods
A			   Annual total mortality		  As above for Z, A = u + v
S			   Annual total survival 		  e–Z,1 – A, S = Nt + 1 / Nt
S0			   Annual natural survival		  e–M

u			   Annual exploitation rate		  As above for F
v			   Annual natural mortality rate	 As above for M
cf			   Conditional fishing mortality	 As above for F
cm			   Conditional natural mortality	 As above for M
L∞			   Asymptotic length		  Age-growth, tagging study
k			   Growth rate			   Age-growth, tagging study
t0			   Age at zero length		  Age-growth, tagging study

.ZN
dt
dN −=
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Discrete (type I) fisheries.—A discrete fishery is one in which fishing mortality and natu-
ral mortality occur separately within the year. Examples would be highly-seasonal fisheries 
in which most fishing mortality occurs in a short time period, and natural mortality can be 
assumed to be separated in time. The mortality expressions for discrete fisheries are

				         u = cf = 1 – e–F, 				             (2.4)

				        v = cm = 1 – e–M, 				             (2.5)
 

where u is the annual exploitation rate (the fraction of the fish stock harvested within a year), 
cf is the conditional fishing mortality rate, F is the instantaneous fishing mortality rate, v is 
the annual natural mortality rate (the fraction of a fish stock that dies due to natural mortality 
within a year), cm is the conditional natural mortality rate, and M is the instantaneous natural 
mortality rate (Table 2.1). Instantaneous total mortality (Z) is defined as Z = F + M. In discrete 
fisheries, because M and F are assumed to operate separately, the conditional rates (cf and cm) 
are the annual fishing (u) and natural mortality (v) rates.

Although it may seem that truly discrete fisheries are relatively rare, many fisheries have 
highly seasonal rates of fishing mortality with most of the harvest occurring during relatively 
short periods of the year. In practice, many fisheries models use S0 = e–M = (1 – v) to approxi-
mate the survival rate from natural mortality (S0), and u to represent annual exploitation even 
if the fishery is continuous. The F in this case of discrete fisheries can be found by F = –loge(1 
– u) (as per equation 2.4 above). Box 2.2 shows mortality expressions used for discrete fisher-
ies and in other applications. Recent fish stock assessment textbooks have utilized the discrete 
mortality equations for fisheries where F and M occur together because the approximation is 
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Figure 2.2. Depiction of an exponential decline in numbers of fish with time. The finite mortality rate 
is a constant proportion of the population at each incremental time step.



49Fish Population Dynamics: Mortality, Growth, and Recruitment

typically satisfactory even when fishing and natural mortality occur simultaneously through-
out the year (Walters and Martell 2004).

Continuous (type II) fisheries.—A continuous fishery is one in which fishing mortality 
and natural mortality operate concurrently, so use of instantaneous rates F and M is required 
to model this relationship. Annual survival is indicated by S = e–Z  = e–(F + M). The relationships 

 
Box 2.1. Finite and Instantaneous Mortality Rates

Suppose you start with 1,000 fish at time zero 0 and lose 9% per year due to total 
mortality. The number of fish in each yearly step is simply the number the year before 
times 0.91.

 
		  Year 		  0	 1	 2	 3	 4	 5

		  Number 
		    of fish		 1,000	 910	 828	 753	 686	 624
 

Let’s define the following:

A = annual total mortality rate,
S = annual total survival rate, and
Z = instantaneous total mortality.
 

In this example, A = 0.09, and 

S = 1 − A = 0.91, given that 

S = e−Z , 

Z = −loge(S).
 

Therefore 

Z = −loge(0.91) = 0.0943.  
 

Now use the instantaneous rate, Nt = N0e
−Zt, to predict the number of fish at age 5 (N5).

N5 = 1,000e−0.0943(5) = 624. 

Thus, any mortality rate can be described either as a finite or instantaneous rate, and 
this example shows the ease of transferring between the rate types.
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between instantaneous and finite rates are proportional, such that the exploitation rate can be 
obtained as the fraction of total annual mortality (A) that is due to F:

						      , 				             (2.6)
 

In continuous fisheries, the total annual mortality rate A is found by

			               A = cf + cm – (cf × cm), 				             (2.7)
 

where the quantity cf × cm signifies that some fish that die due to fishing mortality would 
have died due to natural mortality, and vice versa. This is a key difference between the 
discrete fishery model and the continuous fishery model because the equations accounting 
for a discrete fishery do not impart any interaction between fishing mortality and natural 
mortality: they are assumed to occur separately in time. The equations accounting for a 
continuous fishery explicitly model the fact that fish dying from one cause of mortality 
(e.g., fishing) are no longer available to die from the other cause of mortality (e.g., natural 
mortality) and vice versa.

 

 
Box 2.2. Discrete Fishery Mortality

 
Suppose a fish stock is determined to have the following mortality rates:

u = 0.3, and 

M = 0.2.
 

Here we transform this instantaneous mortality rate to a natural survival rate as

S0 = e−0.2 = 0.82.
 

Using this format and starting with 1,000 age-2 fish, we calculate the number of fish 
surviving from age 2 to age 3:

N3 = 1,000 × (0.82) × (1 – 0.3) = 574.
 

Natural deaths are: 1,000 × 0.18 = 180, and the total catch would be 1,000 × 0.82 × 0.3 
= 246, because we have assumed that fishing took place after natural mortality occurred. 
So, the total deaths are 426 fish (i.e., 180 from natural causes and 246 from fishing). 
Notice that the total deaths (426) plus survivors (574) is the original value of 1,000 fish. 
This is because we assumed that fishing and natural mortality operate separately within 
the year.

A
Z
Fu ×=
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2.3.2 Estimation of mortality rates

Total mortality.—Fisheries managers seek to estimate mortality to understand how fish-
ing mortality and natural mortality rates are influencing fish populations. The most basic 
approach is to estimate total annual mortality, which is frequently evaluated as the change 
in fish abundance with age. Catch curves are a regression of the natural log of the number of 
fish at age on fish age, and the slope of the relationship is an estimate of Z (see Box 2.3). The 
assumptions of a catch curve are that (1) mortality rate is constant across ages, (2) recruitment 
is constant, and (3) the age sample is a random sample of fish abundance with age. Although 
these assumptions are not strictly met in most applications, catch curves usually provide gen-
eral estimates of Z. Assumption 1 is usually addressed by including only fish that are expected 
to have similar mortality rates. Assumption 2 is often not a major problem provided that re-
cruitment has not exhibited an increasing or decreasing trend through time. Random recruit-
ment variation tends to make a catch curve bumpy but does not bias the slope (Ricker 1975). 
Selectivity of the sample gear must be considered relative to assumption 3 and the youngest 
fish not fully vulnerable to the gear are typically excluded from catch curves (see Box 2.3).

