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Preface

Our rationale for the development of this book was simple but twofold. First,
there are numerous statistics reference texts available for biostatistical analyses.
Our intent was not to repeat those efforts but to take a more functional approach.
Rather than supply another test-oriented book (e.g., analysis of variance or mul-
tiple regression) with fisheries examples, the major fisheries data types dictated
the development and presentation of statistical approaches. Secondarily, this book
provides the profession with a frame of reference to encourage appropriate sample
design, analysis, and interpretation of freshwater fisheries data. We narrowed the
scope of the book to freshwater data types because we believed by including ma-
rine analytical methods the book would become excessively cumbersome. Although
there is much overlap in freshwater and marine analytical methods, there are
inherent differences with regard to research problems and data collection.

This book was also developed to complement Fisheries Techniques (Murphy and
Willis 1996.) and Inland Fisheries Management in North America (Kohler and Hubert
1999). Several years ago we observed a lack of textbooks regarding data analysis
with user-friendly examples. Thus, we proposed this book to fill this void and help
practicing fisheries professionals and students move beyond sampling and into
analysis of data. Accordingly, this book was designed as a reference for practicing
fisheries professionals, and we intend the book to be used in advanced under-
graduate and graduate courses. We intentionally asked authors to minimize text
regarding the theory, derivation, and development of formulas related to statisti-
cal testing or mathematical modeling. Our intent for this book was to minimize
complexity and make it user friendly. There are several excellent books that ex-
plain statistical theory and model development which are referenced in this book—
our intent was not to duplicate those efforts. If we have succeeded in our efforts,
the reader should be able to follow the methods and box examples and obtain the
same results as the authors by using the data found on the accompanying com-
pact disc.

Following the successful approach taken in the production of Fisheries Tech-
niques and Inland Fisheries Management of North America, we attempted to select a
minimum of two authors per chapter. We also had several reviewers per chapter.

xiii



At least one fisheries professional who was knowledgeable of the data type was
recruited for review. Aside from our technical reviews, Drs. Jeffrey Pontius (Kan-
sas State University) and Kenneth Gerow (University of Wyoming) were contracted
as statistical consultants to ensure that appropriate statistical approaches were
followed. Lastly, several chapters were reviewed by fisheries graduate students to
gauge reading level and class utility. We are greatly indebted to all of these review-
ers for their conscientious efforts.

Fisheries data analysis is not easy and can often be conducted in several ways.
For example, two fisheries scientists may analyze the same data set differently,
given they are trying to answer the same question. Similarly, statistical analyses are
complex and several statistical approaches may be used on a single data set. Two
statistical consultants may suggest different methods for analyzing the same data
set. Therefore, this book is not a “how to guide” but rather a reference to provide
a better understanding of data analysis techniques and increase awareness by us-
ing current, appropriate analytical methods. Chapter 1 includes some text on the
more complex and novel approaches to analyzing data. However, many of the
techniques outlined in the remaining chapters focus on standard techniques that
have been used and proven useful for many years. It would be impossible to in-
clude every data analysis technique, but we attempted to include the more com-
mon methods and encourage readers to go beyond the text and develop addi-
tional methods that can better address specific fisheries management problems.

There are numerous software packages that are available to analyze data, and
we were forced to choose a single software package for consistency among chap-
ters. We selected SAS (SAS Institute, Cary, North Carolina) given that many of the
authors were familiar with this software and most statisticians are familiar with the
software. We recognize the shortcomings associated with SAS but also understand
that there would be shortcomings with any software package we would have se-
lected. Additionally, different SAS versions will yield slightly different output and
results may differ from output as depicted in the box examples derived from the
code on the accompanying compact disc. We encourage readers to develop pro-
gram language using other software packages (e.g., R; available http://www.
r-project.org; January 2007) with the data used in the box examples. We are ex-
ploring the potential for an affiliated webpage for the book where programs writ-
ten using software other than SAS could be included along with additional devel-
oped examples.

We thank the following for their volunteer efforts as reviewers: P. L. Angermeier,
J. R. Bence, M. S. Bevelhimer, B. G. Blackwell, J. C. Boxrucker, M. Bozek, P. J.
Braaten, J. E. Breck, S. R. Chipps, M. A. Colvin, S. J. Cooke, J. S. Diana, W. G.
Duffy, T. E. Essington, C. P. Ferreri, W. L. Fisher, L. S. Fore, B. D. S. Graeb, R.
Gresswell, D. B. Hayes, C. W. Hoagstrom, E. R. Irwin, D. A. Isermann, T. E.
McMahon, M. H. Meeuwig, P. H. Michaletz, C. L. Milewski, B. R. Murphy, J. J. Ney,
D. L. Parrish, C. P. Paukert, M. C. Quist (two chapters), C. F. Rabeni, B. A. Rich, S.
M. Sammons, J. Schreer, R. A. Stein, T. M. Sutton, J. S. Tillma, M. J. Van Den Avyle
(two chapters), D. W. Willis, and A. V. Zale. We thank I. Davis for the cover art. We
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thank In-Fisherman (J. Simpson and R. M. Neumann) for the blue catfish photo, S.
L. Denson for the river photo, and M. H. Meeuwig for the photo of fisheries
scientists.

The editors thank Brian Murphy, Chuck Scalet, and Dave Willis for their ideas
regarding the development of this book. The editors also thank the Presidents of
Education Section during the development of the book, Chris Kohler, Al Zale,
Tom Coon, and Rob Neumann (in chronological order of presidency). Mike
Maceina and Don Pereira (Chapter 4) thank Terrance Quinn II and Sandy
Weisberg for assistance with statistical models. Jeff Isley and Tim Grabowski (Chap-
ter 5) thank William Bridges, Jr. Wayne Hubert and Mary Fabrizio (Chapter 7)
thank Ken Gerow, Jeff Pontius, Mike Maceina, and Ann Zimmerman for assis-
tance and guidance throughout the development of their chapter. Rob Neumann
and Mike Allen (Chapter 9) thank Ramon Littell, Rich Cailteux, and Marty Hale
for helpful suggestions. Steve Chipps and Jim Garvey (Chapter 11) thank Roy
Stein for his advice and comments. Michael Power (Chapter 13) thanks Marshall
Adams, Martin Attrill, Lynn McCarty, James Reist, and Brian Dempson for discus-
sions on the topic of population bioassessment. Particular thanks go to Geoff Power
who provided exacting comments on the initial draft of the Chapter 13. Kevin
Rogers and Gary White (Chapter 14) thank Eric Bergersen and Greg Langer for
the use of their research in the examples. Dave Beauchamp, Dave Wahl, and Brett
Johnson (Chapter 16) thank Alison Cross, Lisa Einfalt, Tracy Galarowicz, Marci
Koski, Mike Mazur, Jim Matilla, Jenifer McIntyre, Jamal Moss, Nathanael Over-
man, and Ruth Wagner for their helpful suggestions and contributions. Frank
Rahel and Don Jackson (Chapter 18) thank Ken Gerow, Wayne Hubert, Nathan
Nibbelink, Amy Schrank, and Dan Isaack for helpful comments and statistical
insight. Research support for Don Jackson was provided by the Natural Sciences
and Engineering Research Council of Canada.

The editors thank Eva Silverfine for her outstanding work as technical editor.
Finally, the editors thank Debby Lehman and Aaron Lerner with the American
Fisheries Society for their patience and professionalism throughout the develop-
ment of this book.

Mention of trade names or product vendors does not imply endorsement by
the American Fisheries Society, authors, editors, or the employers of the book’s
contributors.

Christopher S. Guy
Michael L. Brown
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List of Species

■ Fish

alewife Alosa pseudoharengus
American eel Anguilla rostrata
American shad Alosa sapidissima
Arkansas River shiner Notropis girardi
Atlantic cod Gadus morhua
Atlantic menhaden Brevoortia tyrannus
Atlantic salmon Salmo salar
Atlantic sturgeon Acipenser oxyrinchus
banded darter Etheostoma zonale
bay anchovy Anchoa mitchilli
bigeye tuna Thunnus obesus
bighead carp Hypophthalmichthys nobilis
black basses Micropterus spp.
black bullhead Ameiurus melas
black crappie Pomoxis nigromaculatus
black redhorse Moxostoma  duquesnei
blackside darter Percina maculata
bloater Coregonus hoyi
bluefish Pomatomus saltatrix
bluegill Lepomis macrochirus
bluntnose minnow Pimephales notatus
brook silverside Labidesthes sicculus
brook trout Salvelinus fontinalis
brown trout Salmo trutta
bull trout Salvelinus confluentus
bullhead Cottus gobio
bullhead minnow Pimephales vigilax
burbot Lota lota
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carps Family Cyprinidae
central mudminnow Umbra limi
chain pickerel Esox niger
channel catfish Ictalurus punctatus
Chinook salmon Oncorhynchus tshawytscha
cisco Coregonus artedi
ciscoes Coregonus spp. and Prosopium spp.
coho salmon Oncorhynchus kisutch
common carp Cyprinus carpio
common snook Centropomus undecimalis
crappies Pomoxis spp.
cunner Tautogolabrus adspersus
cutthroat trout Oncorhynchus clarkii
darters Etheostoma spp. and Family Percidae
desert pupfish Cyprinodon macularius
English sole Parophrys vetulus
Eurasian perch Perca fluviatilis
fathead minnow Pimephales promelas
flathead catfish Pylodictis olivaris
Florida largemouth bass Micropterus salmoides floridanus
gizzard shad Dorosoma cepedianum
golden redhorse Moxostoma erythrurum
golden shiner Notemigonus crysoleucas
goldfish Carassius auratus
grass carp Ctenopharyngodon idella
green sunfish Lepomis cyanellus
greenback cutthroat trout Oncorhynchus clarkii stomias
haddock Melanogrammus aeglefinus
herrings Family Clupeidae
hornyhead chub Nocomis biguttatus
hybrid striped bass M. chrysops  × Morone saxatilis 
jaguar guapote Cichlasoma managuense
johnny darter Etheostoma nigrum
kokanee Oncorhynchus  nerka
Lahontan cutthroat trout Oncorhynchus clarkii henshawi
lake trout Salvelinus namaycush
lake whitefish Coregonus clupeaformis
largemouth bass Micropterus salmoides
leopard darter Percina pantherina
logperch Percina caprodes
longear sunfish Lepomis megalotis
longnose dace Rhinichthys cataractae
longnose gar Lepisosteus osseus
mimic shiner Notropis volucellus
minnows Family Cyprinidae
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molly miller Scartella cristata
mottled sculpin Cottus  bairdii
muskellunge Esox masquinongy
North American catfishes Family Ictaluridae
northern hog sucker Hypentelium nigricans
northern largemouth bass Micropterus salmoides salmoides
northern pike Esox lucius
northern pikeminnow Ptychocheilus oregonensis
northern redbelly dace Phoxinus eos
orangespotted sunfish Lepomis humilis
Pacific cod Gadus macrocephalus
Pacific salmon Oncorhynchus spp.
paddlefish Polyodon spathula
perches Family Percidae
pike Family Esocidae
pumpkinseed Lepomis gibbosus
quillback Carpiodes cyprinus
rainbow smelt Osmerus mordax
rainbow trout Oncorhynchus mykiss
red snapper Lutjanus campechanus
redfin shiner Lythrurus umbratilis
redside shiner Richardsonius balteatus
river redhorse Moxostoma  carinatum
rock bass Ambloplites rupestris
rosyface shiner Notropis rubellus
round goby Neogobius melanostomus
sablefish Anoplopoma fimbria
salmons Family Salmonidae
sand shiner Notropis stramineus
sauger Sander canadensis
sculpins Family Cottidae
sea lamprey Petromyzon marinus
shads Family Clupeidae
shorthead redhorse Moxostoma macrolepidotum
shovelnose sturgeon Scaphirhynchus platorynchus
silver redhorse Moxostoma anisurum
slenderhead darter Percina phoxocephala
smallmouth bass Micropterus dolomieu
smallmouth buffalo Ictiobus bubalus
smelts Family Osmeridae
sockeye salmon Oncorhynchus  nerka
southern flounder Paralichthys lethostigma
spot Leiostomus xanthurus
spotfin shiner Cyprinella spiloptera
spotted bass Micropterus punctulatus
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spotted sucker Minytrema melanops
steelhead Oncorhynchus mykiss
striped bass Morone saxatilis
striped shiner Luxilus chrysocephalus
sturgeons Family Acipenseridae
suckermouth minnow Phenacobius mirabilis
suckers Family Catostomidae
sunfishes Family Centrarchidae
temperate basses Morone spp.
threadfin shad Dorosoma petenense
Topeka shiner Notropis topeka
trouts Family Salmonidae
walleye pollock Theragra chalcogramma
walleye Sander vitreus
weakfish Cynoscion regalis
westslope cutthroat trout Oncorhynchus clarkii lewisi
white bass Morone chrysops
white crappie Pomoxis annularis
white perch Morone americana
white sturgeon Acipenser transmontanus
white sucker Catostomus commersonii
whitefishes Coregonus spp. and Prosopium spp.
winter flounder Pseudopleuronectes americanus
yellow perch Perca flavescens
yellowfin sole Limanda aspera
Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri
zander Stizostedion lucioperca

■ Other Animals

American beaver Castor canadensis
American lobster Homarus americanus
anchor worm Lernaea cyprinacea
brine shrimp Artemia spp.
cladoceran Daphnia pulicaria
exotic cladoceran Daphnia lumholtzi
loggerhead sea turtles Caretta caretta
mysid shrimp Family Mysidae
northern clearwater crayfish Orconectes propinquus
opossum shrimp Mysis relicta
virile crayfish Orconectes virilis
zebra mussels Dreissena polymorpha
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Science and Statistics
in Fisheries Research
Michael L. Brown and Christopher S. Guy

1

1

■ 1.1 INTRODUCTION

Fisheries science is considered to be a relatively young profession in North America,
with its origins in the late 1800s (Nielsen 1999). Considerably younger are many
of the analytical tools currently used by fisheries scientists to develop interpreta-
tions of data during the decision-making process. Accordingly, the use of statistics
in fisheries science has paralleled the development of statistical theory, approaches,
and computing tools that facilitate both simple and complex analyses. Efron (1998)
noted that 1925 was “the year that statistical theory became of age, the year statis-
tics went from an ad hoc collection of ingenious techniques to a coherent disci-
pline.” Thus, in a way, fisheries and statistical sciences are of a similar vintage.

In the recent past, most freshwater fisheries management activities have been
centered on controlling processes and population dynamics associated with single
species, with the goal of maximizing numbers and sizes available to anglers. Math-
ematical treatments of inland fisheries data have followed that trend. However,
the need to accommodate research and management at the ecosystem level has
recently promoted the collection of diverse community and habitat data to ad-
dress questions about processes and interconnectedness (Krueger and Decker
1999). The growing body of study designs and statistical analyses often causes
some consternation within the profession; however, we are responsible for utiliz-
ing the most appropriate data management and statistical tools to formulate and
assess research and management activities. Thus, by necessity, fisheries scientists
must become more knowledgeable about the increasingly diverse array of statisti-
cal and data management tools and potential applications. This book, as well as
several other texts, provides acceptable approaches to the analysis of common
fish and fisheries data (Table 1.1).

A recent occurrence has been the use of alternative approaches to null hypoth-
esis testing, such as methods based in decision, information, and Bayesian theo-
ries. All of these methods contribute to a growing body of analytical literature.
Regardless of method, the intention of alternative methods is to minimize uncer-
tainty in the decision-making process. Thoughtful review of the literature and
consultation with a statistician on complex analytical approaches will greatly aid



2 Chapter 1

study design and data analysis. This chapter does not center on debates among
statistical philosophies or methods but describes the science and the basic condi-
tions for each approach. We also discuss general issues confronted in inference
but refer readers to Chapter 2 and Chapter 3 for specific information concerning
study design and sampling issues.

■ 1.2 FISHERIES SCIENCE

To begin, what do we mean by fisheries science? To help answer this question we
first define fisheries and science separately. Fisheries (plural for fishery) include
(1) a population or assemblage of fishes used for commercial or recreational pur-
poses, (2) habitats, and (3) associated humans. For example, the rainbow trout
fishery in the Madison River, Montana, is a highly regarded recreational fishery by
salmonid anglers throughout the world. Another example is the commercial fish-
ery for sockeye salmon, which is arguably the most important salmonid fishery in
North America (Behnke 2002). Strahler (1992) stated, “Science is the acquisition
of reliable but not infallible knowledge of the real world, including explanations
of the phenomena.” The preceding quote is good because it includes the words

Table 1.1 Guide to analytical approaches for specific fish and fishery data. Topics are
addressed in the listed chapters, which are contained in the sources Fisheries Techniques
(FT, Murphy and Willis 1996), Inland Fisheries Management in North America (IFM, Kohler and
Hubert 1999), Methods for Fish Biology (MFB, Schreck and Moyle 1990), and this book (AIFFD).
Collection and statistical analysis of angler data are addressed in Angler Survey Methods and
Their Applications in Fisheries Management (Pollock et al. 1994).

Source

Topic FT IFM MFB AIFFD

Age and growth 6 11 5
Behavior 17
Bioenergetics 12 12, 16
Community assessment 7 19 15
Condition 15 10
Food habits 11
Genetics 2
Habitat 17
Mortality rate 6 6
Population bioassessment 13
Population size 6
Predator–prey interactions 16
Production and yield 6 8
Recruitment 6 4
Relative abundance 21 7 7
Size structure 15 7 9
Telemetry 19 14
Toxicology 15
Watershed 18
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“infallible knowledge.” Science is not without error, but science and the scientific
method (see below) allow scientists to learn from past misconceptions. Science is
really a way of obtaining reliable knowledge about the universe. Thus, fisheries
science is the process of obtaining reliable knowledge about fisheries through
scientific inquiry.

Scientific inquiry is associated with measurable metrics and is based on empirical
evidence, not value judgments (Lee 1999). For example, to determine the effects of
angling on a fishery we would establish hypotheses and predictions, design an ap-
propriate experiment (Chapter 3), and measure population metrics such as total
annual mortality (Chapter 6), exploitation rate (Chapter 6), and growth rate (Chap-
ter 5). We would use these empirical data to test our hypotheses. It would be inap-
propriate and not scientific to assess the impact that angling might have on the
beauty of a fishery because this is a value judgment. Similarly, we need to be aware
of “belief fields,” for which knowledge is based on belief. Belief is something that
cannot be observed to exist physically, thus it is not science (Strahler 1992).

In addition to being careful about incorporating value judgments in science,
scientists need to control subjectivity in science. Nevertheless, scientists are not
machines and are quite capable of adding subjectivity into science (Lee 1999).
Subjectivity can unknowingly enter science whereby the scientist has preconceived
hypotheses about the way the world operates and unintentionally designs experi-
ments that support those hypotheses. One control for subjectivity is peer review.
Peer review is important at all levels of science, particularly in the study design
and publication stages. Peer review helps maintain integrity in research. Issues
related to fisheries science are becoming ever more entangled with the social,
political, and economic fabric of society, thus it is important that fisheries scien-
tists guide their research with the utmost integrity. Maintaining high ethical stan-
dards in research will help ensure the public’s trust and support of research in
fisheries science. The National Research Council outlined eight practices that a
scientist should follow (IOM 2002): (1) intellectual honesty in proposing and
reporting research; (2) accuracy in representing contributions to research pro-
posals and reports; (3) fairness in peer review; (4) collegiality in scientific interac-
tions, including communications and sharing resources; (5) transparency in con-
flicts of interest or potential conflicts of interest; (6) protection of human subjects
in the conduct of research; (7) humane care of animals in the conduct of re-
search; and (8) adherence to the mutual responsibilities between investigators
and their research teams. The most important trait in a scientist is integrity; this is
above intelligence, creativity, or determination (Lee 1999).

■ 1.3 SCIENTIFIC METHOD AND RESEARCH

The fisheries profession was founded on animal husbandry and natural history
observations, much like our counterpart, the wildlife profession (see Garton et al.
2005). Thus, many decisions regarding inland fisheries management are based
on observational associations rather than experimental studies and the scientific
method. The failure of the wildlife profession to follow the scientific method was
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eloquently described by Romesburg (1981), and his arguments apply to the fish-
eries profession. Romesburg (1981) stated that the wildlife profession provides
“unreliable knowledge” because researchers often do not follow accepted ap-
proaches to sound scientific inquiry, such as the hypothetico–deductive method.
Popper (1959, 1968) popularized the hypothetico–deductive method after
Chamberlin’s (1965) work (first printed in 1890) emphasizing the need to exam-
ine multiple working hypotheses. Garton et al. (2005) describe the hypothetico–
deductive method as “a circular process where previous information is synthe-
sized into a theory, predictions are deduced from the theory, the predictions are
stated explicitly in the form of hypotheses, hypotheses are tested through an in-
vestigation involving experimentation, observation, or quantitative models, the
theory is supported, modified, or expanded on the basis of the results of these
tests, and the process starts again.” Some other early classic papers regarding the
scientific method were written by Dewey (1938) and Platt (1964).