Passive tagging estimates of fishing mortality.—Estimates of fishing mortality may be 
obtained using passive tagging or active tagging methods. Passive tagging involves tagging 
fish with external tags and obtaining anglers’ reports of harvesting tagged fish. The estimate 
of annual exploitation rate is obtained by:

					     u =	    , 				             (2.8)
 

where u is the exploitation rate, C is the corrected number of tagged fish caught, and T is the cor-
rected number of tagged fish in the population. Values of C must be corrected for nonreporting of 
tags, and values of T should be corrected for short term tag loss and tagging-associated mortal-
ity.  If long term tag loss is substantial, T can also be adjusted downwards to account for chronic 
tag loss. Angler reporting rates are the most difficult issue with this approach. The most common 
method of estimating reporting rates is to use some high-reward tags for which it can be assumed 
that reporting rate is 100%, then adjust the number of standard tags returned based on the assump-
tion that capture rate of fish by anglers is not influenced by reward value (Pollock et al. 2002):

 						           , 				             (2.9)
 

 
 
where 	   is the estimated reporting rate for standard tags, Cs is the number of standard-tag fish 
reported by anglers, TS is the number of fish tagged with standard tags, CH is the number of 
high-value-tag fish reported by anglers, and TH is the number of fish tagged with high-value-
reward tags. Once an estimate of     is obtained, it can be used to correct C in equation (2.8) 
for the standard-tag fish.

Correcting estimates of C and T for tag loss and tagging mortality is typically required. 
Tag loss is frequently evaluated through double tagging a subset of fish to estimate the tag loss 
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Box 2.3. Catch Curve Analysis

Age structure was determined by means of an age–length key. Ten fish per centime-
ter-group were aged and the aged fish applied back to the total length sample (see De-
Vries and Frie 1996). The age structure data are shown below.
 
Table. Age structure data for largemouth bass from the Apalachicola River, Florida.

		  Age	  		  N 			   (logeN)

  		  0	  		  155 			   5.04
	
  		  1	  		  283 			   5.65
	
  		  2	  		  128 			   4.85
	
  		  3	  		  285 			   5.65
	
  		  4	  		    73 			   4.29
	
  		  5	  		    31	  		  3.43
	
  		  6			     22 			   3.09
	
  		  7	  		      4 			   1.39
	
  		  8	  		      2 			   0.69
	
  		  9	  		      5 			   1.61
	
	            10			       0
	
	            11	  		      2 			   0.69

If abundance at time t is defined as  Nt = N0e
–Zt, then the log-transformed equation is 

linear (logeNt = logeN0 + −Zt, with intercept logeN0 and slope –Z). Results of the regres-
sion show that Z = 0.64. Annual total survival and total mortality can be obtained as: S 
= e−Z = 0.53, and A = 1 − S = 0.47. So, total annual mortality in this population is around 
47%. Notice that we did not use ages 0, 1, 10, or 11 in the regression. Ages 0 and 1 were 
excluded because they were apparently not fully vulnerable to the gear. Ages 10 and 11 
were excluded because of low sample size. Older ages with less than five fish are often 
removed from a catch curve to reduce their influence on the overall estimate of Z. Al-
though ages 10 and 11 were removed, techniques are available that allow their inclusion 
in the catch curve analysis (i.e., weighted catch curves; Miranda and Bettoli 2007). Note 
that the catch curve exhibits some bumpiness, likely due to both variation in recruit-

(Box continues)
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rate for single-tagged fish. Tagging mortality is usually conducted with cage experiments to 
evaluate short-term mortality from the tagging process (Box 2.4). Pine et al. (2003) provided 
a detailed discussion of the assumptions and methods of estimating angler reporting rates, tag 
loss, and tagging mortality (see Box 2.4). A detailed example of how to deal with these biases 
through time during a tagging study is shown by Smith et al. (2009).

If a multiyear tagging program is established, both fishing and natural mortality can be es-
timated (Hoenig et al. 1998; Jiang et al. 2007). As in the above short-term approach, address-
ing practical issues such as tagging mortality, tag loss, and nonreporting of tags is critical. An 
auxiliary estimate of the reporting rate (e.g., through the use of high-reward tags) is generally 
necessary to separate total mortality into F and M.

Active tagging methods for estimating F and M.—Active tagging involves the use of telemetry 
techniques to estimate fishing mortality and natural mortality (Hightower et al. 2001). By means 
of this method, fish tagged with sonic or radio transmitters are located at regular intervals. The 
status of each fish is based on movement (or lack of movement) between searches. Fish that move 
between successive locations are obviously still alive, whereas fish that stop moving are classified 
as natural mortalities. Live fish are sometimes found in the same location on consecutive searches, 

 
Box 2.3. Continued.

 
ment and sampling variability. Age-3 fish appeared to be from a relatively strong year-
class, whereas fish ages 7 and 8 were from relatively weak year-classes. See Maceina 
(1997) for more discussion of how residuals around a catch curve can provide an index 
of past recruitment.

a

Figure. Example of a catch curve for largemouth bass from the Apalachicola River, Florida. Fish 
were collected with electrofishing by Florida Fish and Wildlife Conservation Commission biolo-
gist Rich Cailteux.
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Box 2.4. Estimate of Fishing Mortality from a Passive-Tagging Study

Here we describe the steps for estimating fishing mortality for redear sunfish from 
Lake Panasoffkee, Florida. Data were obtained from Crawford and Allen (2006). Esti-
mates of fishing mortality were obtained in 1998 and 1999, but in this example we focus 
on the 1999 estimates. In January 1999, 753 redear sunfish greater than 15 cm in total 
length (TL) were collected by means of electrofishing, tagged with passive dart tags, and 
released into Lake Panasoffkee.

To estimate tag loss, 163 of the fish were double tagged. The estimate of annual tag 
loss from reported fish was 25% (in 1999, two of the eight double-tagged fish that were 
returned had only a single tag). Anglers were contacted to verify that harvested fish con-
tained only one tag at time of capture.

Short-term tagging mortality was estimated with a cage experiment in both 1998 
(N = 2 cage treatments for 3 d) and 1999 (N = 1 cage treatment for 6 d). Fish mortality 
through 3 d was 0 for all replicates, indicating that short-term tagging associated mortal-
ity was nil.

Nonreporting was estimated directly via a creel survey in both years. The creel clerk 
recorded tagged fish numbers in angler creels, and the reporting rate (λ) was estimated 
directly in this case as the proportion of tagged fish observed in angler creels that were 
reported. In 1999, the reporting rate was 83%. See Crawford and Allen (2006) for discus-
sion of a second method for estimating reporting rates in this study by use of a variable 
reward system.

Anglers returned a total of 55 tagged redear sunfish. Therefore, the approximate es-
timate of the number of fish available for capture by anglers (T) was 

T = 753 × 0.75 × 1 = 564,
 

where 753 is the number tagged, 0.75 is the tag retention rate (1 minus tag loss) and 1 is 
the tag survival because short-term tagging mortality was estimated as 0. The estimate of 
the number of fish caught by anglers (C) was

C = 55 / 0.83 = 66,
 

where 0.83 is the reporting rate.
 

The estimate of annual exploitation (u; equation 2.8) was

u = 66 / 564 = 0.12.
 

Therefore the annual fishing mortality for fish greater than 15 cm at Lake Panasoffkee 
was 12%.
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so classifying a fish as a natural mortality should be done only after several searches indicate no 
movements. Fish that are harvested disappear from the system, so those fish provide an indirect 
estimate of fishing mortality. However, not every fish with a transmitter is located on each search 
occasion, so the probability that a fish was harvested depends on how many consecutive searches 
it has not been found. The study area should be closed to emigration to avoid the risk of confusing 
emigration and fishing mortality. If emigration can occur (e.g., in a section of river), then an array 
of receivers should be set up to detect emigrating fish. Those fish are then censored from the tagged 
population so that they are not incorrectly classified as fishing mortalities.

Advantages of this approach are that it does not rely on angler-reported tags, natural 
mortality is directly estimated, and the study can be carried out over a shorter interval than 
can the multiyear tagging approach described above. Mortality estimates can be made over a 
fine time scale (e.g., monthly or quarterly), and estimates of fishing mortality can be highly 
seasonal (Hightower et al. 2001; Waters et al. 2005; Thompson et al. 2007). Another benefit 
of this approach is that periodic searches provide valuable information about fish movements 
and habitat use, in addition to estimates of fishing mortality and natural mortality.

 
2.3.3 Growth

One of the first steps in developing a management plan for a fishery is to characterize 
growth. The growth rate of a fish determines various aspects of its ecology (e.g., vulnerability 
to predation and sexual maturation) as well as its recruitment into a fishery. For recreational 
fisheries, the growth rate determines when fish reach a size that would be considered desir-
able, either for harvest or as trophy fish.

Harvest regulations for recreational fisheries are usually defined in terms of fish length. 
For example, a minimum length of 356 mm (14 in) might be established for a largemouth 
bass fishery to protect age-3 and younger fish from harvest and thereby increase the number 
of adults. Growth rates strongly influence the potential for a minimum length limit to improve 
the abundance of large fish in a population. Enacting minimum length regulations on fish 
populations with slow growth could exacerbate management problems (see Chapter 7).

Although growth is usually discussed in terms of length, fish growth in weight is used in 
some analyses. For example, weight can be used as a surrogate for fecundity or the contribu-
tion of females to the spawning population. Harvest regulations in some fisheries are set to 
allow the average weight of fish to increase, with the expectation that protecting large, highly 
fecund females will improve recruitment.

Information about growth also indicates the “health” of a population relative to its food 
resources and the quality of the aquatic environment. Fast growth suggests that fish density is 
in balance with food resources and that habitat quality is adequate. If fish are growing slowly 
(e.g., small mean length at a given age), it could indicate that the density is too high (relative 
to the food supply) or that habitat is not suitable to support an adequate prey base.

One way to summarize growth is to fit a model relating age to length or weight. For ex-
ample, age in years and total length in centimeters could be determined for a random sample 
of fish. A model can be fitted to the data to describe the relationship. The model is typically 
a curve because the rate of growth usually decreases with age (e.g., Figure 2.3). A growth 
curve is convenient for modeling because the pattern developed from many data points can be 
described using a single curve with only two or three parameters.
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A single model is typically appropriate for only one life stage (e.g., adult fish) because 
fish growth usually varies with age. Rapid growth occurs at the larval and juvenile stages, and 
then growth slows for adult fish as energy is diverted from somatic growth to gonadal devel-
opment. The adult life stage is generally of greatest interest to fisheries managers because it 
is the life stage of harvestable fish.

Another way of estimating growth is through tagging (e.g., Smith and McFarlane 1990; 
Smith and Botsford 1998; Quinn and Deriso 1999). Ideally, fish of a range of lengths are 
tagged and released. When tagged fish are encountered either through surveys or by anglers, 
length is again determined. The time at large and the change in length between tagging and 
recapture are used to estimate growth rate and maximum length. For instance, the change in 
length might be considerable for a small fish that is growing rapidly or for a fish that is at 
large for many months. A fish that is close to its maximum length when tagged will not grow 
substantially regardless of the time at large. An advantage of this approach is that it is not nec-
essary to estimate fish ages. This means that the method can be used on fish for which aging 
is not possible or can be used as an independent check on a growth curve derived from age 
data. It is important that the length at recapture be measured accurately, so lengths reported 
by fishers must be used with caution. Detailed analyses of growth data are shown in Isely and 
Grabowski (2007) and Quist et al. (in press).

Weight–length relationships.—In many fisheries management applications, it is useful to 
predict fish weight from length or vice versa. The relationship between fish weight and length 
is typically exponential and can be described by

				             W = aLb , 					           (2.10)
 

where W is fish weight, a is the intercept of the weight–length relationship, L is fish length, 
and b is the exponent that describes the steepness of the change in weight as fish grow in 
length. Most fish exhibit b near 3, which is commonly called isometric growth. Allometric 
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Figure 2.3. Example of a von Bertalanffy growth curve relating total length (TL) to age. Notice that 
incremental growth between ages declines with age.
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growth occurs when b is lower or higher than 3, which means that the fish changes shape (in 
terms of weight) with an incremental change in length. Equation (2.10) has historically been 
estimated with log10 transformations of both length and weight data followed by computation 
by linear regression, but the ease of computer optimization routines in spreadsheets means 
that least-squares fits of the nonlinear equation (2.10) are simple and obtain nearly identical 
parameter estimates (see “Model fitting” below).