In defense of our profession, many of the studies we conduct are in highly
variable environments, and we do not have the ability to control variables associ-
ated with the study such as physicists or chemists can do in their studies. Subse-
quently, much of the research in the fisheries profession is descriptive and has
broad objectives. Scientists in other disciplines can regularly conduct their re-
search under the most stringent rigors of the scientific method, repeat experi-
ments under highly controlled conditions, determine cause and effect, and ob-
tain repeatable results. It is often difficult for fisheries scientists to conduct science
in a similar manner. For example, conducting a study to determine unequivocally
the factors influencing recruitment of yellow perch in a large reservoir is imprac-
tical because it would be difficult to determine cause and effect given the con-
stantly changing factors, such as density, mortality, growth, habitat, or weather.
We might measure abundance of age-0 and age-1 yellow perch, water levels, water
temperature, and spawning habitat. From these data, we might find that year-class
strength of yellow perch was related to high-water levels in the early spring. Thus,
we would develop a water level management plan for the reservoir to enhance
year-class strength of yellow perch. However, many alternative hypotheses may
exist and should be investigated. Does adult density relate to year-class strength?
Is this pattern consistent among years and water bodies? Does predator density
vary with water levels? Alternative hypotheses are rarely investigated in field stud-
ies often because of monetary and logistic reasons. Laboratory studies can deter-
mine cause and effect, but the applicability of these studies to the field is often
questionable. It would be unrealistic to think that fisheries scientists will com-
monly conduct science similar to the physics or chemistry professions. Neverthe-
less, fisheries scientists need to be cognizant of the scientific method and attempt
to use the hypothetico–deductive method and experimental studies to construct
sound conclusions based on scientific inquiry.

Fisheries studies are often conducted using an inductive approach by which
the scientist collects data, analyzes the data, and then develops a conclusion based
on those observations. Inductive reasoning takes specific information and makes
generalizations. For example, from sampling 10 black crappies with seven dorsal
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spines each you would conclude that all black crappie have seven dorsal spines.
Rarely are fisheries studies conducted at a large enough scale or over a sufficient
time frame to develop theories from the inductive approach. A deductive ap-
proach is that by which the fisheries scientist starts with a theory, collects data,
and then analyzes the data to address the theory. This approach is often more
useful and allows the researcher to target the study design and data collection
directly at testing the theory. Deductive reasoning sequentially proceeds from
general to specific. Thus, from the previous black crappie example, we would
deduce that the next black crappie sampled will have seven dorsal spines. Lee
(1999) stated: “Deduction is believed to be more efficient than induction and less
likely to lead scientists astray. When little is known about the subject, however,
scientists may find it advantageous to use induction in order to gain an initial
understanding of the phenomenon.”

Some fisheries research can be categorized as reactive research. For example, a
fisheries scientist notices a decline in the number of bull trout redds over time
and subsequently develops a study to determine the cause of the decline. Reactive
research can be considered deductive because the fisheries scientist often has a
theory, or theories, regarding the observed phenomenon. For example, one theory
regarding the decline in bull trout redds may be related to the presence and
increased abundance of nonnative lake trout in the system. That theory could
yield several testable hypotheses.

1.3.1 The Research Framework—Definition of the Problem

The first step, and likely the easiest step, in scientific inquiry is defining the prob-
lem (Figure 1.1). Problems can be classified as basic or applied. Applied research
projects are often a function of political or sociological issues (e.g., evaluating the
impact recreational angling has on white sturgeon in the Columbia River) and
often have management implications. Rarely are fisheries studies conducted for
the sake of gaining more knowledge (i.e., basic research). However, the line be-
tween basic and applied is frequently blurred in fisheries studies. That is, informa-
tion about the life history of a species is often required (i.e., basic research) to
answer applied problems. For example, to enhance our understanding of the
impacts of recreational angling on white sturgeon in the Columbia River, basic
information on reproductive physiology and behavior, as well as other aspects of
the species biology, is required. A problem stimulates a question, or question set,
which can be formally stated as research questions (Figure 1.1). Research ques-
tions are typically general questions that may be too broad to be addressed in one
study. The foundation for research questions is typically obtained through a re-
view of the scientific literature. However, the foundation can also be obtained
through a descriptive study or a review of historical data. Some research questions
are amenable to formal experimentation, and others are predisposed to descrip-
tive study. Natural phenomena are frequently observed and described in descrip-
tive field studies. In general, descriptive studies include broad objectives that do
not lend themselves to the scientific method. However, information based on the
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outcome of a descriptive study may form the basis for theories that can be formally
tested through experimental studies. There is a necessity to have both types of
research activities in the fisheries profession.

1.3.2 Identification of the Theory

Through the process of the literature review and historical data analysis, the fisher-
ies scientist may be able to identify a theory (Figure 1.1) that could be used to
answer the question being asked (Ford 2000). A theory is a logical statement re-
garding the explanation of a phenomenon that directs the general objective of the
research (Ford 2000). Kerlinger and Lee (2000) state that a theory is “a set of inter-
related constructs (concepts), definitions, and propositions that present a system-
atic view of phenomena by specifying general relations among variables, with the
purpose of explaining and predicting the phenomena.” There are several popular
theories in ecology, such as the optimal foraging theory. Stating a theory for your
research is important because it allows you to think about your research in a larger
context. Also, a theory for a given problem or research question does not necessar-
ily have to subscribe to theories found in pedagogical textbooks.

1.3.3 Development of Predictions and Research Hypotheses

The next step in the scientific method involves developing predictions (Figure 1.1).
Predictions are tentative propositions about the relationship among variables (Garton

Figure 1.1 The scientific method process (modified from Ford 2000 and Garton et al. 2005).
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et al. 2005). Stating predictions allows you to think about what may be observed
and establish the foundation for research hypotheses. Research hypotheses are a
rewording of the predictions in a testable format (Garton et al. 2005). Research
hypotheses can be highly variable with respect to complexity, but they should be
broad enough to be appealing to a wide range of fisheries scientists and specific
enough to be answered comprehensively. Research hypotheses should be based
on deduction, the fisheries scientist having conducted a preliminary descriptive
study or analyzed historical data and conducted a literature review to develop
well-establish scientific knowledge (i.e., foundation for the research question).
However, fisheries scientists do not always have the luxury of preliminary data and
may have to base research hypotheses on intuition. Research hypotheses differ
from statistical hypotheses in that they do not specify a null hypothesis and the
statistical test and assumptions associated with the test. It is important to keep
these two types of hypotheses separate because you always need research hypoth-
eses, but statistics and statistical hypotheses are not always needed in creating new
knowledge. The literature review, preliminary data, and historical data can be
used to develop a conceptual model to understand better the complexities among
the variables of interest and place the problem in a larger context (Figures 1.1
and 1.2). The conceptual model can offer explanations and possible solutions to
the problem and is useful in developing predictions (Garton et al. 2005).

1.3.4 Development of the Data Statement

A data statement (Figure 1.1) defines the assessment procedure for deciding the
logical outcome of the research hypothesis (Ford 2000). The data statement (modi-
fied from Ford 2000) includes (1) the scientific procedure to investigate the re-
search hypothesis, (2) measurements to be made for each component of the re-
search hypothesis, and (3) the statistical hypotheses and specific requirements
for any statistical tests. Statistical null hypotheses are fundamentally different from
research hypotheses because the null hypothesis (H0) frames the research hy-
pothesis in terms of representing the case of no difference between population
parameters. Conversely, the alternative hypothesis (Ha) represents a unidirectional
or bidirectional difference. Statistical hypotheses are not always necessary and do
not determine whether the fisheries scientist followed the scientific method. Meth-
ods are available to assess research hypotheses without using frequentist statistical
approaches based on null hypothesis testing (see section 1.4).

1.3.5 Data Interpretation and Synthesis

After data collection (see Fisheries Techniques [Murphy and Willis 1996] for meth-
ods on sampling aquatic biota) and data analysis (see Chapters 2–18 in this book),
the difficult task of synthesis, making scientific inference, and developing alterna-
tive hypotheses begins. Making the connection from the synthesis of the data and
conclusion back to the problem, research question, theory, prediction, and research
hypothesis is important (Figure 1.1). Remember, the credibility of a research
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Figure 1.2 Example of a conceptual model in a paper published by Luecke et al. (1996). The
conceptual model is used to predict sockeye salmon growth and production using bioenerget-
ics and lake carrying capacity. Bioenergetics components are contained within the shaded area.
Components outside the shaded area are carrying capacity inputs (e.g., soluble reactive
phosphorus, SRP). State variables (i.e., points of accumulation) are represented as rectangles and
functions are represented as ovals.

Consumption

Assimilation

SRP

Chlorophyll

Zooplankton
Biomass

Grazing

Mortality

Energetic
Losses

Sockeye 
Weight

Sockeye 
Density

Kokanee

Kokanee

Temperature



Science and Statistics in Fisheries Research 9

hypothesis is increased by more of its predictions being supported and those of
alternative hypotheses being rejected. The feedback to the original theory allows
the fisheries scientist to develop alternative hypotheses and modify the study. Modi-
fying the hypotheses and study design may allow for increasing the scope of infer-
ence because the study design and sampling method highly influence the ability to
make inferences (Figure 1.3). Fisheries scientists must determine what they expect
in terms of inference space and certainty of conclusions prior to developing a study.
There are many options for study designs, and no single method is perfect. For
example, natural experiments such as floods, disease outbreaks, and hurricanes
provide a large inference space, but the certainty of conclusion remains limited
because they lack replication (Figure 1.3). Conversely, a laboratory study often pro-
vides clear and certain results but may have little applicability to conditions in the
field (Figure 1.3). A combined approach in which laboratory studies and field stud-
ies are integrated provides large inference space and more certain conclusions, but
these types of studies are usually costly and take many years to complete.

Fisheries scientists must be careful not to make conclusions beyond the scope
of the data. Data interpretation must stay within the scale of the study. For ex-
ample, if we found that recruitment of black crappies in South Dakota natural
lakes was related to spring water levels and wave action, we cannot imply that re-
cruitment of black crappies is influenced by these factors in all natural lakes con-
taining black crappie. Replication of studies across time, space, and life histories

Figure 1.3 The relationship between inference space and certainty of conclusion for several
study types (from Garton et al. 2005; reproduced with permission from The Wildlife Society).
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provides great confidence in our findings and increases the inference space. Re-
search often generates more questions than answers, and rarely does a single
research project provide an unequivocal answer. Designing simple testable hy-
potheses and conducting multiple studies at this scale is useful because we cannot
describe every component of a system in one study. The ability to speculate with
respect to findings is a critical aspect of science (Garton et al. 2005). However,
speculation must be identified as such and not be confused with conclusions based
on the data (Garton et al. 2005). Speculation often takes the form in alternative
hypotheses that should be tested: the foundation for the hypothetico–deductive
method. For example, if we found sonic-tagged adult lake trout occupying depths
below the thermocline in the summer months we cannot conclude that adult lake
trout are using the area as thermal refugia without additional data. There could
be several alternative hypotheses such as lake trout use the area below the ther-
mocline because it is occupied by their prey (lake whitefish) or it has the highest
concentration of dissolved oxygen. Testing these hypotheses we might find that
lake trout are feeding on lake whitefish, and lake whitefish are occupying the area
directly below the thermocline because that is where zooplankton density (prey
for lake whitefish) is the highest. We may then hypothesize that the phytoplank-
ton must be highest directly below the thermocline and we are observing a “bot-
tom-up” response in habitat use by lake trout.

Developing theories, predictions, and research hypotheses is complex and re-
quires critical and imaginative thinking skills. Thinking critically means that you
carefully monitor your ideas to determine if they make sense (Moore and Parker
2007). Critical thinkers do not accept the beliefs of others without carefully analyz-
ing the subject themselves, and they strive to incorporate all relevant knowledge
into their thoughts (Paul and Binker 1990). The human mind is comfortable with
biases, falsehoods, and half-truths, and it takes a special effort to evaluate our own
creations critically (Paul 1990). Thus, critical thinking is acquired and must be de-
veloped throughout the career of the fisheries scientist. Paul and Binker (1990)
developed 35 strategies of critical thinking, and Lee (1999) restated them with ap-
plication to science. One of our favorites is under the heading “Developing intellec-
tual courage.” Lee (1999) states: “Scientists should deal with ideas directly and hon-
estly and that includes confronting unreasonable aspects of popular ideas and
acknowledging reasonable parts of unpopular ideas. Nonconformity, when justi-
fied, is a sign of courageous critical thought, even though the consequences of
nonconformity sometimes are severe.” Under the heading “Developing intellectual
perseverance,” Lee states: “Critical thought is not easy. Before making a judgment
on an idea, the scientist should take the time and make the effort to be sure that the
idea has been analyzed fully and carefully.” For more information on the 35 strate-
gies of critical thinking see Paul and Binker (1990) and Lee (1999).

■ 1.4 STATISTICAL APPROACHES IN SCIENTIFIC STUDIES

The dominant statistical paradigms that have guided data analysis in fisheries sci-
ence are Neyman–Wald frequentist and Fisherian. Other methods such as Bayesian
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analysis and model selection have been used more recently by researchers. For
example, 38 and 66 articles appearing from 1996 to 2006 in Transactions of the
American Fisheries Society contain results from model selection and Bayesian meth-
ods, respectively. Yet, a myriad of results from null hypothesis testing have been
reported since the early 1900s in that journal. Thus, the fisheries publication record
indicates that frequentist (e.g., analysis of variance [ANOVA] and t-tests; Sheskin
2000) and Fisherian (e.g., general linear models; McCullagh and Nelder 1989)
methods have been the statistical mainstay, but nonfrequentist approaches have
gained in popularity. Development of computer-intensive methods such as
resampling (Manly 1997) and likelihood analysis have facilitated use of
nonfrequentist inference. As a testament to the impact that computing has had
on statistical science, Efron (1998) commented that “a year’s combined computa-
tional effort by all statisticians of 1925 wouldn’t equal a minute of modern com-
puter time.”

The frequentist approach uses tests of significance that suppose that the null
hypothesis is true. That is, the statistical test determines the probability of the
data given the null hypothesis. Conversely, Bayesian statistics determine the prob-
ability of a model given the data. This inference process entails fitting a probabil-
ity model to data. Hilborn and Mangel (1997) popularized the application of
Bayesian inference for ecological data. They demonstrated how likelihood and
Bayesian methods provided more meaningful conclusions for field studies (eco-
logical reality) than did null hypothesis testing. Similarly, Burnham and Ander-
son (2002) used likelihood methods and model selection to focus on which
model(s) best fit (i.e., weighted by evidence) the data. The latter approach de-
emphasizes the use of probability values, as used in null hypothesis testing, and
emphasizes model utility.

The generalization, or tendency, to be made here is that frequentist methods
may be more often applicable to experimental studies where true replication of
treatments is possible; nonfrequentist approaches may be more often applicable
to observational studies. However, this is likely an oversimplified description of
these paradigms because frequently null hypothesis testing of observational data
are appropriate, particularly when assessing univariate causality (Stephens et al.
2005). Chapters 4 through 18 of this book rely heavily on Fisherian and frequentist
methods, the statistical mainstream of fisheries data analysis. In the following sec-
tions we provide a general discussion of null hypothesis testing, Bayesian infer-
ence, and model selection.

1.4.1 Null Hypothesis Testing

1.4.1.1 Statistical Hypothesis Formulation and Testing

The classical decision approach of statistical inference involves hypothesis test-
ing. Simply put, the outcomes of experiments generally are not clear-cut, and a
decision has to be made between competing hypotheses. Hypothesis testing pro-
vides an objective, uniform framework for making decisions rather than an indi-
vidual, subjective approach of decision making based on simply looking at the
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data. The research questions and theory crafted during study development pro-
vide research hypotheses (Figure 1.1). To evaluate a research hypothesis statisti-
cally, the hypothesis is restated in the form of two or more (competing) statistical
hypotheses, the null (H0) and one or more alternatives (Ha). The ultimate goal of
hypothesis testing is to determine the probability of the null statement being true
given the data.

The statistical null hypothesis is simply a statistical statement alternative to what
the researcher believes, and from the data analysis the researcher fully expects to
contradict the statistical null. If the investigator finds that the data contradicts the
prediction of the null hypothesis, then either the null hypothesis is actually false
or a low probability event has occurred. The development and testing of null
hypotheses with statistical methods is consistent with the scientific method (falsi-
fication) as described by Popper (1959, 1968).

Formal statistical hypothesis testing involves a stepwise approach. The first step
in statistical hypothesis testing is to specify the H0 and the Ha. Generally, the H0 is
a statement that the population parameter has a specified value or that param-
eters (e.g., the mean, �) from two or more populations are similar, such as �1 = �2

= �3 = . . . = �k. The alternative is that at least two samples were derived from
populations with different means (Ha: �i � �j). The next step is to establish the a
priori significance level (�; see fourth step). The most commonly selected signifi-
cance levels used are 0.05 and 0.01. More recently, scientists conducting field
studies are using 0.10 as a significance level. The third step is to select a statistical
test and calculate a statistic analogous to the parameter specified by H0. If H0 were
defined by the parameters as �1 = �2 = �3 = . . . = �k, then the statistic for y–1 = y–2 =
y–3 = . . . = y–k would be computed (e.g., F-statistic of an ANOVA). The fourth step is
to calculate the probability value (often called the P-value), which is the probabil-
ity of obtaining a statistic as or more different (�) from the parameter specified
in H0 as the statistic computed from the data. (These calculations are made under
the assumption that H0 is true.) Thus, the decision to reject or fail to reject H0 is
based on that test statistic and whether the calculated value falls in the rejection
(or critical) region of the statistic distribution, as defined by the a priori signifi-
cance level.

If H0 is rejected, the outcome is said to be “statistically significant”; if one fails
to reject H0 the outcome is said to be “not statistically significant.” If the outcome
is statistically significant, then H0 is rejected in favor of the alternative hypothesis,
Ha. We never reject Ha or accept H0; if we do not reject H0 it suggests that there is
not enough evidence to support Ha over H0. Conversely, if H0 is rejected then it
suggests Ha may be true. Thus, the conclusion is based on the concept of proof by
contradiction of H0. If we fail to reject H0, what are the odds that we are wrong?
Statistical tests allow us to calculate these odds, which are expressed as probability
values. The lower the probability value, the more likely it is that H0 is not true.

1.4.1.2 Statistical Errors in Hypothesis Testing

There are two common types of statistical errors, known as type I and type II
errors (see Table 1.2), that may be committed during hypothesis testing. The
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probabilities associated with these errors (� = the probability of type I error; � =
the probability of type II error) provide a measure of the goodness of the statisti-
cal test. If H0 is actually true and we fail to reject H0, or if Ha is actually true and we
reject H0, the correct decision has been made. However, if H0 is true and we reject
H0 or if Ha is true and we fail to reject H0, then we have committed a statistical
error. When a decision has to be made, it would be convenient if we could always
arrive at a correct conclusion. Unfortunately, this is statistically impossible, be-
cause these decisions are based on probability, sample size, and variation. As shown
in Table 1.2, there are four common outcomes of a statistical test. Consequently,
we control the probability, or risk, with which an error occurs. To control these
errors we assign a small type I error probability to them. As previously mentioned,
the most frequently used significance levels are an � 0.01 or 0.05; the former is
more conservative because stronger evidence is required to reject H0 at the 0.01
than at the 0.05 �-level. The probability assigned to each error will depend on the
seriousness of the error. It should be noted that type I and type II errors are
inversely related; that is, � increases when � decreases, and vice versa. An �-value
of 0.05 is the most commonly used �-level; however, the �-level should be estab-
lished with respect to the willingness to accept a type I error. Although hypothesis
testing is considered objective, the selection of � is subjective.

1.4.1.3 Power Analysis

Power analysis provides a mathematical means to determine the probability of
obtaining a statistically significant result given a true effect actually occurs in a
population. Thus, power may be broadly defined as the ability of a statistical test
to detect an effect, given that the effect actually exists. The power of a statistical
test is technically defined as 1 minus the probability of a type II error, or 1 – �. In
that vein, power analysis tells us how likely we are to find a significant difference
given that Ha is true. If the power is too low, then we have little chance of detect-
ing a significant difference (i.e., an analysis would yield nonsignificant statistical
results), even though there may be real differences. It would be desirable to use
statistical tests that minimize � and �; however, this would require a compromise
because making � small involves rejecting the H0 less often, whereas making �
small involves failing to reject H0 less often. These, of course, are contradictory
actions. As an alternative we fix � at a specified significance level and then apply
the statistical test that maximizes the power.

Table 1.2 The four possible outcomes for null hypothesis (H0) testing.

True state

Decision H0 is true H0 is false

Reject H0 Type I error (�) Correct (1 – �)
Fail to reject H0 Correct (1 – �) Type II error (�)
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There are several important pieces of information required to conduct a statis-
tical power analysis. First, the significance level (� = probability of a type I error)
must be established. Again the conventional and common choices are 0.01 and
0.05. Second, the power (1 – �) required to detect an effect is established. The
probability of 1 – � = 0.80 is a common choice. Third, the effect size (e.g., the
biological change or significance) that needs to be detected is determined; effect
size is based on the actual units of the response. Effect size and the ability to
detect it are indirectly related; therefore, as effect size becomes smaller, its detec-
tion becomes more difficult. Fourth, the extent of variation (i.e., standard devia-
tion, SD) associated with the response variable in the population(s) is determined.
Typically, the SD used in a power analysis can be determined from a similar study
previously conducted or a pilot study.

The components of a power analysis are interdependent; any combination of
the four components dictates the outcome of the fifth component (e.g., sample
size). The usual objectives of a power analysis are to calculate the sample size
based on the level of significance (�), power, effect size, and variability (SD). A
larger sample size generally leads to parameter estimates with smaller variances.
Small variance then provides a greater ability to detect a significant difference.
For studies for which the maximum sample size obtainable is known (often re-
lated to the budget), power analysis is a useful tool to determine if sufficient power
exists for specified values of �, effect size, and SD. At this point the investigator
must decide whether the study should be conducted based on the power to detect
an effect.

If inadequate sample planning takes place, a lack of statistical power can present
a problem in the final evaluation of management or research results. All study
plans should include some initial calculations of the power of statistical tests that
will be obtained with the sample sizes that are planned (Hoenig and Heisey 2001).
Although power analysis can be done by hand, these calculations are extremely
tedious, especially for complex designs. Fortunately, there are numerous stand-
alone and statistical software programs that provide power computations for a
variety of statistical tests. For a listing and review of software programs see Thomas
and Krebs (1997).

1.4.1.4 Parametric and Nonparametric Statistical Tests

Parametric statistical tests (e.g., z-test, t-test, and F-test) assume that sampled data
are from populations that follow a certain distribution (i.e., normal), have inter-
val or ratio scales (parametric tests are inappropriate for nominal or ordinal data),
and have similar variability (if multiple samples are compared). However, mea-
sured biological data do not always follow a normal distribution precisely, often
because of low sample size. Fortunately, many kinds of quantitative data follow a
bell-shaped distribution that is approximately normal. Because parametric statis-
tical tests work well even if the distribution is only approximately normal, para-
metric statistical tests are commonly applied.

An alternative approach, nonparametric testing (Table 1.3), does not assume
that (interval or ratio) data follow a normal distribution. In nonparametric testing,
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observations are categorized (nominal) or values are ranked (ordinal) from low
to high, and the analyses are based on the distribution of ranks. Consequently,
nonparametric tests make fewer assumptions about the distribution of the data
and are often called assumption- or distribution-free tests, which is not entirely
true (Marascuilo and McSweeney 1977). The primary drawback with nonpara-
metric tests is that they are sometimes less robust than are parametric tests. In
practice this means that probability values (associated with errors) tend to be
higher, making it harder to detect real differences as being significant. If sample
size is large the difference in relative efficiency is minor. Nonparametric tests
have reduced power to detect differences with small sample sizes, and that artifact
must be considered in the interpretation.

Certain situations cause investigators to defer to a nonparametric test auto-
matically. If the variable is a rank or score, or if the sample contains fewer than
a dozen or so observations, a nonparametric test should be used. If the sample
distribution is clearly nonnormal there may be two options. First, if sample size
is sufficient, a transformation (section 1.4.1.5) may cause the data to approxi-
mate a normal distribution; however, if that effort fails, then an appropriate
nonparametric test may be used. Second, in some situations the sample
distribution(s) is normal but the data contains extreme outliers; therefore, it
may be inappropriate to analyze these data with a parametric test. In such cases
a nonparametric test provides a robust approach for analysis of data because the
ranks of the values are used.

Frequently, it is difficult to decide whether to select a nonparametric test. The
normality assumption regards the underlying distribution of the population. Ex-
amine the scatter of data from previous experiments that measured the same
variable. Also consider the source of the scatter. When variability is contributed by
numerous independent sources, the underlying distribution may be assumed to
be normal. Although testing to determine whether data were sampled from a
normal distribution is helpful, normality testing (i.e., residual analysis) is often
less useful than we would like. It is difficult to determine whether the data came

Table 1.3 Typical nonparametric tests and proximate parametric counterparts
(derived from Conover 1980 and Sheskin 2000).

Nonparametric Parametric or alternative test

Mann–Whitney U-test Two-sample t-test; median test
Kruskal–Wallis test One-way F-test; median test
Squared rank’s test (equal variance) Two-sample F-test
Spearman’s rho Regression
Kendall’s tau Regression
Wilcoxon matched-pairs signed-ranks test Paired t-test
Mood test F-test
Moses test F-test
Friedman test (two sample) Two-sample t-test
Friedman test (k samples) F-test
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from a normal distribution or not when examining the distribution of a small
sample. Furthermore, a normality test may not simplify the decision. The tests
simply have little power to discriminate (detect deviations) between normal and
nonnormal distributions with small sample sizes. Thus, the interpretation of a
normality test should hinge on the probability value and the sample size. Ulti-
mately, the decision to choose a parametric or nonparametric test for interval or
ratio data is most critical when sample size is low.

1.4.1.5 Data Transformation

Data may be transformed to provide a distribution that is conducive to a particular
statistical analysis. Common transformations are logarithmic (base 10 or natural),
power, square-root, and arcsine transformations (Table 1.4). A transformation is
simply the process of converting or changing the numerical scale. For example, if a
variable is not normally distributed, transforming the values may produce a normal
distribution. If the distribution of the population is known, transforming the values
to approximate a normal distribution may be appropriate, as it allows the use of
parametric statistical tests. It is important to point out that inferences are based on
the scale at which data are analyzed and care should be taken when making state-
ments about the original scale if data have been transformed.

Many statistical software programs provide tests for deviations from common
distributions. For example, the normality test is used to determine the closeness
of a data distribution to the normal distribution. Software programs will test for
normality using the Shapiro–Wilk (SW) test or the Kolmogorov–Smirnov (KS)
test. The SW statistic (represented in some programs as W) and KS statistic (repre-
sented in some programs as D) quantifies the difference between the data distri-
bution and an ideal normal distribution; a larger value denotes a larger discrep-
ancy. The statistics are not informative themselves but are used by the software to

Table 1.4 Common data types and distribution characteristics with associated transformations
to normalize data distributions.

 Data and distribution Normalizing transformation

Count data Square root of x or square root of (x + c) if there are 0 values
Positive (right) skew
Poisson distribution

Percentages or proportion data Arcsine of square root of x
Platykurtotic
Binomial distribution

Measurement data Log10(x) or log10(x + c) if there are 0 values
Positive (right) skew
Lognormal distribution

Time or duration data Reciprocal: 1/x
Positive (right) skew

Other distributions
Negative (left) skew xc where c = 2, 3; or use ex

Positive (right) skew xc where c = –0.5, –1, or greater  negative value
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compute a probability value that may be used to interpret whether the data distri-
bution follows a normal distribution.

The traditional KS method cannot be used to calculate the probability of nor-
mality unless the true mean and SD of the population are known. When analyzing
data the population mean and SD are rarely known. Thus, parameter estimates
derived from the sample are used in the testing of normality by an approximation
method. Software programs often use an approximation method such as the
Lilliefors’ test (Dallal and Wilkinson 1986). Approximation methods are most
accurate with small P-values; some software programs may simply report “P > 0.10”
for large probabilities.

1.4.2 Bayesian Inference

Bayesian methods provide an alternative to hypothesis testing but are not yet com-
monly applied by fisheries scientists. However, Bayesian analysis of certain areas
(e.g., age- and size-based stock assessment) of fish population dynamics is becom-
ing more popular (Box 1.1). Bayesian analysis is also likely to gain popularity
because the process easily allows the integration of new information, a necessary
feature in planning activities in adaptive management. Bayesian inference draws
heavily from Bayes’ theorem (more below), hence its name, and provides meth-
ods to account for uncertainty in model selection. Based on conditional probabili-
ties, the objective of the Bayesian approach is to incorporate prior knowledge in
combination with new data or information to make statistical inferences. Existing
or prior information could be results derived from previous studies or compa-
rable experiments. Bayesian analysis can also be useful when there is a lack of
prior information for a given problem but there exists a strong understanding of
the mechanisms that may affect the problem. Using prior information about the
mechanisms (parameters), a posterior distribution for the mechanisms is deter-
mined and inferences about the model parameters can be interpreted (see Gelman
et al. 1995 for thorough coverage of Bayesian statistics or Press 1989 and Sivia
1996 for overviews).

Bayesian inference is based upon Bayes’ theorem, a result of probability theory,
which allows different event probabilities to be related. That is, for two events the
probability of event 1 conditional on event 2 will differ from the probability of
event 2 conditional on event 1. The relationship that exists between these prob-
abilities characterizes Bayes’ theorem. Bayesian probability differs from frequentist
probability; in the pure Bayes’ form, probabilities for unknown information also
can be assigned.

Bayes’ theorem is founded on conditional probabilities of stochastic events.
The basic model derived from this theorem (Gelman et al. 1995), which relates
conditional and marginal probabilities for events A and B, is

P(A |B) =
P(A   B)

U

P(B)
=

P(B |A)· P(A)
P(B)

=
L(A |B )· P(A)

P(B)
, (1.1)
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Box 1.1  A Bayesian Application to Fisheries Management

A whole-lake fertilization project was conducted on Chilko Lake, British Columbia, during the late
1980s and early 1990s for the purpose increasing abundance of sockeye salmon for commercial
harvest (Bradford et al. 2000). It was concluded that fertilization had a positive effect on recruitment
(number of recruits per spawner) but that estimates were highly imprecise due to the short
duration of the fertilization program and high natural variability in recruitment before and during
fertilization (Bradford et al. 2000; Maxwell et al. 2006). Thus, there was considerable uncertainty
about the success of the fertilization experiment and the resulting economic benefit to the fishery
(i.e., cost of fertilization relative to the additional number of fish available for harvest). Conse-
quently, Maxwell et al. (2006) used a Bayesian approach to “describe uncertainties in the stock–
recruitment relationship for the periods prior to and during lake fertilization and propagating
those uncertainties through to the economic calculations.”

Several competing models were used to estimate the effect of fertilization. Four candidate models
were developed, each using the Ricker stock–recruit model (Chapter 4) as a core, to reflect different
hypotheses. In addition to stock–recruit parameters, the candidate model set included a density-
independent model, a density-dependent model, and two other models that contained the Fraser
index (FI) as an additional parameter to expand the density-independent and density-dependent
models. The FI parameter, based on the dynamics of other sockeye salmon populations, accounted
for annual variability not due to fertilization. The best-supported models were the density-
independent model (DIFI, �i = 0.00) followed by the density-dependent model (DDFI, �i = 0.92),
both containing the FI parameter (see table below). The DIFI and DDFI models estimated 5.4 and
4.4 million recruits, respectively.

Table Least-squares best-fit parameter estimates (a – d and g) for four models considered in an
analysis of the effect of Chilko Lake fertilization on sockeye salmon abundance. Not all parameters are
applicable to all models (NA). Models were density-independent (DI), density independent + Fraser
index (DIFI), density-dependent (DD), and density-dependent + Fraser index (DDFI). The �i values are
the relative differences between the small-sample-corrected Akaike’s Information Criterion (AICc) of a
given model and the DIFI model AICc. (Analysis and interpretation adapted from Maxwell et al. 2006.)

Model

Parameter DI DIFI DD DDFI

a 2.71 2.58 2.55 2.50
b 3.3 � 10–6 2.4 � 10–6 2.1 � 10–6 1.7 � 10–6

c 0.63 0.57 1.65 1.19
d NA NA 3.7 � 10–6 2.3 � 10–6

g NA 0.63 NA 0.55
�i 7.48 0.00 5.67 0.92

The range of prior distributions (uniform) was first based on the best fit of each model parameter
(±1 SE) derived from regression analysis. Then a single, combined prior distribution was developed
for each parameter to encompass the entire range of possibilities for a parameter across the four
models. To estimate uncertainty (i.e., acknowledging the range of possible values for each param-
eter in each model), posterior probabilities were calculated such that each set of parameter values
described the stock–recruit relation given the observed data. Posterior probability estimates were
then used to determine the number of additional recruits attributable to fertilization and also the
benefit–cost ratio.

The authors found that fertilization provided biological and economic benefit. Bayesian analysis
indicated an increase of 0.5 million additional recruits above levels estimated from best-fit DIFI and
DDFI models. Posterior probabilities of at least 81% supported that there was an increase in
sockeye salmon abundance due to fertilization. Similarly, posterior probabilities of at least 84%
supported that the benefit–cost ratio exceeded 1.
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where the likelihood (L) of event A given event B for some fixed value of B is

L(A|B) = P(B |A). (1.2)

The terms in the Bayesian model are defined as the conditional, or posterior,
probabilities (P[A|B], the conditional probability of A given a specified B value,
or P[B |A], the conditional probability of B given a specified A value) and the
prior probabilities (P[A], the prior probability of A that does not contain any
information about B, or P[B], the prior probability of B that does not contain any
information about A).

In other words, the prior probability is the probability of the model being true
before any data are observed. The posterior probability is the probability that a
model is true following the incorporation of observed data or information. The
prior probability, P(B), functions as a normalizing constant so that the posterior
probability is proportional to the likelihood (L) times the prior probability. The
likelihood describes the conditional probability of the data given the model. Al-
though we presented the simple model above, conditional probabilities and Bayes’
theorem can be applied to multivariate data and multiple hypotheses (Gelman et
al. 1995).

There are several model alternatives and versions that subscribe to Bayes’ theo-
rem, but perhaps the model most beneficial to fisheries scientists is the empirical
form that allows the evaluation of a set of hypotheses (Gelman et al. 1995; Haddon
2001). For example, if we interpret A to be the observed data and B as our set of
different hypotheses, then the model becomes

P(A) =  
i = 1

n

� P(A|Bi)·P(Bi), (1.3)

where P(A) is the combined probability for the data and all hypotheses under
consideration. If the parameters considered by hypotheses are discrete, then the
model is stated as

P(Hi|data) =  

i = 1

n

�[L(data|Hi)·P(Hi)]

L(data|Hi)·P(Hi) .
(1.4)

If the parameters are continuous, the model becomes

P(Hi|data) =  
L(data|Hi)·P(Hi)dHi

L(data|Hi)·P(Hi) . (1.5)

The individual hypotheses (Hi) associated with these models would be indi-
vidual models, each with a unique set of parameter values. The data are the poste-
rior observations being considered given the set of hypotheses.

Gelman et al. (1995) generally define the process of Bayesian analysis in three
steps. Step one consists of developing the prior distributions. Priors are the distri-
butions of parameters (or hypotheses) derived from probability models. The prior,
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or marginal, distribution is so named because it is not conditioned on previous
aspects of the process. There are two types of priors, informative and
noninformative, and either can play an influential role in Bayesian analysis. Infor-
mative priors make use of the best available information (e.g., previous data) to
estimate model parameters (prior probability distributions). If no data are avail-
able then noninformative priors are usually applied for which equal probabilities
are assigned for competing hypotheses. Noninformative priors are distributions
having no basis (e.g., no prior information or vague) and have less influence on
the posterior distribution; the uniform distribution is commonly used as this prior.
If no data or strong opinion preexists for an informative prior, an investigator
would choose a noninformative prior.

Step two consists of defining the posterior distribution. Following data collec-
tion, the observed data are used to condition the model; that is, the prior distribu-
tion is now combined with sample information to provide an updated estimate.
This Bayesian estimate is functionally a weighted average estimate, based on the
prior and posterior probabilities. Haddon (2001) stated that there are three ele-
ments that are required to produce the posterior distribution when comparing
hypotheses. These are (1) the individual hypotheses to be considered; (2) the
likelihood required to determine the probability of the observed data given each
hypothesis (Hi); and (3) the prior probability for each hypothesis.

At this point, the full model is the joint probability distribution that contains
all observable and unobservable quantities or information associated with the spe-
cific problem or question.

In step three, the model fit is evaluated in conjunction with an interpretation
of the reasonability of the posterior distribution. In essence, does the model fit
the data and provide a logical conclusion.

The development of priors is likely the most problematic aspect of Bayesian
analysis. Berger (1994) identified several characteristics to consider in choosing a
class of priors. Priors should be easy to derive and interpret, computationally simple,
large enough to reflect prior uncertainty, and extendable to higher orders or
dimensions. Kass and Wasserman (1996) describe formal procedures for select-
ing noninformative priors. Also, there are parametric and nonparametric classes
of priors, a topic too lengthy to expand on here, but there is considerable litera-
ture that specifically discusses these prior classes (e.g., Walley 1991; Wasserman
1992; Dey et al. 1998; Geweke 1998). Lastly, careful consideration should be given
to the presentation of Bayesian analyses, particularly choices made regarding pri-
ors. Summary results should be reported but accompanied by solid explanations.
Results from model checking (e.g., posterior predictive results) should be reported
as well (Rubin 1984; Gelman et al. 1995).

1.4.3 Model Selection

Model selection provides another inference approach that is based on informa-
tion theory (Kullback and Leibler 1951; Burnham and Anderson 2002). This ap-
proach is particularly appealing to researchers conducting field studies for which
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experimental manipulations (treatment and replication logistics) are cost pro-
hibitive. Rooted in a philosophy similar to Bayesian analysis, model selection fo-
cuses on the existence of a knowledge base from which a suite of realistic compet-
ing models can be derived prior to data collection and analysis. In general, the
candidate model best supported by the data is interpreted to be the best model.
Further, the best model should be objective and repeatable (Burnham and Ander-
son 2002). In comparison, Bayesian analysis uses the prior distribution, model(s),
and observed data to make inferences about a posterior distribution, whereas
information theory compares performance of a priori selected models in how
well they describe the observed data.

Conceptually, the mechanics of the selection approach are fairly straightfor-
ward. Typically, a global model containing variables thought to be biologically
relevant to the question is developed and combined with reductions of that model
to compose the model set. The goal in variable selection is to develop the simplest
(parsimonious) model that encompasses cause and effect relations. Too few vari-
ables (underfitting) and a selected model may be very precise but will contain
high bias. Too many variables (overfitting) will result in low precision but a model
with low bias. Thus, a balance needs to be struck somewhere in the range of model
parameters. Although selection of parameters generally should be similar among
investigators for a particular question, different parameters would yield different
results. A likelihood criterion is used to compare among the competing models.

The basis for the evolution of model selection procedures is Kullback–Leibler
(K–L) information, or distance (Kullback and Leibler 1951). Conceptually, if the
full truth (reality) is known, then the distance from the full truth could be deter-
mined for a model set being used to approximate the full truth. The model that
deviates least (smallest K–L distance) from full truth has the least information
loss. Obviously, full truth is not likely to be known in fisheries studies.

Model selection gained substantial utility when Akaike (1973) introduced a
model comparison procedure. Akaike (1973, 1974) demonstrated that relative K–
L distance could be estimated by the asymptotic result of the empirical log-likeli-
hood function. The final, applicable expression of Akaike’s original finding is
called Akaike’s Information Criterion (AIC):

AIC = –2loge(L) + 2K , (1.6)

where K is the number of estimable parameters (for bias correction) and L is the
maximum likelihood function. If normally distributed errors are assumed, then
AIC is calculated as

AIC = n·loge (      ) + 2K ,RSS
n

(1.7)

where n is sample size and RSS is the residual sum of squares.
The AIC provides a measure of the best model by quantifying the goodness or

lack of fit of a set of models, given the observed data. The preferred model has
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the lowest criterion value (minimum information loss). The AIC is sensitive to
sample size; models containing numerous parameters may be found to have good
fit but are overfitted and suffer from low precision. Because AIC is inadequate if
the number of parameters in relation to sample size is too high, a second-order
criterion (AICc) is recommended as a small sample bias adjustment (Hurvich and
Tsai 1989). The AICc correction is calculated as

AICc = 
AIC + 2K(K + 1)

(n – K – 1)
. (1.8)

This criterion functionally penalizes the likelihood of the model given the num-
ber of parameters required to estimate from the observed data. As a general rule,
Burnham and Anderson (2002, 2004) suggest the use of AICc over AIC when the
ratio of n:K is less than 40.

Another commonly used criterion in ecological studies is quasi-AIC (QAIC),
which is an adjusted AIC applicable to overdispersed (i.e., sample variance ex-
ceeds theoretical variance) binomial data (Lebreton et al. 1992). Generally, QAIC
should be considered for count data when the variance inflation factor (c) for the
global model exceeds 1. The underlying reason for accounting for variance infla-
tion is that parameter estimates may be unbiased under overdispersive conditions,
but the model-based variances likely would overestimate precision (Burnham and
Anderson 2002). The QAIC is similar to AIC but includes the estimate of the
variance inflation factor (ĉ , an overdispersion parameter estimate), as

QAIC = –[2loge(L)/ĉ ] + 2k. (1.9)

The variance inflation factor (ĉ ) can be estimated as c = 	2/df of the global
model (Cox and Snell 1989). Note that if ĉ  = 1, then QAIC reduces to AIC. The
small sample size adjustment (QAICc) for QAIC is similar to AICc and is computed as

QAICc = QAIC + 2K(2K + 1)/(n – K – 1). (1.10)

Other, less commonly used criteria include Takeuchi’s Information Criterion
(TIC) and Bayesian Information Criterion (BIC) (Burnham and Anderson 2002).

The basic objective in model selection is to determine which model is most
appropriate. Because individual criterion values are not interpretable, differences
between information criterion values of candidate models are used to rank the
models. For AIC (used here as an example) these differences are determined as

�i = AICi – AICminimum. (1.11)

These �i values provide an interpretation of how well each model explains varia-
tion in the observed data. The model having the smallest �i is determined to be the
best-fit model among the candidate models. Generally, models with �i less than 2
have good support, whereas model �i values exceeding 10 have little or no support.
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Further evidence of model support is obtained by calculating Akaike’s weights
(Burnham and Anderson 2002). Akaike’s weights (wi) are used to determine the
likelihood of each model (model probability) in the set (R) and are calculated as

wi =  

j = 1

R

�exp(–�j/2)

exp(–�i/2)
,

(1.12)

where exp is the base on the natural logarithm.
These normalized likelihoods conveniently sum to 1.0 (�wi = 1), providing a

further means of comparing model strength.
Garton et al. (2005) point out two weaknesses associated with information theory

and AIC. First, information theoretic approaches currently do not assist with criti-
cal issues during study design, such as sample size formulation. However, an inves-
tigator could use resampling techniques to estimate sample sizes providing that
proximate data distributions were known. Second, although AIC results allow
objective selection of the best model the approach does not actually specify model
performance. Investigators are referred to Burnham and Anderson (2002) who
provided a detailed overview of information theory development, criterion devel-
opment and comparisons, and application mechanics. See Box 1.2 for an example
application of the model selection approach.