Models for length and weight at age.—The model most commonly used for length-at-age 
data is the von Bertalanffy growth curve:

 						                , 				          (2.11)
	  

where Lt is length at age t (usually in years), L∞ is the asymptotic length, k is the growth rate, 
and t0 is the theoretical age at which the fish would have a length of 0 (Table 2.1). The von 
Bertalanffy growth curve describes growth that slows with age, as fish approach their maxi-
mum length (Figure 2.3)—a relationship that frequently occurs with adult fish. Note that in-
dividual fish may be larger than L∞, because L∞ simply represents the expected average maxi-
mum length. The growth rate k, sometimes referred to as the growth completion rate, is the 
rate at which fish approach L∞. The parameter t0 will generally be close to 0 if the growth data 
include young fish. If the growth data are from fish of harvestable length (so that t0 represents 
a considerable extrapolation), the estimate of t0 may be far from 0 and have no real biologi-
cal meaning. Other growth curves have been put forward (e.g., Schnute 1981), but the von 
Bertalanffy curve continues to be widely used because it fits observed data for a variety of or-
ganisms (Cushing 1981), the parameters have a biological interpretation, and many published 
parameter estimates are available for comparison across populations of a given species.

Inspection of a von Bertalanffy curve (Figure 2.3) shows that the growth rate (tangent to 
the curve) is continuously decreasing towards a growth rate of 0 at Lt = L∞, such that the in-
cremental growth (e.g., growth per year) declines with age. This assumption appears to work 
well to model the adult (i.e., age 1 and older) phase for most fish species when the growth 
measure of interest is change in length with age.

When growth is described in terms of increasing weight, the growth rate typically in-
creases at younger ages, reaches a maximum at some intermediate ages, and then decreases at 
older ages. For this situation, a curve with an inflection point is needed. The Gompertz curve 
can be used to model growth in size (Quinn and Deriso 1999):

 
						    
						                 , 				          (2.12)
 

where Y is length, weight, or some other measure of size, and the other parameters are as 
defined for equation (2.11).

Model fitting.—Growth curves can be fitted using least-squares methods where the squared 
differences between the observations and the fitted curve are minimized. In linear regression 
there are exact formulas for calculating the slope and intercept. In fitting a nonlinear model, 
parameter estimates are obtained iteratively (over a series of steps) by making small changes 
in the parameter estimates until no further improvement in the error sum of squares can be 

( )( )01 ttk
t eLL −−

∞ −=






 −

∞

−−

=
)0(1 ttke

k
t eYY



58			   Chapter 2

made. The calculations are readily done in a spreadsheet (see Box 2.5). Starting values must 
be chosen for each parameter. For a von Bertalanffy growth equation, the maximum observed 
length in the data is usually a good starting value for L∞. A value of 0.2 or 0.5 tends to work 
well for k, and a starting value of 0 should be sufficient for t0. The same final estimates should 
be obtained from any reasonable starting values if the model fits well and the data cover a 
reasonable range of ages and sizes.

Several factors affect the reliability of the fitted growth model. The most important factor 
is having a range of lengths, including older fish with lengths approaching L∞. It is common to 
overestimate L∞ if the growth data include only young, fast-growing fish. Small sample sizes at 
older ages can be a source of bias, depending on whether the curve is fitted using means by age 
or individual observations. It is generally more convenient to fit the curve using means, but the 
disadvantage is that each mean is given the same weight regardless of the number of observa-
tions. Means at older ages are often quite variable because of the small sample sizes. There are 
techniques for weighting each observation based on its sample size or inverse of the variance at 
each age, but a simpler approach is just to fit the curve to the individual observations. Aging error 
can introduce bias depending on whether the errors are random and unbiased or systematic (e.g., 
consistent underaging). In most instances where aging bias is a problem, the age of older fish is 
often underestimated, which results in an overestimate of k (Leaman and Beamish 1984).

 
2.3.4 Recruitment

Fish recruitment is typically defined as the number of fish that survive to a specific age 
or size in a given year. Although recruitment can be defined in a number of ways, it is most 
commonly specified as either the number of fish that reach age 1 each year or the number of 
fish that survive to the first age at which they may be captured in a fishery. Thus, the term 
recruitment can be used to denote the number of fish at various life stages (age 0, age 1, or an 
older age), and it is important to specify the life stage at which fish are considered recruits. 
In most cases, fish are considered recruited to the population after they reach a size or age at 
which the very high larval mortality rates (see section 2.3.1) have already occurred and the 
fish can be considered part of the adult population.

Measures of fish recruitment are vital to assessing fish stocks. Recruitment can vary from 
year to year by orders of magnitude. This high variation in recruitment influences population 
abundance, age structure, and number of large fish, and it can influence fish growth rates 
when large year-classes cause density-dependent interactions. Thus, variation in recruitment 
strongly influences adult fish abundance as strong or weak year-classes move through a fish-
ery, and understanding recruitment variation among years is an important consideration when 
evaluating harvest policies.

Fish recruitment is influenced by a variety of density-dependent and density-independent 
effects. Traditional fisheries management has used stock–recruitment relationships to predict 
recruits from spawning stock abundance (Ricker 1975). Stock abundance undoubtedly con-
tributes to variation in recruitment, although it has been widely noted that recruitment tends to 
remain about the same (with high variation around an average value) across a distribution of 
stock abundances (Walters and Martell 2004). This infers that recruitment exhibits density de-
pendence because recruits produced per spawner increase with declines in spawner abundance 
for nearly all fish stocks (see Myers et al. 1999). However, in many freshwater fisheries ap-
plications, the threat of recruitment overfishing via recreational fisheries is not as large as con-
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Box 2.5. Fitting a von Bertalanffy Growth Curve in Excel

Fitting a least-squares estimate of growth parameters is easy in Microsoft® Office Excel 
2007. In the table below are mean total-length-at-age estimates for black crappie Pomox-
is nigromaculatus from Lake Dora, Florida. Data were obtained from the Florida Fish and 
Wildlife Conservation Commission and represent angler-caught black crappie at the lake in 
2006. Ten fish per centimeter-group were selected for aging, and a larger sample of fish was 
measured for total length. Mean total-length-at-age estimates were obtained by means of the 
fixed-length subsampling methods of DeVries and Frie (1996). Copies of this and the other 
spreadsheets can be found at: http://fishweb.ifas.ufl.edu/allenlab/courses.html.