■ 1.5 PUBLISHING

Publishing research results is an important step in the scientific method (Figure
1.1). We are hesitant to say that publishing is the final step in the scientific method
because it is important to publish research findings while testing alternative hy-
potheses. Fisheries scientists must publish when they believe they have sufficient
evidence to address a research hypothesis because no single research project is
the last word on any issue. Thus, nothing would be published if all scientists waited
for the final word.

Enormous amounts of research dollars are wasted because the knowledge gained
from a research project is never published (Garton et al. 2005). Research conducted
and stored in file cabinets or computer files is useless to the profession and causes
redundancy in research efforts. Publishing research results is difficult and time con-
suming. Further, the publishing process can be humbling, especially after the peer-
review process. Nevertheless, the peer-review process is vital to maintaining our
profession’s standards of publishing reliable knowledge. Fisheries scientists should
not be discouraged to defend their research; this is part of the review process. Some
research may not be suitable for publication, and this is where careful planning and
developing a sound study design at the beginning are especially important. It is rare
that a well-designed research study is not publishable. Some well-designed studies
have a difficult time in the peer-review process because they are not well written.
Thus, clear and concise writing is paramount in technical writing. We suggest the
primer by Hunter (1990) for tips on technical writing.
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Box 1.2 A Model Selection Application to Fisheries Management

Bunnell et al. (2006) used model selection with AICc to investigate crappie (combined black and white
crappies) recruitment relations in 11 Ohio reservoirs. The objectives of the study were to determine
whether stock–recruit models improved with inclusion of environmental parameters and to deter-
mine which life stage best inferred recruitment. The observed data consisted of environmental
variables (seasonal reservoir elevation and chlorophyll a) and larval (density), age-2 (recruit catch per
unit effort [C/f]), and adult (spawning stock C/f) crappies. The approach consisted of using Ricker or
Beverton–Holt stock–recruit models (Chapter 4) that either included or did not include environmen-
tal parameters. Sixteen candidate models were considered for each of three stock–recruit relations.

The following provides a summary of model selection results modified from Bunnell et al. (2006).
Model selection was used to explain the variation in white and black crappie larval density or C/f  of
recruited (age-2) crappies. Of the candidate models included in the analysis, only the five highest-
ranking models in each group are given. Rank was determined by AICc. All models included the
parameters a, b, and e from either the Ricker or Beverton–Holt models. Some models also included
one or more of the following environmental variables: chlorophyll a, winter water elevation, spring
water elevation, and summer water elevation. Data include the number of parameters estimated,
the residual sum of squares divided by sample size, the difference between each model and the
model with the minimum AICc , and Akaike weights.

Table Summary of model selection results modified from Bunnell et al. (2006) to explain the
variation in crappie larval density or C/f of recruited (age-2) crappies. Models may include chlorophyll
a (CHL), winter water elevation (WI), spring water elevation (SP), and summer water elevation (SU). The
stock–recruitment model is specified as Ricker (R) or Beverton–Holt (BH). The measures represented
are K (the number of parameters estimated), 
2 (the residual sum of squares divided by N), AICc , �i (the
difference between each model and the model with the minimum AICc ), and wi (Akaike weights).

Environmental Stock–recruit
variables model K 
2 AICc �i wi

Models to explain variation in larval density
1) Adult C/f, CHL BH 4 0.502 –0.378 0.00 0.46
2) Adult C/f, CHL R 4 0.518 0.152 0.53 0.35
3) Adult C/f, SU, CHL BH 5 0.497 3.554 3.93 0.06
4) Adult C/f, SP, CHL BH 5 0.499 3.626 4.00 0.06
5) Adult C/f, WI, CHL BH 5 0.502 3.735 4.11 0.06

Models to explain variation in C/f
6) Larval density BH 3 0.602 –2.029 0.00 0.31
7) Larval density R 3 0.604 –1.969 0.06 0.30
8) Larval density, CHL BH 4 0.546 –0.649 1.38 0.16
9) Larval density, CHL R 4 0.552 –0.445 1.58 0.14
10) Larval density, SP R 4 0.583 0.620 2.65 0.08

Models to explain variation in recruit C/f
11) Adult C/f, CHL R 4 0.219 –2.039 0.00 0.51
12) Adult C/f R 3 0.402 –0.595 1.44 0.25
13) Adult C/f BH 3 0.454 0.733 2.77 0.13
14) Adult C/f, CHL BH 4 0.314 1.937 3.98 0.07
15) Adult C/f, WI R 4 0.354 3.236 5.28 0.04

As shown in the above table, chlorophyll a was the most common environmental parameter found to
contribute to candidate models. The AICc, �i , and wi values for models 1 and 2 indicate that Beverton–
Holt and Ricker stock–recruit models that included chlorophyll a provided the best-supported
models for variation in larval densities. Best supported stock–recruit models (6 and 7) for variation in
C/f based on larval density did not include environmental parameters. The Ricker model containing
adult C/f and chlorophyll a (model 11) was best supported in explaining variation in recruit C/f.
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Correctly reporting results in publications, particularly statistical results, can
help the reader determine, among other relevant measures, the statistical test(s)
used, effect size, biological versus statistical significance, and sample size. By in-
correctly reporting results the author can mislead the reader and make the manu-
script confusing, which often leads to the manuscript being rejected or needing
major revision.

Authors need to define clearly the sample population (in the statistical sense)
and experimental unit from which the statistical inference will be drawn. When
reporting measures of central tendency, using the mean is appropriate, but when
nonparametric statistics are used medians and modes should be considered for
summarizing data. All measures of central tendency and variability should be ac-
companied by a sample size (e.g., N = 121). There are many measures of variabil-
ity (e.g., SD [a descriptive statistic], standard error [SE, an inferential statistic],
coefficient of variation [CV], and confidence interval [CI]), and each has its spe-
cific use. However, because we are often interested in inference about the popula-
tion mean we recommend SE or CIs. Confidence intervals are extremely useful
because they infer with a given level of confidence for the interval within which
the true parameter lies. Several authors that criticize hypothesis testing do sup-
port the use of CIs (Yoccoz 1991; Johnson 1999; Anderson et al. 2001). One of the
most common ways to report these data are to give the mean ± 95% CI (for sym-
metric confidence intervals; report the upper and lower confidence intervals for
asymmetric intervals) along with the sample size (e.g., 15 ± 4, N = 95).

Care should be taken when reporting information from null hypothesis test-
ing. For example, making statements such as “there were no significant differ-
ences in length among treatments” says nothing about the statistical technique
used, sample size, level of significance, or effect size. We recommend that authors
should report the test statistic value and probability value to two decimal places
(e.g., F = 2.31, P = 0.03, N = 85), unless there is statistical justification and need for
reporting more significant digits. Also, use of two decimal places corresponds
with most published probability levels. Actual probability levels are more useful
than broader values (e.g., P < 0.05). Presenting the actual probability level allows
the reader to consider the statistical or biological significance of the result. The
predefined significance level may not be the absolute limit between nonsignifi-
cant and significant findings under practical conditions. For example, what might
we conclude if the mean length of a species did not differ significantly between
two populations and the P-value was 0.06 (� = 0.05). In many cases authors would
conclude no difference in mean length. We suggest that authors mention the
effect size and state the difference was significant at P = 0.06. It is possible for
results to be biologically significant but not statistically significant. One of the
shortcomings associated with hypothesis testing is that the P-value is closely associ-
ated with sample size. Thus, increasing the sample size can increase the likeli-
hood of observing significant results. Determining what is biologically significant
(i.e., effect size) should be determined prior to the study. For example, is a mean
length difference of 1 mm biologically important? What about 10 cm? Identifying
what is biologically significant at the beginning of a study is as important as estab-
lishing � and � values.
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Regression and correlation analyses are important tools commonly used in the
fisheries profession. Minimally, the regression line (i.e., in figures), parameter
estimates, and the coefficient of determination (r 2 or R 2) should be included
when reporting regression results. When linear regression is used for prediction,
the prediction interval instead of the CI should be used. The prediction interval
and CI of the regression line are hyperbolic upper and lower boundaries to the
regression line, and the prediction interval is farther from the regression line
than is the CI. The prediction interval is the interval within which we are 95% (�

= 0.05) confident that a single future observation will fall. The CI provides the
range within which the mean of additional observations will fall. When using non-
linear models authors need to state clearly why a nonlinear model was used (e.g.,
how did it improve the fit over a linear model), and all parameters in the model
should be described. Multiple regression models are usually presented in tables
because they are difficult to depict graphically. A table reporting the multiple
regression results should contain at a minimum the parameter estimates, SEs, R 2,
and P-values. Generally, results that report only the correlation coefficient (r,
strength of the linear association) and significance level have less value in the
scientific literature.

It seems that many of the problems authors have in the publication and peer-
review process center around experimental design and statistical tests. This is rather
unfortunate given both of these issues can be easily avoided. A good experimental
design can be developed for most studies that are truly experiments. Complex sta-
tistical tools, frequentist methods, or information theory are not a prerequisite to
publishing research. Problems arise when observational studies are treated like ex-
perimental studies in the design and analysis stage. Further, it is inappropriate to
choose a statistical analysis and then attempt to fit the data to that analytical method.
Data analysis and statistical tools must be appropriate for the question. Clearly de-
fining a study at its beginning and using the appropriate data analysis tools will
make publishing a more satisfying, contributory process. Rarely are papers rejected
because the question was not important or relevant to fisheries science.

■ 1.6 SUMMARY

Conducting high-quality fisheries science is challenging. To conduct quality sci-
ence, fisheries scientists need to apply the scientific method, use the correct ex-
perimental design, and use the most appropriate analytical tools. Being judicious
throughout all aspects of the scientific process will help ensure that the fisheries
profession gains reliable knowledge. Not all research fits the model of experimen-
tal design, hypothesis testing, or information theory; nevertheless, these studies
(i.e., observational) can provide useful information regarding the natural history of
a species or case history of a management application, to name a few. With that said
the fisheries profession should strive to increase efforts in experimental research to
provide a more solid foundation for interpretation and conclusions. Further, the
fisheries profession should implement research based on deductive reasoning as
opposed to inductive reasoning. Fisheries scientists have a tremendous amount of
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responsibility with regard to how they influence aquatic ecosystems. Thus, under-
standing and managing these systems correctly can only be achieved through re-
liable knowledge.
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■ 2.1 INTRODUCTION

Fisheries management is broadly defined as the art and science of providing sus-
tained aquatic resource productivity. Specifically, management is usually the pro-
cess of maintaining fish populations at some target level, commensurate with the
capacity of the environment and in accordance with established management ob-
jectives that are set with consideration of user or constituent needs (e.g., Bennett
1971). In short, fisheries management is the integration of the fish, habitat, and
user dimensions of the resource to yield a given product or set of products. Usually
this is done through manipulation of one or more of these dimensions (the “ac-
tion”; Krueger and Decker 1999); however, a stable, viable resource may need only
protection or, in some cases, no manipulation or management of any kind. Hence,
the adage “no management is management” pertains as well. In either case, re-
source studies by fisheries scientists, both researchers and managers, are an integral
part of understanding the aquatic resources and how best to manage them.

It is a common misperception that fisheries scientists must be data rich to con-
duct effective management. Perhaps that is where the art of management enters
and the conventional-wisdom approach (Johnson 1999) is employed. For example,
consider that any of us fortunate enough to have a home with a lawn is a resource
manager. Much like a fishery manager who assumes responsibility for a resource
in his or her jurisdiction, we buy our first, probably previously owned, home, and
we inherit a more or less managed lawn resource. We want something quantita-
tively or qualitatively different, so we visualize what we want and begin to think of
management strategies to meet our goals. Do we gather data on the exact size of
the lawn, its precise mix of species, the amount of unvegetated space between clumps,
or the rate of growth before and following each cutting? Do we develop computer
models that integrate functional relations among the grass, the environment (e.g.,
soil, water, and fertility), and the lawnmower? Probably we do not. Instead, we
begin a management program, and the lawn likely improves, sometimes even to
the point of our satisfaction. Our goal has been achieved. At most we may have
had a soil test, checked with retail or extension consultants for recommendations
on grass varieties, fertilized according to general prescriptions, applied pesticides
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remedially, watered during droughts, and periodically adjusted the height at which
we mowed. A level of success in management was achieved without an assessment-
rich or data-rich approach.

On the other hand, a lawn is a quite simple system, and much is known about
the relations of grass variety, environmental conditions, and mowing (harvest)
strategies. Furthermore, with vaguely defined objectives, the resulting condition,
though deemed acceptable, may have been far from optimal—as may have been
the management itself. Further investigation might be required to determine
whether the appropriate varieties had been planted; complex measures would be
essential to optimize use of fertilizers, pesticides, and water; and refinement of
mowing gear and technique might also be considered. The system would require
a more complete conceptualization and more data to make effective manage-
ment decisions.

With adequate experience, fisheries scientists may be able to manage for gen-
eral objectives largely on the basis of observation analogous to the lawn scenario
presented above. However, it is more informative and meaningful to integrate a
broad information base (Krueger and Decker 1999) to address a rather specific
question or set of questions. The most applicable and defensible component of
that information base probably is a set of data collected in studies directly con-
ducted on the specific resource of interest following a proper sample design. Strat-
egies used to obtain such data could include a determination of status at a point
in time–usually in anticipation of the need for management (the “best current
data” approach; Johnson 1999), evaluation of change over time in response to a
specific manipulation or perturbation, or simply long-term monitoring of attributes
of interest without specific intentions to implement management. All of these
strategies have important ramifications in how the data are collected and used
that must be considered at the onset of any new sampling effort.

2.1.1 Study Objectives versus Management Objectives

There are subtle, yet substantial differences in the perception and implementa-
tion of sample designs when comparing the objectives of a fisheries management
plan versus that of a research study (Figure 2.1). The differences will be discussed
in section 2.1.2 in greater detail, but the crux of the differences between the two
types of objectives is that the management objective approach is aimed at evaluat-
ing a response to achieve a goal with some understanding of the tools that might
be useful to achieve the objective whereas research objectives are less concerned
with predetermined, desired results. Both approaches do follow parallel paths in
that they should be statistically rigorous and follow the philosophy of the scien-
tific method (see Chapter 1). Their development should follow a logical progres-
sion from a conceptual model of the problem to formulation into an analytical
framework specifying the variables and their probable interrelations (Box 2.1;
Waters and Erman 1990). Success in achievement of these objectives is usually mea-
sured in terms of the statistical confidence in the results through data analyses, as
well as by the manager’s confidence of their applicability to management decisions.
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Sample designs and efforts that assess management objectives can be more
limited because the manager needs very explicit information to answer questions
at hand. This is primarily because fisheries scientists manage resources according
to goals and objectives that target specific outcomes. Ultimately, meeting the needs
of the resource users—historically anglers interested in one or more key species
but increasingly the general public concerned with the integrity of the system—is
the goal. This goal is commonly embraced somehow under the umbrella term
“optimum yield” (Anderson 1975; Roedel 1975; Malvestuto and Hudgins 1996).
However, the manager may set specific objectives at various system levels, assum-
ing that benefits accrue sequentially toward goals established for higher system
levels (Noble 1986). For example, objectives might be set to achieve a prescribed
minimum catch rate by anglers, a minimum proportion of satisfied anglers for a
specific fishery, or a level of faunal diversity acceptable to the general public.
Management of one or more components of the fishery is anticipated to achieve
the objective, but there is a need for assessment to measure other potential out-
comes of any implemented management practice. A comprehensive study of all
aspects of the fishery—fish community dynamics, habitat, and users–would be

Figure 2.1 Simplified, conceptual diagram of a research study (left) and management study
(right) outlining the similarities and differences between the two study types. Dashed lines
represent long-term data collection that can provide future, iterative feedback to the manage-
ment study as the management goals are refined. See text and Box 2.1 for detailed examples of
the management study process.
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Box 2.1 Implementation Process of a Largemouth Bass Management
and Monitoring Program

Implementation of management studies can be somewhat different than studies conducted purely
for research. Although there are distinct similarities in the thought process and evolution of
management and research studies, there are also distinct differences. The largest dichotomy of the
management versus research process is that a management study is limited in statistical compara-
bility but still has some means of direct feedback to answer the question, Did the management tool
have the desired outcome in the system being managed? The answer to this question can be
revealed through the same mechanisms used in research studies, but often there is an additional
resource constituent input that influences the process too (Figure 2.1). There is also often a need for
longer-term assessments due to this iterative process (Figure 2.1) that only continued data
collection can provide. The management of the B. E. Jordan Reservoir (Jordan Lake) largemouth
bass population provides an example of the management study process.

Jordan Lake is a 5,720-ha impoundment in the Piedmont Region of North Carolina. Jordan Lake was
impounded and filled between 1981 and 1983. The lake’s proximity to population centers in the
state suggested it would become a popular fisheries resource. As new reservoirs are prone to do,
Jordan Lake experienced a period of dynamic fish community response to impoundment followed
by eventual stabilization. The adult largemouth bass population quickly became characterized by
large fish in excellent condition, typical of a eutrophic system with low recruitment and ample prey.
The management goal for Jordan Lake was to maintain a quality largemouth bass fishery (step I,
Figure 2.1), so the management agency implemented a 406-mm-minimum-size limit in 1987—only
4 years after full impoundment (step II, Figure 2.1).

Largemouth bass stocks in lakes and reservoirs are typically assessed by shoreline electrofishing
of adult fish during the spring. That sampling is designed to monitor abundance (catch per unit
effort, C/f ), size and age composition, and condition (relative weight) simultaneously. After the
initial sampling to assess immediate response of the largemouth bass population (step III, Figure
2.1), the agency established an assessment objective of “a favorable size structure at moderate to
high densities (electrofishing C/f ).” As the management goal was refined and constituent satisfac-
tion established (step IIIa, Figure 2.1), the assessment objective was further modified to maintain
electrofishing C/f  between 0.02 and 0.04 largemouth bass per minute for the 380–509-mm size-
group; to maintain mean relative weight at or above 100 for that size-group; and to maintain a
fish total length of at least 406 mm (the minimum size limit) at age 5. The agency implemented
an annual sampling regime that started in 1983 to evaluate the management regulations (steps
III and IV, Figure 2.1). Through continued monitoring, fishery managers responsible for Jordan
Lake know that the regulations set in 1987 have fulfilled the management goal to date (McRae
and Oakley 2005).

The added value of long-term monitoring can also relate to improved efficiencies in the future
management of a given system (step IV, Figure 2.1). Initially 16–17 sites were sampled by
electrofishing annually at Jordan Lake to provide the necessary statistics for all components of the
assessment objective. However, stability in the system and consistent annual catch rates have
allowed the number to be reduced to five to eight sites without major loss of information.

The goal of a management study is ultimately to assess tools used to sustain the resource. While
there have been some changes to the sampling regime as more information is learned about the
system, this standardized approach conducted over nearly 20 years has satisfactorily indexed the
status of the Jordan Lake largemouth bass population to judge the need for and response to
management.
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desirable, but the fishery manager is likely to find it more feasible to assess key
attributes of the system that correlate with the desired management goal rather
than to measure a full complement of constituent responses directly. The impor-
tant thing here is that the sample design and data collected must allow the man-
ager to evaluate effectively the problem being addressed (Brown and Austen 1996).
Common methods for each component of the fishery discussed above have been
recently summarized and provide good insight on many of the issues centered
around sample design and data collection. Murphy and Willis (1996) emphasize
biotic sampling, Bain and Stevenson (1999) stress habitat assessment, and Pollock
et al. (1994) discuss elaborate techniques for angler surveys.

2.1.2 Management Studies Differ from Research

Knowledge of conceptual relations is critical for fisheries scientists, whether work-
ing in research or management roles. Fisheries scientists manage according to
conceptual relations in their systems but usually focus their assessment efforts on
key attributes believed to be important indicators of the status of their resource.
Therefore, management studies are likely to differ substantially from research
studies. Rather than elucidating mechanisms based on hypotheses or concepts,
the manager is likely to assume that a fundamental model pertains to the system
and focus on monitoring status of key components of the stock, environment, or
users. In doing so, the manager is apt to depend on indices and trends rather
than getting absolute estimates (e.g., use of catch per unit effort to index density;
see Chapter 7). Rarely will the manager rely upon measures associated with a
single resource attribute, so studies commonly assess several variables concurrently
and frequently during the same sampling endeavor. Internal consistencies among
data sets (e.g., increases in condition indices corresponding to decreases in catch
rates) are then examined to reinforce confidence in the validity of individual
study results.

Also in contrast to research, assessment by the manager is likely to be site- or
resource-specific, with results aimed at being of local rather than broad applica-
bility. Unlike original research, these studies may be repetitive of other studies
due to their limited inference capabilities. In fact, agencies commonly establish
standardized protocols for resource investigations to optimize comparisons across
time and space (Noble 2002).

Although alternative approaches are available, management studies typically
lack replication and controls. This then results in concerns over the strength of
the overall sampling design and scientific rigor compared with research investiga-
tions. Therefore, many management studies, while potentially highly valuable,
are poorly communicated to the profession because of their potentially narrow
focus and perceived limited contribution to the science of fisheries management.
That does not have to be the case, as well-designed management studies that are
properly executed, rigorously analyzed, and written with regard to broader scien-
tific literature commonly have been published in the primary journals as articles,
management briefs, and case histories.
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■ 2.2 TYPES OF MANAGEMENT INVESTIGATIONS

Fisheries management assessment takes many forms based on the objectives and
amount of knowledge available for the system being assessed. Generally, these
assessments can be classified as feasibility studies, pilot studies, treatment (man-
agement) evaluations, or resource monitoring. These study classifications repre-
sent an evolution of knowledge about the system being studied from relatively
simplistic feasibility studies to more complex evaluation and monitoring studies.
In many cases, sample designs implemented in one type of assessment can readily
progress to another classification when properly planned.

2.2.1 Feasibility Studies

Feasibility studies are usually precursory to more advanced studies, exploratory in
nature, and entirely dependent on existing information and experiences to de-
termine if a problem can be resolved. The feasibility study will help identify the
working aspects of future study by providing information on the operations and
technical issues, such as  the appropriate sampling gear, the appropriate temporal
and spatial scales, the behavior of the system to be sampled, and sociological con-
cerns.  Other issues, such as the economics of implementing a management plan,
may need to be addressed. Experience by investigators in other systems is likely to
have identified the appropriate gear to use, as well as potential biases associated
with the gear, and should provide some insight into temporal considerations. For
example, it may already have been established that nets need to be set overnight
or water chemistry needs to be measured at a certain time of day to be compa-
rable both among samples within a given water body and among other studies.
Likewise, some indications of the frequency of sampling (e.g., sporadically in re-
sponse to environmental events or at monthly, seasonal, annual, or even multi-
year intervals) probably can be obtained. However, future sampling will need to
be modified to meet specific study objectives and the behavior of the specific
system to be assessed.

Spatial variations in the attributes to be studied, as well as the applicability and
efficiency of sampling gear, are cause for much concern in establishing sampling
programs. Feasibility studies will help define areas that are conducive to sampling
(e.g., snag-free areas to seine), those that provide the most information (e.g.,
riffle areas as aquatic insect production habitat), and those of appropriate sam-
pling depths (dependent on the variables of interest and the limitations of the
sampling gear). In evaluating these aspects, it will be necessary to incorporate
knowledge of anticipated weather effects, varying from changes in water level to
limits on accessibility. In many cases, information on statistical characteristics can
also be obtained through the feasibility study. Literature may be available that
provides good information on sampling needs across spatial and temporal scales,
expected sample variance, approximate sample sizes needed, and analytical power
(e.g., Lubinski et al. 2001).

The fisheries scientist should explore existing knowledge from data already
collected by the management entity to existing literature and also incorporate
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personal experiences when study objectives have been established. The gray lit-
erature (e.g., reports and correspondence) may prove as fruitful as the published
literature. Particularly helpful may be reports of fisheries management studies in
the USA supported by Federal Aid in Fish Restoration Act. Fisheries scientists
have communicated management study progress and results over the past several
decades through media such as the newsletter of the Fisheries Management Sec-
tion of the American Fisheries Society and regionally through working groups
and committees of this society. Networking may be the best approach for obtain-
ing investigators’ personal experiences pertinent to the study. Professional soci-
ety list servers provide many valuable Web sites and a quick way to obtain a variety
of perspectives on feasibility aspects.

At the completion of the feasibility study, it should be possible to estimate rea-
sonably the time and personnel required to conduct a given amount of sampling
and to weigh those costs against the likely benefits of doing the study. Other di-
mensions of the project, such as public relations aspects of the fieldwork, can also
be explored during the feasibility study.

2.2.2 Pilot Studies

Pilot studies are typically smaller-scale studies that offer an opportunity to evalu-
ate assessment alternatives identified under the feasibility study. Essentially, pilot
studies are used to determine what sampling is likely to be effective in achieving
the specific objectives under the conditions of the investigation to be conducted
before carrying out larger studies. They may also be of value in situations in which
the concept of the study as a whole is not well accepted, and the pilot study can
give assurance that a larger commitment to a full study will be a reasonable invest-
ment. In addition to testing the overall methodology anticipated for the investiga-
tion, pilot studies are directed at establishing statistical reliability (i.e., precision
and accuracy; see Chapter 3). The pilot study should estimate the sample variabil-
ity and allow calculation of sample sizes needed to attain the desired level of preci-
sion. For sampling programs that use fixed time or distance sampling, choices can
be made on the relative precision of data from large numbers of small samples
versus small numbers of large samples as well as the effects of travel time between
samples (e.g., Miranda et al. 1996). The investigator also has the opportunity to
evaluate the effects of deviations in technique during the pilot study (e.g., whether
it matters that a sample is taken an hour late because of a flat tire on the way to
the site). Management studies commonly establish more liberal levels of accepted
variability than do research projects (e.g., confidence limits of ± 25% for manage-
ment studies versus ± 10% for research; Robson and Regier 1964). Therefore,
sample sizes for management studies are often much smaller than they are for
research investigations.

Opportunities for, and limitations to, random sampling can become apparent
over the course of feasibility and pilot studies due to limitations of gear and avail-
ability of personnel to conduct a truly random sampling effort. Therefore, man-
agement studies characteristically entail sampling at subjectively selected fixed
sites. Likewise, for many stream sampling programs, samples are taken near bridges
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due to access and logistical limitations. These are constraints that must be real-
ized and dealt with appropriately as such sampling poses the possibility of intro-
ducing estimation biases when performing statistical analyses (e.g., Maceina et al.
1994; Manly 2001). Pilot studies can help elucidate the extent of bias associated
with fixed-site sampling.

Because the fisheries scientist may be collecting more than one kind of man-
agement data simultaneously (e.g., fish density and population structural indi-
ces), there is a temptation to select sites that have high densities or sites where
fish have high vulnerability to sampling. High catch rates result in greater preci-
sion in estimation of structural indices and, conversely, reduce the number of
samples required for a given precision. However, changes in catch rates at these
sites may not necessarily correspond directly to actual changes in overall popula-
tion density. Furthermore, structural indices based on these high-density sample
sites may also be biased (Hubbard and Miranda 1988). A pilot study offers the
opportunity to establish whether the sampling produces representative data. It is
not unusual for pilot studies to lead to changes in protocols suggested by the
feasibility study.

2.2.3 Measurement of Treatment Effects

Evaluating the impact of a management action is typically the most intensive study
done by a manager. In its simplest form, such an evaluation is a before and after
study of a single system (without replication). Fisheries based on long-lived spe-
cies may take several years to respond to a management action, so such studies
may need to be of long duration. Before-and-after studies (termed BACI for before–
after comparison of impact; Green 1979) suffer from their inability to elucidate
causal mechanisms, so sampling during the intervening years, though not essen-
tial to meeting the principal objectives, is commonly used to provide supplemen-
tal information on the rate and process of response to the treatment. Because
most of these studies are site specific and without replication, they serve as case
histories that document what happened in response to a management action. A
sample design may provide tests of change with designated statistical probability,
but such studies cannot provide information about the probability of similar re-
sponses in another system, thus limiting inference capabilities.

Broad inferences are facilitated by replicated treatments. If systems are similar
enough that treatments can be applied to them as replicates, comparison of treat-
ment effects under varied conditions across the landscape can provide insight
into mechanisms of response. Such approaches improve confidence in more gen-
eral applications of inferences but require large commitments of resources and
high levels of coordination.

Development of a management strategy originates from changes detected dur-
ing routine monitoring, new opportunities for optimization recognized by the
manager, and public demands for changes in management. In the interest of
responding to the need promptly, and recognizing that it may take years for the
effects of management to be manifested in the fishery, the manager tends to
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move quickly to implement the management action, thereby minimizing the “be-
fore treatment” component of the study. It is common for the baseline data to
consist only of the data available from monitoring studies (see section 2.2.4),
thereby limiting rigor for detecting specific changes in response to the manage-
ment action. When possible, the pretreatment study should be intensified to en-
sure statistical rigor and broadened to include investigation of additional factors
and potential responses. Consistency of protocols for the pre- and post-treatment
studies is essential for interpreting the response to the change in management.
There are always concerns that temporal trends, unrelated to the treatment, can
occur. Therefore, BACI  investigations are most reliable if experimental controls
are employed.  Limitations of this approach have been examined in substantial
detail (e.g., Underwood 1994; Stewart-Oaten and Bence 2001).

Resource management is continually evolving as more data are obtained re-
sulting in an approach termed adaptive resource management (Walters 1986).
This approach typically entails replicated treatments and controls to address un-
certainty in the hypothesized responses and observed responses to manage-
ment through stepwise changes in management and related assessment (Lancia
et al. 1996; Johnson 1999). However, the adaptive management approach goes
significantly beyond the commonly used monitor and modify approach (Johnson
1999). In general, adaptive resource management has been difficult for natural
resource agencies to implement because of insufficient commitments to carry out
the relatively large amount of sampling required for adaptive resource manage-
ment compared with that typically needed for most local management studies.
Nevertheless, the approach has been applied effectively on large- scale fisheries
in some situations (e.g., McConnaha and Paquet 1996).

2.2.4 Monitoring

Monitoring is crucial to managing fish populations, and the basic need for long-
term data is widely acknowledged (Likens 1992; Thomas 1999). This is particularly
true given the need for understanding how management practices change fish com-
munities, stocks, populations, or other units of interest to achieve specific goals and
objectives. However, management agencies are often criticized for their vast files of
data collected for monitoring purposes and archived for future use. While monitor-
ing is not necessarily active management in the sense that fisheries scientists are
assessing a specific management practice (although that can certainly be the case),
ongoing monitoring is essential to establish the status of the resource and detect
the need for active management. Studies conducted for short periods of time rep-
resent one relatively quick snap-shot that may not be an accurate representation of
the fishery (see Box 2.1). In fact, fisheries managers accept that much of their work
is driven by questions and decisions waiting to happen that require data on histori-
cal trends and current status. Consequently, long-term monitoring data can be an
invaluable source of information that should be given high priority.

Long-term monitoring studies are designed to provide a periodic update on the
status of the resource, detect major changes, and establish trends. Such monitoring
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studies commonly require a dedicated effort. Periodicity of sampling frequently
depends on the dynamics of the system where monitoring of a relatively stable
resource (e.g., a well-established fish stock comprising many age groups) may be
conducted at multi-year intervals or a more variable resource may be sampled at
annual, seasonal, or other more frequent intervals. Monitoring can demand a
large commitment of personnel and staging time, so it is not unusual for such
assessments to monitor multiple attributes of the resource at one time (U.S. Geo-
logical Survey 1999). Different sample sizes are likely to be required for the vari-
ous objectives identified. Fisheries scientists usually define a time of year when
sampling gear is most effective, thereby ensuring high catches or high probability
of obtaining desired samples. This approach further minimizes the amount of
sampling effort required for certain objectives.

When establishing long-term monitoring programs, great care should be exer-
cised to anticipate change from current conditions. If fixed-site sampling is used
(see section 2.3.3), one must recognize that long-term changes in the landscape
may occur (e.g., a homeowner may bulkhead the shoreline at a seine site or new
water level management regimes for a reservoir may inundate sample sites during
the sampling season) that should be dealt with by contingency planning. Like-
wise, changes in gear technologies are inevitable, leading ultimately to using a
more efficient gear or lower number of gears (Ickes and Burkhardt 2002) than
initially employed. In either of these cases, sampling concurrently with the previ-
ously used and newly adopted gears or sites under a range of conditions can pro-
vide a basis for adjusting results needed for long-term comparisons.

■ 2.3  DESIGN OF THE STUDY

Monitoring studies and management evaluations provide major challenges when
determining minimum sample sizes (number of samples) and the distribution of
samples through time and space while still maintaining a high level of statistical
reliability. In trying to develop a sampling scheme, the fisheries scientist is likely
to experience bewilderment and frustration with the conflicts of science and prac-
tice. For example, the methods used to calculate sample size are straightforward
(Chapter 3), but the commonly used approach of sampling simultaneously for
multiple objectives complicates sample size determination. Furthermore, effec-
tiveness in the distribution of samples through time and space (e.g., stratifica-
tion) affects minimum sample sizes. Ultimately, management studies are a com-
promise that allows inferences from a study based on (1) effective sampling to
produce representative data and (2) adjustment of the sample design to accom-
modate real field conditions. Philosophies and methods on dealing with such
design complexities in fisheries studies are discussed in Chapter 3 and also re-
viewed by Johnson and Nielsen (1983), Brown and Austen (1996), Willis and
Murphy (1996), and Ney (1999). In general, simplicity in study design makes
communication of results more straightforward and the interpretation to con-
stituents more effective.
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2.3.1 Data Collection to Achieve Multiple Objectives

A review of Box 2.1 illustrates the challenge of establishing sample sizes when
multiple objectives are simultaneously pursued by the manager. Variation in C/f
(calculated from a pilot study or data from previous years) and the number of
samples required to detect a given amount of change can be calculated (see Chap-
ter 3). However, these samples also need to provide data on length–age distribu-
tions and condition (weight–length relations). Information requirements differ
among these objectives as the investigator only needs to differentiate those fish
below 380 mm and over 509 mm long to achieve the C/f objective, whereas spe-
cific lengths, weights, and age data are required to measure the other responses.
This issue is further compounded by the fact that the electrofishing transect pro-
vides the needed data for C/f, yet information for the remaining variables is ob-
tained from individual fish. The number of fish required varies depending on the
specific estimates being sought. For example, as many as 100 fish may be required
to get a reliable index of size structure to achieve the desired precision for a given
objective (Weithman et al. 1980). If C/f  is low, insufficient numbers of fish may be
available to estimate size structure or mean relative weight with desired precision.
Conversely, if C/f is high, subsampling may be necessary for efficient use of labor.
A contingency plan should be developed in advance for addressing these situa-
tions (Willis and Murphy 1996).

Managers have long sought response variables or metrics that concurrently
incorporate multiple attributes of their systems, in part to alleviate problems of
simultaneous sampling for multiple objectives. Classic examples of these metrics
include those that attempt to reflect predator–prey relations (Swingle 1950; Ander-
son 1976; Jenkins and Morais 1978; Chapter 16). Statistical properties of these
metrics are generally unclear, both in terms of appropriate sample sizes and ana-
lytical models. Community structure likewise can be indexed by diversity mea-
sures (Shannon and Weaver 1949; Chapter 15) and multiple fish attributes (Karr
1981). Statistical properties of some of these indices have been examined in de-
tail (Karr and Chu 1999), and knowledge of those properties should be used in
designing sampling programs for assessment of changes in fish assemblages and
community structure.

2.3.2 Statistical Efficiency in Sampling

Fisheries scientists must first and foremost have confidence their study design will
produce data that will allow the pertinent question(s) to be answered. Key com-
ponents of  that confidence are  the representativeness of the data and precision
of the estimate. Decisions on how to allocate samples through time and space are
paramount to achieving adequate accuracy and precision. Representativeness is
most likely achieved through random sampling, either simple (totally) random,
stratified random, or cluster sampling (Chapter 3). However, systematic sampling
can also provide representative results under most circumstances but will prob-
ably have inflated variability (Manly 2001).
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Refinements of sample design beyond simple random sampling can be made
to reduce sampling effort, thereby reducing time, personnel, and fiscal require-
ments when major trends in resource attributes are known. For example, sam-
pling to monitor a fish population or community is seldom conducted at random
times throughout the year but rather during a specific period when organisms are
highly susceptible to collection, environmental conditions are stable, and sam-
pling gear most efficient. Furthermore, the attribute of interest (e.g., density of
fish or water chemistry) may follow a general trend or have similarity among sub-
units of space (e.g., upstream to downstream) or time (e.g., seasonally) such that
stratified random sampling may be employed to increase precision or, more likely,
decrease the number of samples required to attain the desired precision. Stratifi-
cation has become a standardized technique in fisheries management and re-
search studies. For instance, angler surveys are commonly stratified over time
(i.e., season, day of week, and time of day) in relation to temporal variation in
participation (Pollock et al. 1994). The concept of stratification is based on sample
data being more similar within subunits than for the resource component as a
whole. The risk of reducing precision through stratification is relatively small,
whereas the gains can be high if variation among strata is high and within strata is
low (Chapter 3).

In the strictest sense, statistical variability among samples should be the natural
variability associated with the parameter of interest in relation to the sample tech-
nique. For example, the number of fish passing through each of a set of parallel
weirs varies at any given time due to the tendency of many organisms to aggregate
or school. In fact, the underlying distribution of sample data commonly is such
that the variance increases disproportionately with the mean, such that a large
number of small samples produce superior precision to a small number of large
samples (e.g., Anscombe 1949). However, under field conditions, time and labor
considerations commonly favor large samples in smaller numbers as the relation
between sample duration and travel time may influence overall catch rates
(Miranda et al. 1996). Likewise, when allocating samples that estimate density
(e.g., C/f ) under a stratified random sampling design, it is likely that precision
will be increased if high-density strata are sampled more intensively than low-
density strata.

Sample variability is further inflated by any inconsistency in sampling. Conse-
quently, it is extremely important that sampling gear be in a consistent state of
repair each time it is used, that sampling conditions and durations be as uniform
as possible, that operator error (including that of data recording) be minimized,
and so on. Protocols should be established in advance to establish acceptable
deviations and alleviate many of the inconsistency issues that can arise without a
formal design.

2.3.3 Fixed Sites: Compromise between Statistical and Practical Considerations

Study design is heavily dependent upon understanding the decision-making pro-
cess, the quality of the information the study demands, and the possible consequences
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of differing conclusions from the study (Box 2.2). For the fishery manager, indi-
ces, rather than estimates, are frequently used to meet decision-making require-
ments. In such cases, sampling at fixed sites is commonly accepted. Randomly or
systematically selected fixed sites can offer some statistical advantages over subjec-
tively selected sites, but sites are commonly selected subjectively for convenience,
consistency, and efficiency of field time and labor.

Reasons for subjective selection of sample sites are many. Access is a common
factor. For example, water quality conditions in a stream might be monitored at a
highway bridge, where the stream is easily accessible and private property issues
can be avoided. Another important factor is interaction of environmental condi-
tions and gear efficacy. For example, use of fixed seine or gill-net sites ensures
that sampling variability is not inflated by incomplete samples due to unpredict-
able snags. Any sampling to assess density by measures of C/f depends on uniform
catchability of fish over time and space. Therefore, use of fixed stations can help
ensure that the data are not influenced by variations in catchability due to unpre-
dictable sampling conditions. Subjective selection of sampling times is also com-
monly employed. Weekend sampling may be avoided to minimize potential con-
flicts with the public or water sampling may be restricted to conditions below
flood stage for personnel safety, among many other reasons.

The investigator is faced with decisions about whether to establish sites that are
judged to represent the environment, to represent extremes in the environment,
to be similar to one another, or to produce highest catches. Each will have its
individual effect on variance among samples for the index. For example, fixed
site samples chosen for similarity should produce data that have a smaller vari-
ance than do samples chosen to represent extremes, so significant differences in
the index values could be more easily detected. Nevertheless, the chances of the
conclusions being wrong due to nonrepresentative data are higher with this ap-
proach. Therefore, random sampling conducted in conjunction with fixed sites
can provide the manager with confidence in the degree of representativeness of
the data (Manly 2001).

Fisheries scientists commonly select sites subjectively to represent the types of
habitats available (e.g., shoreline gill-net sites on a variety of slopes and substrates)
or to encompass a variety of habitats at given sites (e.g., shoreline electrofishing
transects that traverse a combination of cove and non-cove areas in reservoirs or
riffles, pools, and runs in streams). Even if sample sites are subjectively selected as
being representative, the data must be recognized as indices reflecting those sites
rather than being population parameter estimates. Even though data collected at
fixed sites must be considered indices, statistical precision still should be maxi-
mized to allow detection of changes in index means. Consequently, attention should
be paid to opportunities for stratification (see Chapter 3). Likewise, statistical
analyses can be more complex due to issues such as increases in the likelihood of
nonindependence of sequential samples and other analytical issues, such as
pseudoreplication, if analyses are not performed appropriately (Hurlbert 1984;
Chapters 14 and 18). Failure to take these issues into account can lead to misin-
terpreted results, thus specific statistical approaches must be used (e.g., repeated
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Box 2.2 The Importance of Long-Term Monitoring of Fish Populations

The Illinois River was known as one of the fishing and hunting destinations for presidents and as
the second most productive inland commercial fishery in the USA until the early 1900s. However,
this same river has since suffered ecological decimation from Chicago, other sources of urban and
industrial sewage, levees that isolated the river from its floodplain, and water level manipulation. By
the mid- to late-1900s, though, efforts to remediate at least the most chronic of these conditions, in
this case, water quality due to human health concerns, began in earnest. Subsequent restoration of
some of the water quality aspects of the Illinois River through implementation of the Clean Water
Act of 1972 markedly improved water conditions in the later quarter of the twentieth century.