	 A		  B	 C	 D	 E	       F		  G

	 2		  L∞	 350				  
	 3		  k	 0.41				  
	 4		  t0	 −0.49				  
	 5						            Predicted
	 6				    Age	 TL	       TL		  Residuals2
	 7				    2	 226	       224		 5
	 8				    3	 262	       267		 18
	 9				    4	 295	       295		 0
	 10				    5	 311	       313		 4
	 11				    6	 329	       326		 11
	 12				    7	 345	       334		 132
	 13				    8	 328	       339		 119
	 14						    
	 15								        SSE = 289

The following steps describe how a spreadsheet is used to fit a von Bertalanffy growth 
model. First input reasonable starting values, then create a column of predicted values based 
on those hypothesized growth parameters. Create a column that calculates the observed mi-
nus predicted values squared (i.e., the squared residuals). Now sum the squared residuals in 
cell labeled SSE. To obtain the least-squares parameter estimates, click “Data,” then “Analy-
sis,” then “Solver.” Choose the SSE cell G15 as the target cell, choose the option to minimize 
this cell, and then in the box “By Changing Cells,” select cells C2 to C4. Now click “Solve” 
and notice that the parameter estimates change as Solver’s optimization routine finds the 
least-squares parameter estimates. Solver tends to perform better when using the following 
options: “Automatic Scaling,” “Quadratic Estimates,” and “Central Derivatives.” It is also 
useful to run Solver from more than one set of initial values to make sure the optimization 
routine converges on the same parameter values. The solved solution is shown below along 
with a graph of the observed and predicted values.

Table. Excel spreadsheet of mean total-length-at-age (TL, mm) estimates for black crappie from 
Lake Dora, Florida, used to fit a von Bertalanffy growth curve. See Table 2.1 for explanation of 
symbols; SSE is the sum of squared residuals.

(Box continues)
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cerns about growth overfishing. It may not even be feasible to estimate the stock–recruitment 
relationship because of the lack of information about recruitment at very low stock abundances 
at which recruitment would presumably be limited by stock size. Thus, in many freshwater ap-
plications, understanding stock–recruitment relationships is not as important as understanding 
the magnitude of recruitment variation and the factors that cause strong or weak year-classes 
for a particular water body. Fish recruitment in freshwater systems is often influenced by flow 
changes in rivers (Bain et al. 1988), water levels in reservoirs (Aggus and Elliot 1975; Ploskey 
1986), aquatic plant abundance and species composition (Bettoli et al. 1993), and water tem-
peratures (Cargnelli and Gross 1996). Here we present some common methods for measuring 
fish recruitment and show how these estimates can be used as part of freshwater fisheries stock 
assessments. For a detailed analysis of stock–recruit relationships and fitting methods, we refer 
the reader to Walters and Martell (2004) and Maceina and Pereira (2007).

Measures of fish recruitment and variability.—Most fisheries managers measure recruit-
ment through catch per unit effort (C/f, also known as CPUE) indices. Electrofishing, trawls, 
trap nets, and hoop nets have been used to measure C/f of small fish. The “recruit” C/f is usu-
ally designated by the lengths of fish (e.g., first mode of a length-frequency distribution) or 
through aging fish to verify catches as recruits (e.g., age-1 fish). Use of C/f indices to measure 
fish abundance makes the implicit assumption that the relationship between catch rate and 
population abundance is

						         , 				           (2.13)
 

Nq
f
CCPUE ×==

 
Box 2.5. Continued.

Figure. Fit of von Bertalanffy growth model to data.
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where C = is catch, f = is fishing effort (e.g., trawl time or net night), q = is the catchability 
coefficient (the fraction of population caught per unit of effort), and N = is fish abundance 
(Ricker 1975). This equation infers a linear relationship between C/f and abundance, with a 
constant slope q. However, studies that evaluate relationships between C/f and N show sub-
stantial variation due to environmental conditions, changes in fish distribution and behavior, 
fish size, and gear selectivity (Hilborn and Walters 1992; Bayley and Austen 2002; Rogers 
et al. 2003). Thus, use of C/f data as an index of abundance should be accompanied by other 
methods that validate whether changes in C/f reflect changes in N. Alternately, managers 
could verify whether trends in C/f correspond to changes in recruitment using annual age 
structure estimates to verify strong and weak year classes moving through the population, or 
catch-at-age models (see below).

As an example, bottom trawl C/f data have been used to assess recruitment of black 
crappie at Lake Okeechobee, Florida (Figure 2.4). Substantial recruitment variability was 
indicated with mean annual age-1 catch per minute varying from near zero to nearly eight fish 
per minute over the period of record. Very strong year-classes were produced in 1981, 1987, 
and 1998 (caught in trawls a year later at age 1), whereas very weak year-classes were evident 
in other years. Weak year-classes in 2004 and 2005 were associated with hurricane events 
that caused lakewide changes in aquatic plant abundance (Rogers and Allen 2008). This time 
series shows a typical scenario of highly variable recruitment. Obviously, the quality of the 
black crappie fishery would be expected to vary with the large variation in recruitment, and 
it did! Angler catch per hour showed a lag effect where high angler catch rates occurred 1–2 
years after high age-1 catches in the bottom trawl (Figure 2.4). This example shows how 
monitoring recruitment trends can allow fisheries managers to anticipate the quality of the 
fishery in the future.

Figure 2.4. Age-1 black crappie catch per minute with a bottom trawl (CPUE, dashed line) and angler 
catch per hour (fish harvested/angler-hour, solid line) plotted on year for samples from Lake Okeecho-
bee, Florida. Data were collected by Don Fox, Florida Fish and Wildlife Conservation Commission.
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Estimating the magnitude of recruitment variation is important for fisheries management. 
Several authors have proposed indices to measure variation in recruitment through time. Ma-
ceina (1997) showed that residuals around a catch curve (see example Box 2.3) can serve 
as an index of recruitment variability. Isermann et al. (2002) and Quist (2007) compared a 
number of published methods for measuring recruitment variability. We have not reiterated all 
those methods, but the most straightforward method is to evaluate the coefficient of variation 
(CV) in recruit-size fish C/f across years. The CV is a standard measure of variability:

	
						        , 				           (2.14)
 

where CV is the coefficient of variation, s is the standard deviation of the sample, and    is 
the mean. Knowledge of the across-year CV in recruits is useful for population modeling 
exercises, because it allows the investigator to explore how variable adult fish abundance and 
angler catches are likely to be due to variation in recruitment. Allen and Pine (2000) found 
that recruitment variability could influence the ability of managers to detect fish population 
responses to changes in minimum length limits. Thus, understanding recruitment variability 
is a key component in managing recreational fisheries (Maceina and Pereira 2007).