Concurrent to these water improvement measures, fisheries managers began to document the
current status of the fishery in the Illinois River to establish information that would assist with
documenting future changes. That sampling effort, now termed the Illinois River Fish Population
Monitoring Program, has resulted in a study conducted by the Illinois Natural History Survey that
has provided nearly continuous information on the fish populations in the Illinois River since 1957
through the present (Pegg and McClelland 2004).

The program currently samples 27 fixed sites over nearly 450 river kilometers by means of stan-
dardized protocols that detail the specific gear used (e.g., AC boat-mounted electrofishing) and
under what hydrological and thermal conditions the sampling should be conducted during an
early fall sampling window. With minor exceptions, the sites have been consistent since the
inception of sampling. The result is an over four-decade data set that has documented a positive
fish response in the upper half of the river where water quality was most improved (Pegg and
McClelland 2004). Continued sampling through this program will provide future insight into
systemic changes as additional restoration efforts are implemented by numerous federal and state
management programs.

This study does illustrate the issue raised with fixed site (section 2.3.3) compared with random site
selection. The Illinois River Fish Population Study has continued a fixed site tradition that has
allowed data comparison since 1957. However, the use of fixed sites can restrict inferences. In
contrast, a random selection, or one stratified based on habitat type, would have allowed the
investigators to make more robust inferences to the entire river. Nevertheless, this long-term
monitoring study has documented the gradual increase in exotic species such as the bighead carp,
the rebound of sport fish populations, and some responses to changes in water quality, such as the
incidence of external abnormalities like lesions or tumors (McClelland and Pegg 2005). The data
have been critically useful in understanding the effects of anthropogenic influences on an
expansive and valuable resource.

measures for sites sampled through time). Wilde and Fisher (1996) discuss some
of the risks associated with making inferences from sample designs for which data
are obtained by subjectively chosen sites in fisheries studies.

2.3.4 Other Practical Considerations

Beyond planning for statistical precision and accuracy, the fisheries scientist must
also be realistic in the efficient use of financial and personnel resources. Person-
nel time and operating funds for assessment activities are always limited. Field
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Figure Number of fish species caught by the Illinois River Fish Population Monitoring Program at
sites in the Dresden Reach of the Illinois River from 1961 through 2000. The overall trend has been
an increase in species richness during the period of record as indicated by the regression line and
statistical summary in the upper left corner. The segment of the data represented by the regression
equation in the lower right corner of the figure illustrates a different outcome if the study had been
conducted over a shorter time frame and highlights the need for fisheries scientists to consider the
temporal aspects of their fishery. Figure modified from Pegg and McClelland 2004.

The Illinois River Fish Population Monitoring Program also highlights the need for long- term
studies. For example, consider the implications of species richness on the Illinois River. The number
of species caught at sites in the Dresden Reach of the Illinois River has exhibited a significant
increase since the early 1960s (see figure). However, if a study had been conducted solely during
the 1980s to early 1990s,  the conclusions would have been considerably different and may have
led to implementation of management practices that were not needed or may have been ineffec-
tive. There are myriad reasons for different responses at different time scales that likely meld life
history, biotic, climatic, and numerous other interactions to elicit responses. Those responses also
likely operate at varying time scales. Therefore, it is critical that fisheries scientists consider the
temporal time frame and responses of organisms when designing studies.

operations need to be carefully planned, including coordination with other pro-
gram activities, and all personnel need to be fully oriented to individual responsi-
bilities. Review of operational protocols should be used not only as a means to
assure data quality but also as a continual reinforcement of safety policies for field
sampling (Berry 1996) and proper procedures for animal care and use (ASIH et
al. 1988). Contingency plans should also be in place so that it is quite clear how to
respond to deviations from the expected routine when encountered in the field.

Safety is a major consideration when making decisions of whether to conduct a
planned assessment as scheduled. Extreme events such as storms, floods, heat,
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and cold are becoming increasingly predictable, such that it is reasonable to an-
ticipate interference or interruption of sampling. In many cases it is important to
have all samples taken during a single sample period, so it may be preferable to
postpone rather than have to complete sampling at another time with differing
field conditions. Nevertheless, many statistical analyses readily deal with missing
data, so sampling expeditions may be terminated before completion without com-
plete loss of data. Impacts of such deviations from schedules should be evaluated
during planning stages of field studies.

■ 2.4 CONCLUSIONS

To a large extent, the fishery manager assesses what is reasonably measurable with
the resources available, integrating a number of measures to address the perti-
nent management question(s). In doing so, experience with sampling gear and
data provide an appreciation of the nature of biases and their potential impact on
conclusions. Furthermore, familiarity with variability in the data allows some in-
sight on the precision of estimates and confidence in the conclusions. Knowledge
of the inference space provided by the study design must be clear so the data can
be properly interpreted in terms of whether the data are directly applicable to the
parameters of interest or only to the samples themselves. Likewise, the sample
design can have significant effects on both the accuracy and precision of esti-
mates, therefore on the defensibility of conclusions drawn from the study. In a
sense, the art and science of management is paralleled by an art and science of
sample design that reflects an ability to integrate effectively statistical and practi-
cal considerations in sampling.

Duration of the study must be sufficient, sample sizes must be adequate, and
allocation of samples must be appropriate for results to be conclusive. These con-
siderations make it highly advisable to consult a statistical advisor during the de-
sign or re-design stage of any study regardless of the experience level of the inves-
tigator. Otherwise, considerable effort, especially when exerted in a monitoring
or evaluation study, will have been wasted. Like the researcher, the manager should
adopt the rule of thumb that statistical rigor should be sufficient to pass the test of
eventual scientific publication of results, even though the study may be site spe-
cific, unreplicated, and focused on amount of change more so than on mecha-
nisms of change.

Consistency in implementation of sample design is extremely important. De-
viations will occur, and they will tend to increase variability, possibly reduce accu-
racy, and inevitably reduce overall conclusiveness of the study. Nevertheless, the
manager needs to remain flexible, especially for long-term studies.
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■ 3.1 INTRODUCTION

Even though many different methods are used to sample fish populations, their
habitats, and anglers, sampling plans often share common traits. The appropriate
gear and protocol to collect data are important, but the sampling design and the
characteristics of the population determine the statistical properties of the esti-
mates obtained. Similarly, when experiments are conducted to determine the re-
sponse of fishes or their habitats to treatment, the overall experimental design
and underlying variability determine the power of the experiment and can limit
the questions or hypotheses that can be addressed. The goal of this chapter is to
describe some of the most common sampling and experimental designs used in
fisheries science. Our principal intent is not to teach the theory underlying these
topics but rather to illustrate common data analysis approaches based on that
statistical theory.

3.1.1 Populations and Samples

Fisheries scientists take samples from populations because data or information
from all individuals in the population typically cannot be obtained. Fundamental
to the idea of sampling is that a population of sampling units exists from which
samples are taken. Ideally, all sampling units in the population can be sampled,
but in many field sampling programs the sample frame, or the set of sample units
that are actually available to be sampled, may be only a subset of the entire target
population. In general, whenever the sample units in the sample frame differ
from the units in the target population, the design may provide results that reflect
the sample frame but not the target population (termed bias; see section 3.1.2).
The degree of bias due to this mismatch is generally case specific and is virtually
impossible to determine. Throughout this chapter, we assume that the sample
units in the sampling frame match the units in the target population and that all
units are sampled with equal efficiency.

Definition of the sampling unit is not always straightforward and often depends
on the objectives of the study. For example, individual fish are sampling units in a

3
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telemetry study of fish home range if the investigator wishes to know how indi-
vidual fish in a single population use available habitat. If the telemetry study is
conducted in several lakes, each lake may be viewed as a sampling unit, with indi-
vidual fish as secondary sampling units. In both of these cases, the sampling units
are naturally defined units. In contrast, consider a situation where sampling units
are defined as possible seining sites (Figure 3.1). Seining-site boundaries are de-
fined by the investigator, not by natural boundaries. The critical concept underly-
ing this example is that after the size of a seine site is defined, and an arbitrary
starting point is determined, a finite population of nonoverlapping sampling units
is defined. This example also illustrates a case in which some sample units are not
part of the sample frame because they cannot be sampled with the gear used.
Whenever some sites that are part of the target population are not part of the
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Figure 3.1 Example of a population of seining sites in a lake. Sites selected for sampling are
shaded in gray, whereas sites that could not be sampled because of obstructions or soft bottom
are crosshatched and were not considered part of the sample frame.
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sampling frame, the attribute being estimated will reflect the sample frame but
not the target population, so results of sampling will be biased in relation to the
true value for the target population.

3.1.2 Bias

The goal of a sampling program is to provide estimates about the characteristics of
a population. When used in the context of statistical sampling, bias is generally
defined as the difference between the true value of the population attribute and
the expected value (i.e., the mean across all possible samples) of the estimator
(Cochran 1977). As indicated earlier, a significant source of bias can occur when
units in the sample frame differ from units in the entire population or when sam-
pling units within the population are not all sampled with equal efficiency. There-
fore, the investigator must define the target population in a way that reflects this
mismatch or consider using gears and protocols that produce samples that more
accurately characterize the target population. Appropriate sampling gear and pro-
tocols are prerequisite for applying the methods covered in this chapter.

In addition to the potential biases described above, estimators such as ratio
estimators (section 3.2.2.3) may also result in biased estimates. Although a biased
estimator sounds like something to be avoided, for estimators such as ratio estima-
tors some degree of bias is unavoidable (see section 3.2.2.3). However, these bi-
ases differ from biases due to sampling frame problems in that the amount of bias
can be estimated (remembering that this is based on an average), and a decision
can be made whether the bias is acceptable. In some cases, the amount of bias
introduced is negligible and is more than offset by gains in precision. Bias is gen-
erally evaluated in combination with precision (described below), and their com-
bination is expressed as mean square error (MSE, in squared units of measure),
which is calculated as

MSE(y) = bias2 + var(y).^ ^ (3.1)

The word accurate is often used as a synonym for unbiased. In common use,
however, the word accurate is often used to convey more than simply being
unbiased but is used to mean correct. Therefore, we discourage the use of the
term accurate in discussions of the statistical properties of sampling programs.

3.1.3 Precision and Confidence Intervals

In addition to obtaining a point estimate of some characteristic of a population,
the degree of confidence we have in that estimate is also important to determine.
Unless we sample the entire population, our point estimate is unlikely to match
the true population value exactly. Thus, a critical concept is that the precision of
an estimate is a measure of how likely it is that our estimate is close to the un-
known true value. The precision of estimates is often expressed as the standard
error (SE) of the estimate or as a confidence interval (CI) around the estimate.
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When estimates are viewed as one possible outcome of many possibilities, such that
repeating the same procedure would likely result in a different sample being taken
with a different point estimate, the estimates can be treated as coming from a statis-
tical distribution, and the SE is simply the square root of the variance of that distri-
bution. For a normal distribution, 68% of the estimates would fall between one SE
on either side of the true mean. Similarly, a CI can be thought of as a range within
which most, commonly 95%, of the estimates would be expected to lie.

Assuming an unbiased estimator, the precision of estimates is affected by the
inherent variability of the attribute being measured and the number of observa-
tions of the attribute that are obtained during sampling, in addition to the sam-
pling design (covered later). In general, to obtain estimates of a given level of
precision, more samples are required for population attributes that are highly
variable than for population attributes that are relatively invariable. Before sam-
pling, the investigator should decide what level of precision is acceptable and
then determine how many samples are needed based on prior knowledge of the
level of variability that is expected for the attribute of interest, such as would be
obtained from a preliminary survey. The level of precision that is acceptable is
often determined from the practical needs of the investigator or agency. For ex-
ample, a fishery scientist may wish to know the mean length of walleyes in a par-
ticular lake following a new regulation and would like to have 95% CIs around the
mean that were less than ± 50 mm. Here, the acceptable level of precision (±50
mm) could be set to exceed the level of interannual variation that would occur in
the absence of a regulation change. Alternatively, the acceptable level of preci-
sion could be set at some arbitrary level that is deemed by the agency or investiga-
tor to be acceptable.

3.1.4 Random versus Nonrandom Sampling

Generally, samples must be drawn randomly from the population of interest to
ensure the sample is representative of the entire population. When samples are
drawn nonrandomly or using subjective criteria, measured attributes will usually
be biased, though the degree of bias cannot be determined from the samples. For
example, sampling is sometimes focused in areas where fish are known to aggre-
gate to avoid spending sampling effort in areas where fish are known to be scarce.
Unfortunately, attributes (e.g., length) of fish in areas where they aggregate may
differ from attributes of fish in areas where fish are scarce. Thus, such a sample
may not be representative of the entire population. The only way to avoid such
potential bias is to sample units randomly from the population.

■ 3.2 SAMPLING DESIGNS

3.2.1 Overview of Sampling Designs

In this section, we discuss four commonly used sampling designs, for which both
a naturally defined sampling unit (individual fish) and an artificially defined
sampling unit (sampling grid locations) can be used (Figure 3.2). Although other
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Figure 3.2 Sample frames and sampling unit selection for basic sampling designs. The column
on the left illustrates the case in which the sampling unit is individual fish or groups of fish for
cluster sampling. The column on the right illustrates the case in which the sampling unit is a grid
location in a lake or a group of grids for cluster sampling. Units shaded in black are selected for
sampling. The dotted line or shaded region in stratified random sampling indicates stratum
boundaries.

Simple random sampling

Stratified random sampling

Systematic sampling

Cluster Sampling

Not generally
feasible
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sampling designs are available (e.g., Cochran 1977; Thompson 1992; Lohr 1999),
we will cover the basic designs that are applicable in most situations. The critical
consideration distinguishing each sampling design is how sampling units in the
population are defined and how they are selected. In simple random sampling,
each sampling unit in the population has an equal probability of being included
in the sample, and each sampling unit is selected independently of other units
(section 3.2.2). In stratified random sampling, each sampling unit in the popula-
tion is first assigned to a stratum, and then a simple random sample is indepen-
dently drawn from each stratum (section 3.2.3). In cluster sampling, the popula-
tion is divided into primary sampling units, termed clusters, and secondary sampling
units, termed elements (section 3.2.4). In systematic sampling, all the sampling
units in the population are arranged in a sequence, and then from a random
starting point, every kth sampling unit is included in the sample (section 3.2.5).
In systematic sampling, selection of the first sampling unit determines all other
units in the sample, so sampling units are not independently selected. In large
populations, lack of independence does not generally lead to biased estimates of
the mean but typically results in a biased estimate of the variance if dependency
among sample units is not taken into account. Each of these sampling designs is
described in more detail below. To present computational methods concisely and
facilitate comparisons among sampling designs, we present the basic formulae for
estimating the mean in Table 3.1, which are summarized from Cochran (1977),
Thompson (1992), and Lohr (1999).

3.2.2 Simple Random Sampling

In simple random sampling, a sample of size n is randomly selected from a popu-
lation with N sampling units. Implementing simple random sampling is easiest
when all of the sampling units can be enumerated before sampling begins, as in
the example of seining sites within a lake (Figure 3.1) or in the example of sam-
pling grids within a lake (Figure 3.2). Sample units are often selected for sam-
pling without replacement (selecting each sample unit no more than once) by
using a random number table or generator (Wilde and Fisher 1996). When the
sampling frame is unknown before sampling begins, such as in the example of
fish within a lake (Figure 3.2), implementing true simple random sampling may
be impossible, thereby leading to the use of an alternative design (e.g., cluster
sampling, section 3.2.4). Simple random sampling is often less efficient and less
precise than are other designs but illustrates concepts and estimators that are
inherent in other designs and also provides a basis for understanding the effi-
ciency of other designs, as we will illustrate in the ensuing parts of section 3.2.

3.2.2.1 Estimation of Mean Values

An important property of simple random sampling is that the sample mean and
variance provide unbiased estimates of the population mean and variance re-
gardless of the shape of the distribution in the population being sampled
(Cochran 1977; Lohr 1999). The sample mean is simply calculated as the sum of
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the observations (yi ) divided by the sample size (n; Table 3.1; Box 3.1). Several
equivalent formulae are available for calculating the sample variance, but one ap-
proach is to sum the squared deviations (differences) between observations of the
sampling units (yi ) and the sample mean, and divide by n – 1 (Table 3.1; Box 3.1).
One can view the sample mean as a simple prediction for each observation, and
the sample variance is the average squared deviation between observations and
their predicted value. In most fisheries applications, the proportion of the popula-
tion that is sampled (also known as the sampling fraction, n/N) is small, and the
SE of the sample mean is estimated by taking the square root of the sample vari-
ance, divided by the sample size (Table 3.1). When the sampling fraction is large
(e.g., n/N > 0.5), the confidence in estimates of the sample mean is increased, and
consequently the SE is reduced:

SE(y) = – .
n
s2

1 –( n 
N ) (3.2)

The term (1 – n/N) is called the finite population correction. As the sampling
fraction approaches 1 (the entire population is sampled), the finite population
correction approaches 0, and the SE also approaches 0. In a census of the entire
population, the SE of the sample mean would be 0 because all possible sampling
units in the population would be included in the sample. Many books on sampling
theory include formulae and derivations that include the finite population correc-
tion, but it is typically negligible in practice. Therefore, our summary of formulae
(Table 3.1) excludes the finite population correction factor.

The SE is often used as a measure of precision of estimates and describes the
variability that would be expected if the sampling process could be repeated a
large number of times. For a normal distribution, approximately 68% of the distri-
bution is found between 1 SE above and below the mean. An alternative method
of conveying the precision is to estimate confidence limits (CLs) on point esti-
mates. Estimating CLs on the mean requires knowledge of the distribution of the
mean or assumptions about the shape of the distribution. For large samples (e.g.,
n � 50; Zar 1999), the distribution of the mean approaches a Student’s t-distribu-
tion with n – 1 df, so CLs can be estimated as

–Lower CL = y – t�, n – 1SE(y), and
Upper CL = y + t�, n – 1SE(y),––

–
(3.3)

where t�, n – 1 is the value of the t-distribution (commonly available from a table in a
statistics book or equation in a spreadsheet) for an � equal to the probability of
making a type I error (often 0.05) and an n of a given sample size. The SE(y–) is the
SE of the mean (see Box 3.1 for an example). The t-distribution is often used to
estimate approximate confidence limits for small samples, but the bootstrap method
can also be used to estimate CIs and is often recommended for small sample sizes
(see Efron and Tibshirami [1998] for details on this approach).
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3.2.2.2  Estimation of Proportions

Many characteristics of fishes or their habitats cannot be expressed quantitatively
as a continuous variable but can be expressed qualitatively as a categorical vari-
able. For example, the sex of a fish is a qualitative (categorical) trait. Sampling is
often undertaken to estimate the proportion of the population (p) that possess
some quality or attribute. An attribute that takes on one of only two values (e.g.,
male or female or mature or immature) is a single or binary classification system,
whereas an attribute that falls into one of several categories or classes (e.g., spe-
cies of fish or length intervals) is a multiple classification system.

For single classification variables, the observation (yi) is coded as 1 if the indi-
vidual possesses one attribute or trait and 0 if it possesses the other attribute or
trait. The proportion of individuals that possess the trait in the population (p) can

Box 3.1 Example of Estimating the Mean Based on Simple Random Sampling

Fifteen sites were randomly selected from an X – Y grid superimposed on a shallow lake. At each
site, the catch of central mudminnow in a throw trap (assumed to be equally efficient at all sites in
the lake) was recorded. The goal of the sampling was to determine the mean density of central
mudminnows in the lake.

Table Catch of central mudminnow from 15 lake sites randomly selected on an X – Y grid.

Coordinate and total

X Y Catch (Catch – mean)2

5 18 3 1.96
15 16 0 2.56

4 9 4 5.76
14 3 1 0.36
11 8 4 5.76
12 5 1 0.36

2 4 1 0.36
3 20 0 2.56

11 7 1 0.36
1 8 0 2.56
2 15 2 0.16

11 2 2 0.16
3 17 3 1.96
3 12 2 0.16
1 10 0 2.56

Total 24 27.60
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The mean catch and associated measures of precision are calculated as follows, using formulae
from Table 3.1.

�
y = – yi

n = 24
15

= 1.6 .

�
s2 = 

(yi – y )2

n – 1

–
= 27.6

15 – 1
= 1.97.

s2
SE(y ) = –

n
= 1.97

15
= 0.36.

Although the sample size is not large (<30), a normal approximation can be used to estimate
approximate 95% confidence limits (CLs).

Lower CL = y– – (t�, n – 1)(SE) = 1.60 – 2.145 · 0.36 = 0.83.
Upper CL = y– + (t�, n – 1)(SE) = 1.60 + 2.145 · 0.36 = 2.37.

This example can also be used to illustrate how to compute estimates of target sample sizes
(equation [3.9]). For example, if we wanted to compute the mean catch with a SE of 0.10, we would
start by guessing a sample size of 60 might be adequate. Using this preliminary guess (which is
needed to get an initial estimate of the t-statistic used in the formula for sample size), we would
estimate that the necessary sample size, to the nearest integer, would be

(1.97)(2.0)2

n = 0.10
~ 79.~

Even though this is different than our initial guess of 60, the actual t-statistic for 79 is 1.990, which
would change our integer estimate of the necessary sample size to only 78.

be estimated by summing the yi and dividing by n (Table 3.2; Box 3.2; Cochran
1977). The proportion of individuals lacking the trait (q) is termed the comple-
ment of p, and is computed as q = 1 – p. As with estimates of the mean for quanti-
tative measurements, the estimate of p is unbiased in simple random sampling, as
long as the attribute is identified correctly for each individual examined. Although
the estimator for the SE of p (Table 3.2; Box 3.2; Cochran 1977) is unbiased, when
p is close to 0 or 1 the distribution around p is skewed because p cannot be less
than 0 or greater than 1. Therefore, we recommend that CLs for p be estimated
from the F-distribution. The lower CL (L1) for p  is (Zar 1999)

L 1 = ,
a + (n – a + 1)F�, v1 , v2

 
a

(3.4)
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Box 3.2 Example of Estimating a Proportion in Simple Random Sampling

One hundred sixteen brown trout were collected at random from a population in a stream with the
goal of estimating the proportion in each age-group. The age of each fish was estimated from
scales to produce the following data.

Table Age distribution of a random sample of 116 brown trout from a stream.

Age n

0 55
1 22
2 10
3 18
4 6
5 3
6 1
7 1

The proportion in each age-class was estimated as follows.

�
p0 = 

yi
n

^ = 55
116

; p1 = ^ 22
116

; p2 = ^ 10
116

; p3 = ^ 18
116

; p4 = ^ 6
116

; p5 = ^ 3
116

; p6 = ^ 1
116

; and p7 = ^ 1
116

.

For example, for age 0 the SE (Table 3.2) and CLs (equations [3.4] and [3.5]) were calculated as follows.

p 0q0SE(p0) = 
n – 1

^
^ ^

= 0.47 · (1 – 0.47)
116 – 1

= 0.047.

Lower CL = a
a + (n – a + 1)F�, v1, v2

55
55 + (116 – 55 + 1)F0.05, 2 ·(116 – 55 + 1), 2 · 55

= = 0.3948.

Upper CL =
(a + 1)F�, v1, v2

n – a + (a + 1)F�, v1, v2

(55 + 1)F0.05, (2 · 55) + 2, 2 · (116 – 55 + 1) – 2

116 – 55 + (55 + 1)F0.05, (2 · 55) + 2, 2 · (116 – 55 + 1) – 2

= = 0.5545.

Estimates of the proportion in each age-class, and appropriate measures of precision, are given in
the table below.

Table Estimates of the proportion of brown trout in each age-class (page) and measures of precision.

Age page SE Lower CL Upper CL

0 0.47 0.047 0.3948 0.5545
1 0.19 0.037 0.1320 0.2596
2 0.09 0.026 0.0475 0.1418
3 0.16 0.034 0.1028 0.2214
4 0.05 0.021 0.0228 0.0995
5 0.03 0.015 0.0071 0.0655
6 0.01 0.009 0.0004 0.0402
7 0.01 0.009 0.0004 0.0402
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where a = �yi ; n = sample size; and the F-statistic is evaluated for the two-tailed
level of �, the numerator df v1 = 2(n – a + 1), and the denominator df v2 = 2a.
Similarly, the upper CL (L2) for p is (Zar 1999)

L 2 = ,
n – a + (a + 1)F�, v1', v2'

(a + 1)F�, v1', v2'
(3.5)

where the F-statistic is evaluated for the two-tailed level of �, the numerator df v1'
= v2 + 2, and the denominator df v2' = v1 – 2 (Box 3.2). The upper and lower CLs
for q are obtained by subtracting the upper and lower CLs for p  from 1.

For attributes in a multiple classification system, the problem can be simplified
by focusing on one class at a time and treating the attribute as a single classifica-
tion variable where the individual either has the attribute or not. The proportion
within any single class and the associated SE is then estimated exactly as for the
single classification situation. Box 3.2 illustrates how to calculate proportions, SEs,
and CLs for a multiple classification system, where any one class of the multiple
classification system can be used to illustrate a single classification variable.

3.2.2.3 Estimation of Ratios

Attributes of fishes or habitats are often expressed as ratios of variables that both
vary among units, which contrasts with proportions that describe the fraction of a
sample that possess a certain attribute, as in section 3.2.2.2. A familiar example is
angler catch per effort where both catch and effort vary among individual an-
glers. Unfortunately, situations in which ratios are estimated are often confused
with situations in which a proportion is being estimated. For example, in diet
studies, the amount of food consumed, by weight, among various prey taxa is
commonly referred to as a proportion but is more appropriate to view as a ratio of
the weight consumed of each prey taxon to the total weight consumed. These
types of data are best treated as a ratio because the weight consumed of each prey
taxon varies among sampling units and the total weight consumed varies among
sampling units.

In simple random sampling, the population ratio (R) is estimated from the
ratio of the sums of the sampled quantities (Box 3.3; Cochran 1977; Lohr 1999):

i = 1

n

� yi
.R = ^

i = 1

n

� xi

(3.6)

For catch per effort data, the numerator of equation (3.6) is the sum of catch
and the denominator is the sum of effort. For diet data, the numerator is the total
weight of one prey taxon and the denominator is the total weight of all prey taxa
(as in Box 3.3). This estimator is biased, but the bias tends toward 0 as the sample
size increases (Cochran 1977). Cochran (1977) showed that the degree of bias
relative to the SE of the estimated ratio can be approximated as
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Box 3.3 Example of Estimating a Ratio in Simple Random Sampling

Twenty yellow perch were randomly sampled from a lake, and weights of zooplankton, benthos,
and fish in each yellow perch stomach were measured. The goal was to determine the ratio of each
prey category to total weight of prey in the diet of the yellow perch population.

Table Ratio of three prey categories to total weight of prey in the diets of 20 yellow perch.
Squared deviations of the observed (y) minus the predicted (R

^
x, where x is the total weight for each

fish and R
^

 is estimated as shown below the table) allows for estimation of population ratios for
each prey category (sums of sampled quantities [y – Rx]2).

Weight in stomach (y – Rx)2

Fish Zoo- Total Zoo-
and total plankton Benthos Fish Weight plankton Benthos Fish

1 0.000 0.000 16.217 16.217 4.257 36.537 65.735
2 0.200 2.501 0.000 2.701 0.021 2.233 1.824
3 0.593 0.054 0.000 0.647 0.261 0.035 0.105
4 0.356 0.741 0.000 1.097 0.047 0.110 0.301
5 0.070 1.112 0.000 1.182 0.006 0.450 0.349
6 0.191 1.734 0.000 1.925 0.003 1.033 0.926
7 0.012 0.022 0.000 0.034 0.000 0.000 0.000
8 0.017 2.822 0.000 2.839 0.119 3.111 2.015
9 0.400 2.796 0.000 3.196 0.000 2.575 2.554
10 0.202 2.154 0.000 2.356 0.010 1.627 1.388
11 0.591 0.559 0.000 1.150 0.198 0.017 0.331
12 0.737 0.902 0.000 1.639 0.280 0.085 0.672
13 0.095 0.098 0.000 0.193 0.005 0.001 0.009
14 0.000 0.000 12.090 12.090 2.366 20.306 36.534
15 0.747 1.913 0.000 2.660 0.167 0.849 1.769
16 0.663 0.600 0.000 1.263 0.253 0.017 0.399
17 0.937 0.354 0.000 1.291 0.598 0.016 0.417
18 0.664 0.213 0.000 0.876 0.305 0.013 0.192
19 0.623 0.448 0.000 1.072 0.237 0.002 0.287
20 0.103 2.077 0.000 2.181 0.030 1.600 1.189

Total 7.202 21.099 28.307 56.608 9.160 70.617 116.997

The ratio (equation [3.6]) and SE (equation [3.8]) of each prey category in the diet is estimated as follows.

i = 1

n

� yi

= 0.127.Rzooplankton = 
^

i = 1

n

� xi

= 7.202
56.608

SE(R zooplankton) = 
^ 1

n x–
� (yi – Rxi)

2

n – 1

^

i = 1

n

= 1
20 · 2.830

9.160
20 – 1

= 0.055.

(Box continues)
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^bias(R)
^SE(R)

= SE(x)
X

–
– , (3.7)

where X
–

, the population mean, generally can be estimated without bias using the
sample mean, x– (see Cochran 1977). Because the SE of x decreases to 0 as sample
size increases, the degree of bias also decreases as sample size increases. This
expression can be easily computed from sample data to determine if bias is large
enough to be problematic. Importantly, a ratio should not be estimated by averag-
ing the ratios for individuals (often termed a mean of ratios) but rather as a ratio
of totals (often termed a ratio of means), because a mean of ratios has a larger
degree of bias than does a ratio of means, and this bias does not diminish as
sample size increases (Cochran 1977). The SE of a ratio is derived from deviations
between the numerator of the ratio (yi s) and the product of the denominator of
the ratio (xi s) and the ratio (R

^
) (Box 3.3; Cochran 1977; Lohr 1999):

.
n – 1

^SE(R) = 1
n x – i = 1

n

� (yi – Rxi)
2^

(3.8)

Confidence limits around the estimated ratio are typically approximated using
the t-distribution, which is reasonable for large sample sizes but may not repre-
sent skewness in the distribution of the estimate for small sample sizes.

Box 3.3 (continued)

i = 1

n

� yi

= 0.373.Rbenthos = 
^

i = 1

n

� xi

= 21.099
56.608

SE(R benthos) = 
^ 1

n x–
� (yi – Rxi)

2

n – 1

^

i = 1

n

= 1
20 · 2.830

70.617
20 – 1

= 0.152.

i = 1

n

� yi

= 0.500.Rfish = 
^

i = 1

n

� xi

= 28.307
56.608

SE(R fish) = 
^ 1

n x–
� (yi – Rxi)

2

n – 1

^

i = 1

n

= 1
20 · 2.830

116.997
20 – 1

= 0.196.



Sampling and Experimental Design 67

3.2.2.4 Estimation of Sample Size

The sample size required to estimate the population mean (for example) can be
derived for simple random sampling from knowledge of the variance of the yi in
the population when the desired degree of precision is specified. Various strate-
gies have been developed to simplify the process of estimating sample size re-
quirements (Wilde and Fisher 1996), but ultimately the investigator must specify
expectations for the outcome of sampling and acceptable levels of precision in
estimates. Precision can be expressed on an absolute scale (e.g., ± 10 mm) or on
a relative scale (e.g., ± 8% of the mean). When desired precision is expressed in
absolute terms (�), the sample size needed (n; ignoring the finite population
correction factor) can be estimated as (Cochran 1977):

n  = ,
�2

s2t 2
n – 1 (3.9)

where s2 is estimated from a pilot study or prior experience with similar situations
and the t-statistic is defined for a given � level from a statistical table or spread-
sheet function. Because tn – 1 depends on the sample size, the estimate of n must
be solved by trial and error. In practice, the first guess does not need to be close to
the true value, and only two or three iterations are necessary to obtain the solu-
tion because the t-statistic does not vary greatly with n.

When the desired precision is expressed in relative terms (r), an estimate of
the mean must also be included. As above, a preliminary estimate of the mean
can be obtained by a pilot study or prior experience, and sample size can be
estimated as

n  = .
ry

t n – 1s
–

2( ) (3.10)

The sample size that is necessary for specified precision for proportions is analo-
gous to that for a mean value (Cochran 1977):

n  = ,
�2

s2t 2
n – 1 (3.11)

where the variance is estimated as the product of p and q and the investigator
specifies the absolute error (�).

3.2.3 Stratified Random Sampling

Stratified random sampling performs as well or better than simple random sam-
pling in nearly all cases and results in substantial improvement in precision when
variation within the strata is less than variation among the strata. In stratified
random sampling, the total sample frame containing N sample units is divided
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into L subpopulations or strata, each containing Nh sample units. Within each
stratum, a simple random sample of nh sample units is drawn independently. For
example, in Figure 3.2 a lake with N sample grids is divided into two depth strata
(L = deep and shallow) with Nh sample grids in each stratum, and nh sample grids
are then sampled from within each stratum.

An estimate for the whole population is obtained by weighting estimates from
each stratum y–h by the fraction of the whole population contained in each stratum
(Wh = Nh /N). Stratified random sampling is advantageous over simple random
sampling because sampling can be allocated disproportionately among strata to
ensure adequate precision can be obtained for subpopulations represented by
strata. Stratified random sampling requires that the entire sampling frame be
divided into strata before sampling begins, so it should not be applied to situa-
tions where the strata are defined a posteriori.

3.2.3.1 Construction of Strata

To be most efficient, the strata means should differ widely from one another, so
that variability between strata is large and variability within each stratum is small.
However, the data necessary to specify strata that best partition the variability in
the population would require the investigator to complete the survey. Consequently,
other features that are readily obtainable and are correlated to the attribute of
interest are often used to construct strata. For example, when sampling fish, we
often assume that fish associate themselves with habitat conditions (such as water
depth), and we construct strata that coincide with habitat boundaries (as in Fig-
ure 3.2). Therefore, prior information about the attribute of interest can be used
to construct strata whenever available.

How many strata to develop is also a difficult question to answer. The number of
strata that can be sampled is obviously limited by the sample size (L < n), but a
minimum of at least two sample units must be sampled per stratum to allow calcula-
tion of the within-stratum variance. In our experience, the number of strata should
depend on the quality and amount of available information, so you should use few
strata when prior information is not available and more strata when better prior
information is available. The sample size within each stratum should be large enough
(e.g., at least 10) to provide reasonable estimates for each subpopulation.

3.2.3.2 Estimation of Mean Values

The mean value for a stratified random sample is estimated from the mean values
within the strata, weighted by the fraction of the entire population of sample
units in each stratum (Table 3.1; Box 3.4; Cochran 1977). Stratum means are
estimated as described for a simple random sample (section 3.2.2.1), and each
stratum mean is weighted (Wh) by the number of units in the stratum sample (Nh)
divided by the total number of units in the population (N). The SE of the mean
value for a stratified random sample is a weighted sum of the variances of the
mean values for the individual strata (Table 3.1; Box 3.4; Cochran 1977). As in
simple random sampling, estimates of the stratified mean and its SE are unbiased.
Likewise, estimating CLs on the mean requires an assumption regarding the
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Box 3.4 Example of Stratified Random Sampling

A grid was superimposed on the map of a shallow lake, and all grid cells were classified as being in
one of three depth strata (0–2 m, 2–4 m, >4 m). Ten grid cells were sampled in each depth stratum,
and at each site the catch of age-0 yellow perch in a throw trap (assumed to be equally efficient at
all sites in the lake) was recorded. The goal of the sampling program was to estimate the mean
density of age-0 yellow perch.

Table Catch of age-0 yellow perch at three depth strata within a shallow lake. Variance in
parentheses below mean.

0–2-m stratum 2–4-m stratum >4-m stratum

Catch and Catch and Catch and
mean (Catch – mean)2 mean (Catch – mean)2 mean (Catch – mean)2

0 2.89 4 1.21 7 1.69
2 0.09 2 0.81 5 0.49
2 0.09 3 0.01 7 1.69
2 0.09 5 4.41 7 1.69
3 1.69 2 0.81 5 0.49
1 0.49 4 1.21 5 0.49
3 1.69 1 3.61 7 1.69
2 0.09 3 0.01 6 0.09
2 0.09 2 0.81 3 7.29
0 2.89 3 0.01 5 0.49

1.7 (1.122) 2.9 (1.433) 5.7 (1.789)

Within each stratum, the mean catch and variance were computed using formulae for a simple
random sample (Table 1; Box 3.1 example). The lake contained 320 grid cells, which included 172 in
the 0–2-m stratum, 80 in the 2–4-m stratum, and 68 in the > 4-m stratum, so the weight for each
stratum (Wh) was

Wh
Nh

N
= .

W0–2
N0–2

N
= 0.5375.= 172

320
=

W2–4
N2–4

N
= 0.250.= 80

320
=

W>4
N>4

N
= 0.2125.= 68

320
=

The stratified mean catch was

Wh�
h = 1

L

yh  –y = – = (0.5375 · 1.7) + (0.2500 · 2.9) + (0.2125 · 5.7) = 2.85.

The SE of the stratified mean catch per effort was

SE(y ) = – W 2
hs 2

h
nh

�
h = 1

L

= 0.53752 · 1.122
10( ) + 0.25002 · 1.433

10( ) +
0.21252 · 1.789

10( ) = 0.222.

Approximate 95% confidence intervals can be computed (assuming normality) using the same
approach as for simple random sampling (Box 3.1).
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sampling distribution of the stratified mean. If the stratum means are normally
distributed, the t-distribution can be used to estimate CLs. In most situations, the
degrees of freedom are calculated as the total sample size minus the number of
strata. However, Satterthwaite (1946) showed that the effective number of de-
grees of freedom should be reduced when allocation of sampling effort is not
proportional to the weight for each stratum (when nh/n is not equal to Nh/N). If
the finite population correction term is ignored, the effective number of degrees
of freedom can be estimated by (derived from Cochran 1977)

�
sh

2

Wh .df = 

2( )
�

sh
4

Wh(nh – 1)
(3.12)

3.2.3.3 Allocation of Samples within Strata

An important feature of stratified random sampling is that estimates of the mean
are unbiased, regardless of the distribution of the target population and regard-
less of the sampling effort allocated to each stratum (assuming that at least one
sample is taken per stratum). Because of this property, estimates of the stratified
mean in different periods are directly comparable if the sampling allocation is
altered, or even if the strata boundaries are altered (assuming that the sampling
frame remains the same). Sampling effort is often allocated to each stratum pro-
portionally to the weight for each stratum (nh = Wh × n). Although this generally
results in higher precision than simple random sampling, the sampling effort can
be allocated to minimize the variance of the resulting estimate. Three general
rules have been developed to guide the allocation of sampling effort to minimize
the SE of the stratified mean. Using these rules, greater sampling effort should be
allocated to strata where (1) the stratum is larger, (2) the stratum has a larger
variance, or (3) sampling cost per unit is less expensive in the stratum. If the cost
per sample ch varies among strata, then the optimal allocation of sampling effort is
(Cochran 1977; Lohr 1999)

Nhsh

,nh = n 

h = 1

H

�
Nhsh( )

ch

ch
(3.13)

where n is the total sample size, Nh is the total number of units in stratum h, sh is
the standard deviation (SD) in stratum h, and ch is the cost per sample in stratum
h. If the cost per sample is the same in all strata, the optimal allocation, termed
the Neyman allocation, is (Cochran 1977)

Nhsh .nh = n 

h = 1

H

�Nhsh( ) (3.14)



Sampling and Experimental Design 71

If variances are specified correctly, the Neyman allocation will always give esti-
mates with smaller SEs than will proportional allocation because larger samples
will be drawn from strata with larger variance (sh in equations [3.13] and [3.14]),
thereby reducing the SEs of the stratum means (SEy–h in Table 3.1), which are
inversely related to sample size.

3.2.3.4 Estimation of Proportions

Estimates of the proportion of sampling units in a population that fall into a de-
fined class are computed much like the stratified mean. Essentially, the proportion
is estimated for each stratum using the formula for a simple random sample and
the stratum-specific proportions are combined using the stratum weights (Table
3.2; Cochran 1977). Similarly, the SE of the estimate for the proportion in the en-
tire population is a weighted sum of the individual stratum variances (Table 3.2).

3.2.4 Cluster Sampling

In cluster sampling, the population is divided into primary sampling units (clus-
ters) and secondary sampling units (elements). In an example of sampling fish,
the secondary sampling units are individual fish and the primary sampling units
are groups of fish as might be caught together in a net (Figure 3.2). In an ex-
ample of sampling grid locations, the secondary sampling units are the individual
grid locations and the primary sampling units are blocks of four grid locations
(Figure 3.2). In cluster sampling, the primary units are selected independently at
random, which in the fish example may be thought of as having randomly se-
lected netting locations. Cluster sampling is single stage if each element (e.g.,
individual fish) in each cluster (e.g., net) is included in the sample and two stage
if only a subsample of each element from each cluster is included in the sample
(e.g., individual fish are subsampled from each net). Cluster sampling is distin-
guished from other designs in that the primary units are sampled independently
but the secondary units are potentially correlated. Put another way, fish caught in
a net may not be independent because they may be more similar to each other
than to randomly selected fish from the entire population.

Cluster sampling is commonly used when the sampling frame is difficult or
impossible to construct or the sampling process naturally results in clusters of
secondary units. For example, when fish are collected with nets set at random
points on a grid (as described in Box 3.1), the net is the primary sampling unit,
and the individual fish collected are secondary units. Although catch per net (in
numbers or weight) is appropriately treated as coming from a simple random
sampling design, the mean weight of fish estimated from this sampling design
should be treated as a cluster sample because individual fish within a net may not
be sampled independently.

In practice, cluster sampling often results in a situation in which individual
elements within each cluster are similar and differences in the means are larger
among clusters than within clusters. In the above example, a truly random sample
of individual fish in a lake would be very difficult to obtain because trying to
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collect one fish at a time would be very inefficient and would likely lead to a much
smaller sample size than would using nets that can capture multiple fish. In this
case, redundant information is provided by each fish measured (because of their
similarity or correlation), and the precision of the overall mean is reduced rela-
tive to a simple random sample with the same sample size. Although this seems
like a poor sampling strategy relative to simple random sampling, the advantage
of cluster sampling design is that sampling is often less expensive and a substan-
tially greater sample size can be obtained.