 
2.4 USE OF BASIC FISHERIES MODELS

Fisheries managers can use population models to predict how estimates of growth, mortal-
ity, and recruitment will interact to determine fish yield, fish population size, and angler catch 
rates. Fish population models provide a conceptualization of how a fish population changes 
in abundance and age structure in response to harvest. Many fisheries textbooks provide com-
plex model formulations that are mathematically challenging. There are cases in which such 
models are essential, but a key objective of this chapter is to show that building simple fish 
population models can be both easy and effective for exploring harvest policy options.

Several key points should be considered before beginning a modeling exercise. First, all 
models are a simplified version of reality, and no model considers all factors that influence a 
fish population. Models should not attempt to capture all dynamics influencing fisheries, but 
they should consider the major factors that influence abundance, such as fishing mortality 
and recruitment. Population models should not be used to make specific predictions but to 
compare the relative responses to a range of management actions (Hilborn et al. 1984; John-
son 1995). A good way to think about a modeling exercise is that the model is a hypothesis 
about how a fish population may respond to management actions. Models typically compile 
much of the existing data into one framework, which allows investigators to identify data 
gaps clearly. Thus, a modeling exercise may have as much value in guiding future sampling 
efforts to reduce uncertainty as in evaluating the relative response to a variety of management 
actions. In this section, we show how a simple age-structured yield-per-recruit model and a 
catch-at-age approach can be used to assess freshwater fish populations.

 
2.4.1 Yield-per-Recruit Models

Yield-per-recruit models are typically used to evaluate the potential for growth overfishing 
(i.e., fishing at a level that reduces the maximum yield per recruit). A number of formulations have 
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been proposed for these models. Here, we used a simple formulation by Botsford and Wickham 
(1979) and Botsford (1981a, b) that was summarized by Walters and Martell (2004). The approach 
uses Botsford incidence functions, which estimate the abundance and biomass per recruit for a fish 
population. Consider a fish population with only instantaneous natural mortality (M) of 0.2. The S0 
(annual survival from natural mortality) for this population is e–M = 0.82. The number of fish alive 
at each age starting with 1,000 recruits to age-1 would therefore be found as follows.

		  Age 		  Number alive 		  Survival per recruit (lxa)

		  1 		  1,000 			   1

		  2 		     820 			   0.820

		  3 		     670 			   0.670

		  4 		     549 			   0.549

		  5 		     449 			   0.449

		  6 		     368 			   0.368 

Simply, the survivors to any age a + 1 is equal to the survivors to age a times 0.82. This 
example describes the survivorship schedule, lxa, on a per recruit basis, which is useful for the 
calculations below. Now let us consider the same population with an annual exploitation rate 
(u)  of 0.2. We assume that fish become vulnerable to fishing at age 3. The Botsford incidence 
functions can be used to predict survivors to each age. Survivorship at age 1, the youngest age 
in our simulated population, is

lx1 = 1.

Survivorship at any older age a can be depicted as:

			         lxa = lxa–1 × S0 × (1 – u × Va–1), 			          (2.15)
 

where lxa–1 is the survivorship from the previous age, S0 is survival from natural mortality, 
u is the annual exploitation rate, and V is a vulnerability parameter that determines whether 
fish are vulnerable (V = 1) to exploitation or not (V = 0). In this case, V is 0 for ages 1 and 2, 
and V is 1 for all older ages. Thus, the survivorship to age 2 would be: 1 × 0.82 × (1 – 0.2 × 
0) = 0.82. because this age group is not yet vulnerable to fishing. Following through with our 
example, the number of fish at any age can simply be determined by R × lxa, where R is the 
number of simulated recruits at age 1.

We now have estimates of the number of survivors per recruit and can compute the vul-
nerable biomass per recruit as:

			     øVB = w1V1 + lx2w2V2 + lx3w3V3..., 			          (2.16)
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where øVB is the vulnerable biomass per recruit, lxa is the age-specific survivorship as defined 
above, w is the average weight of fish at each age, and V is the vulnerability schedule. Total 
vulnerable population biomass (B) is then simply:

				           B = R × øVB , 				           (2.17)
 

where R is the number of recruits at age 1. This per-recruit formulation of the population 
model makes then next step easy. The equilibrium yield is estimated as:

				         Y = u × R × øVB ,				           (2.18)
 

where Y is yield in biomass expressed in the same units as fish weight (w). Botsford incidence 
functions (such as øVB) are easy to set up in a spreadsheet and they allow relatively complex 
population models to be expressed in simple terms. Box 2.6 shows a demonstration of the Bots-
ford incidence functions and a yield-per-recruit model for black crappie at Lake Dora, Florida.

In some fisheries total yield (or weight of fish harvested) is not the variable of interest be-
cause anglers place little value on harvesting fish but high value on catching large numbers of 
fish, large-sized fish, or both. For instance many black bass Micropterus spp. anglers release 
their catch even if the fish is legal to harvest, and managers of black bass fisheries seldom 
consider yield as an important aspect of the fishery. The same could be said for some trout 
fisheries where the catch of large fish is a more important management objective than is total 
yield. In these cases, total catch or the total catch of large fish may be a more useful model 
output. As illustrated in Box 2.6, a change in one spreadsheet formula is all that is required 
to reflect numbers, rather than biomass, of fish caught under each management alternative. 
Additional relationships, such as discard mortality of fish caught and released and voluntary 
release of fish by anglers, can also be incorporated. Thus, spreadsheet models can be built to 
address the specific needs of the investigator, and their flexibility to handle a wide range of 
modeling approaches is an advantage to learning this approach.

Software.—There are a number of software packages that can be used for yield-per-recruit 
and other age-structured population models as well as simple model fitting, such as for growth 
curves and mortality estimation. Perhaps the most popular is the program FAST (Fisheries Anal-
ysis and Simulation Tools; Slipke and Maceina 2001), which is a user-friendly software package 
that can perform all these analyses in a straightforward Windows platform. The FAST model 
has been used by many state management agencies, and the user can fit growth curves and catch 
curves and conduct analyses of yield-per-recruit and more complex age-structured models.

 
2.4.2 Catch-at-Age Methods

Management of a fish population is greatly enhanced if population size can be estimated. An 
estimate of absolute abundance can be compared with the catch to evaluate the impact of fishing 
on the population. Spawning stock abundance can be estimated to determine whether the stock 
abundance is low enough to limit recruitment. Population levels for prey and predator species can 
be used to estimate food resources for predators or the impact of predation on prey species. In com-
bination, analyses that predict population abundance provide a wealth of information about mortal-
ity, recruitment, and growth that cannot be obtained from relative abundance (i.e., CPUE) data.
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Box 2.6. Yield-per-Recruit Model

This yield-per-recruit (YPR) model for black crappie at Lake Dora, Florida, was 
based on data collected by Florida Fish and Wildlife Conservation Commission and Uni-
versity of Florida personnel. The purpose of the model was to evaluate whether growth 
overfishing was occurring in this fishery. Copies of the spreadsheet can be found at http://
fishweb.ifas.ufl.edu/allenlab/courses.html.

Annual exploitation (M) was estimated with a variable-reward passive-tagging study 
during 2006; u was estimated at 0.42 (Dotson 2007). The first three cells contain pa-
rameters for a von Bertalanffy growth equation (see Box 2.5) used to predict mean total 
length at age (TL):

TL = 350[1 − e−0.41(age + 0.49)].

Natural mortality (M = 0.40) was obtained from a literature review for black crappie, 
and thus S0 = e−M = 0.67. “Recruits” was used to designate the total number of recruits 
for this population and was set arbitrarily as 1,000. The next cell, “Reg,” designated the 
fish length at entry to the fishery. These parameters were placed into the left column of 
the spreadsheet and were named as indicated below (see spreadsheet for how to name 
cells).

Table 1. Parameters for Excel spreadsheet for yield-per-recruit model for black crappie at Lake 
Dora, Florida. Symbols defined here and in Table 2.1. 

				    L∞		  350
				    k		  0.412
				    t0		  −0.49
				    M		  0.40
				    S0		  0.67
				    u		  0.42
				    a		  6.310E-06a

				    b	 	 3.32
				    Recruits	 1000
				    Reg		  250
				    a6.31 × 10−6

	  
(Box continues)
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Box 2.6. Continued.
 

Next we construct the length, weight, and mortality structure of the population. 

Table 2. Values of each variable for eight ages of black crappie. Explanation of variables follow 
table.

Age	 1	 2	 3	 4	 5	 6	 7	 8

TL		  161	 225	 267	 295	 314	 326	 334	 339
wt		  0.13	 0.40	 0.72	 1.00	 1.22	 1.39	 1.51	 1.59
V		  0	 0	 1	 1	 1	 1	 1	 1
lxfished	 1.000	 0.670	 0.449	 0.175	 0.068	 0.026	 0.010	 0.004

Total length in millimeters was estimated with the von Bertalanffy growth model, and 
weight (wt) in kilograms was estimated by the standard weight–length relationship for black 
crappie as W = a × TLb (Anderson and Neumann 1996). The V (vulnerability) schedule was 
used to set the length and age at which fish become vulnerable to the fishery. In this case, we 
used an IF statement to set V equal to 0 if the mean length at that age was less than Reg and 1 
if the mean length was equal to or larger than Reg. The row for “lxfished” is the survivorship 
per recruit in the fished condition, found by lxa = lxa – 1 × S0 × (1 – u × Va–1), where lxa − 1 was 
the survivorship from the previous age, S0 is annual survival from natural mortality, u was 
the annual exploitation rate, and V is a vulnerability parameter that determines whether fish 
are vulnerable to u or not, per equation (2.15).

The Botsford incidence function of vulnerable biomass per recruit (øVB) was calculated 
as SUMPRODUCT(wt,V,lxfished). Yield per recruit was then found by Y = u × R ×  øVB, 
where R was the number of recruits. A second incidence function was set up as vulnerable 
number of fish per recruit, øn, by SUMPRODUCT(V,lxfished). Thus, total angler catch in 
numbers of fish was estimated as C = u × R ×  øn . 

Table 3. Summary of Botsford incidence function values. 

		  Vulnerable biomass per recruit (øVB)		      0.64
		  Yield per recruit (YPR)				    268.11
		  Vulnerable number per recruit (øn)		      0.73
		  Catch per recruit (CPR)				    307.69

To finish the analysis we simulated a range of exploitation rates and potential sizes of 
harvest (i.e., minimum length at harvest). We used the “Table” function in Excel to iterate 
the spreadsheet across a wide range of both values and show how equilibrium yield was 
predicted to change. See spreadsheet for instructions. The yield isopleth curve is shown 
below.

(Box continues)
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Box 2.6. Continued.

Figure. Yield isopleths (i.e., numbers in the plot represent yield in kilograms) for minimum length 
limit (y-axis) and exploitation rate (u, x-axis) combinations (MSY = maximum sustainable yield).

These yield isopleths (i.e., numbers within the plot represent yield in kilograms) show 
that the maximum sustainable yield (MSY) occurred at a minimum length limit of about 
240–250 mm with annual exploitation rates of about 0.8. Growth overfishing was predicted 
to occur at u over about 0.6 if the minimum length at harvest was below 240 mm (notice the 
decline in yield if u was high [>0.80] and the minimum length limit dropped from 250 mm 
to 200 mm). This resulted because fish would be harvested before they reached the size that 
would maximize the yield. In this case the exploitation rate at Lake Dora was 0.42 (gray 
circle on plot). If the management objective was to maximize yield, increasing the exploita-
tion rate would be recommended with about the same minimum length limit (250 mm TL). 
Establishing a minimum length limit above about 270 mm TL would cause declines in yield 
because many fish would die from natural mortality before reaching harvestable size. This 
example provides a way to construct YPR models to evaluate harvest policies in common 
recreational fisheries scenarios.

M
in

im
um

 le
ng

th
 li

m
it 

(m
m

)
320

280

240

200

Exploitation rate

0.20 0.60.4 0.8 1.0

Current 
fishery

50

50

100

100

100

100

100

150

150

150

150

150
150

200

200

200

200

200
200

250

250

250

250
250

300

300

300

MSY



68			   Chapter 2

There are a variety of ways to estimate population abundance. For example, if a trawl is 
assumed to catch 100% of the fish in its path, the area swept by the trawl provides a measure 
of catch per unit area that can be used to estimate total abundance. Hydroacoustic sampling 
can provide estimates of total population abundance for certain species, depending on their 
vertical distribution (Brandt 1996). Capture–recapture methods can be effective in small sys-
tems such as streams or small lakes but are harder to apply in large lakes and rivers because 
of the difficulty in tagging and recapturing a sufficient fraction of the population. Overviews 
of capture–recapture methods can be found in Pine et al. (2003) and Hayes et al. (2007). One 
related approach that can be effective on larger systems is to use tagging in combination with 
a creel survey. Total harvest from the creel survey divided by the exploitation rate from the 
tagging program provides an estimate of absolute abundance.

An approach commonly used in large systems (e.g., large lakes) is to estimate the total 
harvest by age and then reconstruct the population from the catch-at-age matrix. This matrix 
of catches by age and year provides a record of removals from each cohort or year-class. The 
total catch from a cohort over its lifetime in the fishery is a minimum estimate of the initial 
size of that cohort. Correcting for natural deaths provides a better estimate of initial cohort 
size. Methods that attempt to recreate the stock abundance using historical catches are usually 
termed virtual population analysis (VPA).

An exceptional example of a catch-at-age dataset exists for the walleye Sander vitreus 
fishery at Lake Escanaba, Wisconsin, for the years 1956 to 1997 (Box 2.7). The entire catch-
at-age matrix includes a few fish that were age 0 and older than age 12, but those have been 
omitted for this example. This lake is unique because anglers are required to report their entire 
catch when leaving the lake. Mandatory reporting has resulted in a high-quality dataset com-
pared with the typical situation in which total harvest is estimated from a small subsample of 
catches. Walleye ages were determined from jaw tags and by examining scales. Catch sam-
pling began in 1956, so age-1 fish caught in that year would be from the 1955 cohort (age 0 in 
1955). Age-2 fish in 1956 are from the 1954 cohort. The earliest cohort in that year is the 1946 
cohort at age 10. The most recent cohort that has completed its lifetime in the fishery is the 
1985 cohort, which is age 12 in 1997. These completed cohorts are the simplest to analyze be-
cause it can be assumed that no fish from those cohorts remain (Hilborn and Walters 1992).

Estimates of age-1 abundance for the completed cohorts showed that recruitment has 
varied widely over time, from about 2,000 to 18,000 fish per year (Box 2.7). Strong and weak 
year-classes were apparent and can be tracked across years (e.g., the weak 1960 year-class 
is evident through at least age 6 in 1966). The ability to track strong and weak year-classes 
across years is a sign that the age data are reliable. The occasional strong year-classes (e.g., 
1955, 1973, and 1981) can have a big impact on the population and result in several years of 
high catches. Slight modifications of the method shown here provide estimates for incomplete 
cohorts (Hilborn and Walters 1992), so that the catch-at-age matrix can be transformed into 
estimates of population size for every age and year. There are also statistically-based catch-at-
age analyses that use the same information and produce similar results but provide estimates 
of the uncertainty in estimating population abundance and fishing mortality (Hilborn and 
Walters 1992; Quinn and Deriso 1999). These methods are beyond the scope of this chapter 
but are recommended for carrying out catch-at-age analyses.

Catch-at-age methods are dependent on an assumed value of natural mortality. Chang-
ing M produces a new set of population estimates that will be consistently higher or lower, 
depending on whether M is decreased or increased. Although absolute abundance will differ, 
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Box 2.7. Continued.

Each cohort can be reconstructed by summing the catches and adjusting upward for 
natural mortality. Because natural deaths are not observed, the instantaneous rate of natu-
ral mortality (M) is often an assumed value based on the life history characteristics of that 
species. Here, a value of 0.4 is assumed.

The abundance estimate for each cohort begins at the oldest age and works backward. 
This is very convenient for cohorts that have completed their life in the fishery because it 
can be assumed that no fish from that cohort remain in the population. Abundance at the 
start of age 11 is the population abundance at age 12 (assumed to be the catch), adjusted 
upward for a year of natural mortality (simply divided by S0 [e

−M]), plus the catch of age-
11 fish that year. For the 1955 cohort, the expression would be

N11, 1966 = N12,1967 /S0 + C11, 1966.
 

The equation for the number at age 10 is

N10, 1965 = N11,1966 /S0 + C10, 1965.
 

A similar calculation is made for each age, working backwards up the diagonal to age 1.

(Box continues)
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Box 2.7. Continued.

Figure A. Fishing mortality of walleye from 1965 to 1986 in Escanaba Lake, Wisconsin.

Other useful results from a virtual population analysis (VPA) include population abun-
dance (totaled across all ages) and annual recruitment to age-1 (shown below). Notice how 
the strong and weak year-classes are evident simply by reconstructing the cohorts in the 
VPA.

Figure B. Annual recruitment of age-1 walleye at Escanaba Lake, Wisconsin.

Population biomass can also be calculated by multiplying each abundance estimate by 
the associated average weight-at-age value.
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the trend and year-to-year variability in year-class strength will be similar for different as-
sumed values of M. Field studies to estimate M (e.g., a tagging study) can be used to reduce 
this source of uncertainty.

Catch-at-age models are routinely used in marine fisheries, but they have not been com-
monly used in freshwater systems other than the Great Lakes. They require more effort than 
do relative abundance surveys, but they can be derived from creel survey data if accompanied 
by estimates of age composition of the angler catch. The abundance estimates provide a strong 
foundation for single-species or multispecies models and are superior to relative abundance 
data for selecting an appropriate harvest rate.

 
2.5 CONCLUSIONS

Fisheries management requires making choices about harvest regulations, fish stocking 
programs, and habitat restoration Those choices influence fisheries resources and the human 
users who benefit from those resources. Estimating fish population parameters including mor-
tality, growth, and recruitment and integrating those estimates into simple population models 
improves understanding of the factors influencing fish abundance and angler harvest. The 
methods outlined in this chapter serve as a first step towards proficiency in assessment of fish 
populations. Quantitative analysis of fish populations will always be a critical element for ef-
fective management, and the purpose of this chapter has been to show that most analyses are 
not difficult to draw basic fishery conclusions needed in most instances. When combined with 
effective use of harvest restrictions and other management strategies related to fish habitat 
and species composition, quantitative fisheries assessment methods will inform management 
decisions and improve fisheries in the future.
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