3.2.4.1 Single-Stage Cluster Sampling

In cluster sampling, estimates of several different quantities can be obtained (Box
3.5). For example, when individual fish caught in randomly placed nets are counted
and weighed, estimates of the mean number of fish caught per net can be ob-
tained by the usual estimator for simple random sampling. In addition, the mean
total weight of fish caught per net can be estimated, but this quantity is an ex-
ample of a cluster total. Cluster totals are sometimes interpretable statistics (such
as presented here) but in other cases are hard to visualize or interpret. If, for
example, the lengths of individual fish were measured instead of weight, the clus-
ter total would represent the total length of all the fish caught, a statistic that is of
little use. When the statistic of interest focuses on cluster totals, single-stage clus-
ter sampling reduces to a simple random sample for which each cluster total is
treated as a single observation.

The mean weight (or length) of individual fish is an example of the mean per
secondary unit, which is another statistic that can be computed in cluster sam-
pling. A further complication of single-stage cluster sampling is that simpler for-
mulae may be used when the clusters are of equal size (i.e., the number of second-
ary units is equal in all clusters) than when the clusters are of unequal size. In
most fisheries applications, clusters are of unequal size, so we will emphasize the
formulae relevant to such situations.

3.2.4.2 Estimation of the Mean per Secondary Unit

As indicated above, the process for estimating mean cluster totals follows simple
random sampling (Box 3.5). Estimating the mean per secondary unit, such as
the mean weight of individual fish, is conceptually related to stratified random
sampling because the mean for each cluster is weighted by the number of sec-
ondary units in each cluster. The principal difference, however, is that all strata
are sampled in stratified random sampling, whereas only a sample of all clusters
is selected in cluster sampling. Estimating the mean per secondary unit is also
related to ratio estimation because cluster totals and numbers of elements (sec-
ondary units) in each cluster are both random variables, and estimation of the
mean per secondary unit naturally uses the number of elements (secondary units)
as a divisor (Table 3.1). The mean per secondary unit is simply the sum of clus-
ter totals divided by the total number of secondary units (Table 3.1). Estimating
the SE is similar to the procedure for estimating the SE of a ratio, where each
cluster total is the y variable and the number of secondary elements in each
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(Box continues)

Box 3.5 Example of Cluster Sampling

Five throw nets were deployed at random locations along the shoreline of a lake to collect age-0
bluegill. Greater sampling effort would usually be required, but data from these five nets are used
to illustrate the procedure. The weight (g) of each of the age-0 bluegill was measured. The goal of
sampling was to estimate the mean biomass of age-0 bluegill per net, the mean catch per net, and
the mean weight of individual age-0 bluegill.

Table Catch per net and weight per individual of age-0 bluegill caught in five throw nets. Mean
fish weight is given by for which computations are shown below table.

Measure and
summary statistic Net 1 Net 2 Net 3 Net 4 Net 5

Catch (Mi ) 10 5 7 0 3

Weight (g) 0.495 0.319 0.514 0.610
0.391 0.419 0.497 0.572
0.274 0.503 0.374 0.681
0.470 0.451 0.457
0.309 0.491 0.388
0.369 0.521
0.381 0.539
0.308
0.420
0.326

Cluster total (yi ) 3.743 2.183 3.290 0 1.863
(yi  – R

^
Mi )2 0.47197 0.00102 0.03572 0 0.28516

Mean weight per
fish per net 0.374 0.437 0.470 0.621

The mean catch per net is

M
–

 = (10 + 5 + 7 + 0 + 3)/5 = 5.0 fish.

The mean cluster total (mean biomass per net) is

y–i = (3.743 + 2.183 + 3.290 + 0 + 1.863)/5 = 2.216 g.

The mean weight per fish, the SE of the mean, and the CLs are

= 3.743 + 2.183 + 3.290 + 0 + 1.863
10 + 5 + 7 + 0 + 3

= 0.443;
�

(R ) = 
yi^

�Mi

Mean fish weight = 

SE(R ) = 
^ 1

n M
–

� (yi – RMi)
2

n – 1

^

= 1
5 · 5

0.47197 + 0.00102 + 0.03572 + 0 + 0.28516
5 – 1

= 0.040;

Lower CL = R – t�, n – 1SE(R ) = 0.443 –2.776 · 0.040 = 0.332; and

Upper CL = R + t�, n – 1SE(R ) = 0.443 + 2.776 · 0.040 = 0.554.

^ ^

^ ^
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Box 3.5 (continued)

Now, instead of treating the data as a single-stage cluster sample, consider the situation where the
same number of fish per net are weighed but 48 fish are caught in Net 1 and 20 fish are caught in Net
3, thereby leading to a two-stage cluster sample with different numbers of fish caught in each net.

Table Catch per net and weight per individual of age-0 bluegill in five throw nets. Computation of
the mean weight per secondary unit (y=) is given below table.

Measure and
summary statistic Net 1 Net 2 Net 3 Net 4 Net 5

Catch (Mi ) 48 5 20 0 3

Weight (g) 0.495 0.319 0.514 0.610
0.391 0.419 0.497 0.572
0.274 0.503 0.374 0.681
0.470 0.451 0.457
0.309 0.491 0.388
0.369 0.521
0.381 0.539
0.308
0.420
0.326

Estimated cluster
total (y^i ) 17.966 2.183 9.400 0 1.863

Mean weight per fish
per net (y–i ) 0.374 0.437 0.470 0.621

Mi
2 (y–i  – y=)2 3.5044 0.0144 1.2996 0.0000 0.3894

The mean per secondary unit (mean fish weight) is

� yi

�Mi

^

y = –– 17.966 + 2.183 + 9.400 + 0 + 1.863
48 + 5 + 20 + 0 + 3

= 0.413.=

The SE of the mean per secondary unit is approximated by

Mi
2( yi – y )2

nM2(n – 1)

–�
i = 1

n ––

SE(y ) = –– – = 3.5044 + 0.0144 + 1.2996 + 0 + 0.3894
5 · 152 · (5 – 1)

= 0.034.

cluster is the x variable (Table 3.1). Confidence intervals are obtained as in esti-
mating ratios using the t-distribution.

3.2.4.3 Two-Stage Cluster Sampling

In two-stage cluster sampling, a simple random sample of n clusters is selected and
then a simple random sample of the elements (secondary units) is subsampled
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from within each sampled cluster. In our example of fish in nets (Figure 3.2), the
secondary sampling units (fish) are subsampled from the primary sampling units
(nets). This differs from single-state cluster sampling, where secondary sampling
units are all sampled completely rather than subsampled. Two levels of sampling
are employed, so means and variances at two levels are defined. First, the mean
per secondary unit within the ith cluster is estimated as in Table 3.1 (Box 3.5;
Cochran 1977), where yij is the measured value for the jth element in the ith
cluster and m is the number of elements sampled within each cluster (which has
Mi secondary units). From this, the total for each cluster and the mean cluster
total are estimated as in Table 3.1 (Box 3.5; Cochran 1977). From the estimated
cluster totals, the overall mean per secondary unit is estimated as in Table 3.1
(Box 3.5; Cochran 1977). The variance of the overall mean includes two compo-
nents that represent the variation between clusters and the variation due to
subsampling within clusters. When the number of clusters sampled is small rela-
tive to the number of clusters in the population, the SE of the mean per second-
ary unit can be approximated as in Table 3.1 (Cochran 1977).

3.2.5 Systematic Sampling

In systematic sampling, all sampling units in the population are arranged in a
sequence, and then from a random starting point every kth sampling unit is in-
cluded in the sample. Systematic sampling is often used for ease of execution and
convenience. Also, systematic samples are usually spread more evenly over the
population, so population attributes may be estimated more precisely than with
simple random sampling. However, a major difficulty with systematic sampling
based on a single starting point is that the variance and SE of the estimates cannot
be directly determined. This occurs because systematic sampling with a single
starting point is equivalent to cluster sampling with just one cluster being sampled
(the samples are not independent). One way of alleviating this problem is to take
a systematic sample with two or more randomly selected starting points. For ex-
ample, a lake could be divided into grids and several rows of grids could be ran-
domly selected as starting points of evenly spaced grids (Figure 3.2). When sys-
tematic sampling is implemented with multiple starting points, the formulae for
single-stage cluster sampling apply, with each group of observations associated
with each start point treated as a cluster.

Systematic sampling with a single starting point should be avoided whenever
sample units are ordered in a linear or nonlinear pattern. Under such circum-
stances, stratified random sampling produces more precise estimates because strata
can be constructed to account for the pattern in the sample units and thereby
reduce within-stratum variance that would not be accounted for by systematic
sampling (Cochran 1977). Therefore, the choice of systematic sampling versus
simple random sampling or stratified random sampling needs to be judged on a
case-by-case basis.

The mean value for a single-starting-point systematic sample is estimated in the
same way as for a simple random sample (Table 3.1), that is, as the sum of the
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observations divided by the number of observations. Assuming that the sampling
fraction is relatively small, estimates of the mean using systematic sampling are
unbiased, for the same reason that estimates of the mean using simple random
sampling are unbiased (section 3.2.2.1). A small amount of bias may occur when
the sampling fraction is large, if the number of sampling units in the population
(N) is not evenly divisible by the sample size (n) because some units would have a
lower probability of being included in a sample than would others. When mul-
tiple starting points are used, the mean is estimated as it would be for a single-
stage cluster sample (Table 3.1) and is also unbiased if the sampling fraction is
relatively small.

Several methods have been developed for approximating the SE for a system-
atic sample with a single starting point, but we do not recommend their use be-
cause they can lead to strongly biased estimates of the SE (Cochran 1977). With
two or more starting points, valid estimates of the SE of the mean can be obtained
using a single-stage cluster sampling approach (Box 3.6).

3.2.6 Model-Based Estimators

All of the designs we have discussed to this point have focused on sampling a
single variable or attribute of interest. Further, all of the designs, when properly
implemented, are designed to be unbiased for estimating the mean and propor-
tions. However, in many fisheries investigations, several variables are of interest.
Further, relationships among the variables measured provide an opportunity to
extract more information than is provided by each variable alone. A familiar ex-
ample is sampling fish when length and weight are both measured on a subset of
fish collected and only length is collected on the remaining fish. Because the two
are related, we can infer the weight of fish where only length data are collected.
This situation is an example of a model-based design.

Model-based designs are limitless in their variations, given the number of vari-
ables that can be measured and the number of relationships among variables that
might be considered. This being the case, we will describe a model-based design
that illustrates a commonly used approach. The key advantage of model-based
designs is that the additional information contained in auxiliary variables can
substantially improve precision of estimates. Improvements in precision, however,
come at the cost of losing the property of being design unbiased. When choosing
models (such as a linear regression) to represent a relationship among variables,
the right model is often uncertain. Thus, if the wrong model is chosen, estimates
of the mean or proportion can be biased. This is not to say that such an approach
is necessarily worse than using a sampling design that is design unbiased. In some
situations, the gains in precision may more than offset the bias introduced by
having the wrong model. As indicated earlier, precision is appropriately expressed
as mean square error (MSE) when bias is present. From equation (3.1), an estima-
tor that reduces the variance component faster than the bias2 term produces esti-
mates with a smaller MSE. In addition, the concept of MSE applies to situations
that are unbiased, but the bias term drops out (being equal to zero).
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Regression or double sampling. A commonly used model-based approach is regres-
sion sampling, sometimes referred to as double sampling. In this method, a sample
is collected where the auxiliary variable (xi = independent variable) is measured
on all units. A subsample is then selected where the variable of interest (yi = de-
pendent variable) is also collected. A linear regression between the two variables
is formed, and the regression is used to incorporate the information contained in
the auxiliary variable into the estimate of the mean for the variable of interest.
Typically, this approach is implemented when the auxiliary variable is much less
expensive to measure than is the variable of interest, thereby allowing for a greater
sample size. An example of this situation is that visual estimates of stream width
can be collected much more rapidly (and hence, less expensively) than can actual

Box 3.6 Example of Systematic Sampling with Two Starting Points

The width of a stream was measured at sampling locations arranged every 20 m from two random
starting points, with 15 points sampled for each random starting point.

Table Stream width measurements based on systematic sampling with two starting points.

Starting point 1 Starting point 2

Distance upstream Width Distance upstream Width
(m) (m) (m) (m)

3 6.1 4 10.3
23 11.4 24 6.5
43 13.7 44 9.0
63 11.3 64 7.6
83 11.7 84 6.3

103 13.3 104 12.0
123 12.1 124 6.2
143 11.5 144 13.1
163 6.4 164 10.2
183 34.8 184 26.5
203 31.7 204 32.1
223 27.2 224 28.6
243 26.7 244 29.2
263 24.1 264 33.5
283 10.1 284 6.0

The estimated mean width and its associated SE are

= 6.1 + 11.4 + 13.7 + . . . + 33.5 + 6.0
15 + 15

= 16.31, and
�

(R ) = 
yi^

�Mi

Mean width = 

SE(R ) = 
^ 1

n M
–

� (yi – RMi)
2

n – 1

^

= 1
2 · 15

56.347 + 56.347
2 – 1

= 0.50.

489.2
30

=
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measurements of stream width. Thus, the precision of estimates of the mean width
of a stream may be improved by taking many visual estimates of stream width
while measuring only a subsample of sites to provide a calibration, via linear re-
gression, between measured and visually estimated stream width (Box 3.7). An-
other example is that the percent water content of fish tissue is easily determined
by weighing, drying, and reweighing the tissue and provides a reasonable predic-
tor of the fat content of the tissue (Hartman and Brandt 1995). Fat content is
often determined on dry tissues and requires time-consuming extraction by use
of solvents in sophisticated equipment. Thus, the mean fat content may be esti-
mated by collecting many measurements on percent water content and only a few
concurrent measurements of actual fat content.

An important assumption of this method is that a linear relationship exists
between the two variables. If this assumption does not hold, estimates of the mean
can be biased, thereby offsetting any gain in precision. Another important consid-
eration is that the value of the yi for sampling units (e.g., stream width at a particu-
lar location or individual fish for fat content), where only the auxiliary (xi = inde-
pendent) variable is measured, can be estimated with the regression equation.
Therefore, the precision of individual sample units may be relatively poor be-
cause the prediction does not match the value that would be obtained by direct
measurement. However, the precision of the estimated population mean will usu-
ally be increased because of increased sample size. This general principal of sam-
pling reflects the fact that the SE of the mean is inversely related to the sample
size; that is, an increased sample size reduces the SE of the mean, which increases
precision of the estimated mean.

The formula for estimating the mean using a double-sampling approach is
given in Table 3.1, and an example of the application of this method is given in
Box 3.7. This example only brushes the surface of the diversity of applications of
model-based designs. For a more in-depth treatment see Draper and Smith (1981)
for linear regression models and Seber and Wild (1989) and Bates and Watts
(1988) for nonlinear regression models.

3.2.7 Advanced Designs

The designs we describe and illustrate above are intended to provide a basis for the
appropriate design and analysis of sampling programs. These relatively simple de-
signs provide useful approaches in many situations, and are sufficient for many of the
questions posed by fisheries scientists. For more complex situations, these designs can
be combined and adapted to suit the needs of the investigator. Many other designs
have been developed for specialized situations (e.g., hydroacoustic surveys). Thomp-
son (1992) covers additional designs. One extension to normal sampling designs
we would like to highlight are adaptive designs. In adaptive designs, additional
sampling is concentrated near sampling points where something interesting hap-
pens. For example, in surveys trying to estimate the density of rare species, addi-
tional sampling can be concentrated near sampling locations where the rare spe-
cies is found. Adaptive designs can provide improved precision of density estimates
and also have the advantage that more specimens can be collected for length,
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Box 3.7 Example of Regression or Double Sampling

The percent of coverage by woody material was visually (Table, column 2) estimated at 25 randomly
selected points along a stream (Table, column 1), and the actual amount of woody material
coverage was measured at 10 of these points (Table, column 3), with the goal of estimating mean
woody material coverage for this reach. The regression between the visually estimated coverage
and the measured coverage gave the following equation:

Measured coverage = 7.2937 + 1.0357(estimated coverage).

Table Measurement and visual estimation of percent of woody material coverage along a stream.

Woody cover (%)

Stream Visually
location estimated Measured
and mean (xi ) (yi) (y – y–)2 (y – y–)(x – x–) (x – x–)2

1 30 34 29.16 5.4 1
2 40 52 158.76 113.4 81
3 60 66 707.56 771.4 841
4 20 26 179.56 147.4 121
5 20 21 338.56 202.4 121
6 20 25 207.36 158.4 121
7 30 38 1.96 1.4 1
8 0 14 645.16 787.4 961
9 40 54 213.16 131.4 81
10 50 64 605.16 467.4 361
11 40
12 70
13 80
14 20
15 50
16 80
17 50
18 20
19 80
20 80
21 40
22 90
23 30
24 40
25 40

The estimated mean coverage using double sampling is

y–reg = y– + b(X
–

 – x–) = 39.4 + 1.0357 · (44.8 – 31.0) = 53.69,

where x– = the mean of visual estimates for the 10 subsampled stream locations, y– = the mean of
measured values for the 10 subsampled stream locations, and X

–
 = the mean of visual estimates for

all 25 stream locations.

The SE of this estimate is

�
SE( yreg) = 

(yi – y )(xi – x )2

n(n – 2)

– –[ ]
�(xi – x )2–� (yi – y )2 ––{ }1– = [2786]

2690{ }1
10(10 – 2)

3086.4 – = 1.58.
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age, or other biological variables. Because sampling is concentrated near hot spots,
the additional samples are not independent of the original sampling locations, and
specialized formulae must be used to reduce or remove biases that would occur if
the data were treated as coming from a sample of independent observations.

■ 3.3 EXPERIMENTAL DESIGNS

Developing an adequate design to an experiment is perhaps the trickiest and
most difficult task that a fisheries scientist faces. Fisheries scientists must balance
the need to control the experiment to understand better the results with the
need to assure that the design is relevant to natural systems (Yandell 1997). Many
experimental designs used by fisheries scientists come from disciplines such as
agriculture, where experiments are easier to develop and factors are easier to
manipulate. By necessity, fisheries scientists often rely on experimental units, such
as lakes or fish, over which they have little control. Lack of control over experi-
mental units is an important reason why developing a sound experimental design
and analysis is critical to the success of any fisheries experiment.

The first step in designing an experiment is to develop a clear statement of
objectives for the experiment (Cochran and Cox 1957; Yandell 1997). This step
should include the questions that are being asked in the experiment or the hy-
potheses being tested. In the first section of this chapter, we focused on sampling
designs for which the goal is generally to describe the attributes of a population.
When an experiment is conducted, the goal is often to answer questions focusing
on the response to a treatment or to determine the influence of natural or an-
thropogenic factors. Questions should be clearly focused and reasonably answered.
For example, the question, Are more large largemouth bass present after an in-
crease in the minimum length limit? is too vague to be answered through an
experiment. A clearer way to phrase the question is, Did the population density of
largemouth bass longer than 35 cm increase in lakes where the minimum length
limit was increased from 25 cm to 35 cm? The second question is more specific
than the first and helps to determine how the experiment should be designed.
The second question can now be turned into a testable statistical hypothesis. Hy-
pothesis testing is the formal approach that is used to assess whether evidence
supports your question. Hypotheses are set up in two competing claims, the null
hypothesis (H0) and the alternative hypothesis (Ha). The statistical test is set up
either to support or not to support the null hypothesis (see Chapter 1). In our
example, we could formulate the null hypothesis as the number of largemouth
bass longer than 35 cm is the same in lakes with the increased size limit and in
lakes with no change in the size limit. The alternative hypothesis is then the num-
ber of largemouth bass longer than 35 cm is not the same in lakes with the in-
creased size limit and in lakes with no change in the size limit. Remember the
statistical test is set up to support or not support the null hypothesis, so we can
either fail to reject or reject that the number of largemouth bass greater than 35
cm differs in lakes with and without the size limit. However, we cannot conclude
that the alternative hypothesis is true.
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After specifying the research question, the experiment should be described in
terms of experimental units, units being sampled (subsamples being taken from
each experimental unit), number and type of treatments, number of replicates
per treatment, and target population (Cochran and Cox 1957; Brown and Austen
1996). For the largemouth bass question in the previous paragraph, the experi-
mental units are lakes and the treatment is a regulation change. To complete the
study design, the fishery scientist would need to specify a population of lakes that
would be subjected to the regulation change, to select randomly a sample of lakes
for study (lakes = replicates), and to choose a sampling plan with an appropriate
gear for capturing largemouth bass longer than 35 cm. To differentiate effects of
the regulation change from background variation, sampling would also need to
begin before implementing the rule change (temporal controls) and need to
include a sample of lakes on which the regulation change was not implemented
(spatial controls). Finally, a well-designed experiment should also have an outline
of the method of analysis to be applied to the data after the experiment is com-
pleted (Cochran and Cox 1957). Methods of analysis for experimental designs
are provided in box examples below.

3.3.1 Completely Randomized Design

A completely randomized design is a design in which treatments are applied to
the experimental units completely at random, so that each experimental unit
has an equal probability of being selected for each treatment (Figure 3.3; Cochran
and Cox 1957). For example, we may want to determine how different creel
limits affect angler catch rates for walleye in Wisconsin lakes (Box 3.8). In this
example, the statistical population being considered includes lakes in Wiscon-
sin that contain walleye, and the experimental unit is an individual lake. Al-
though angler catch rates are determined through a creel survey program (thus
constituting a subsample of all anglers), we will treat catch rates as a single ob-
servation per lake. In this example, we decided a priori that we were interested
only in one factor (i.e., bag limits) and we were interested in three levels of this
factor: bag limits of one, two, or five walleye per day. The experiment was de-
signed to have six replicates, seven replicates, and nine replicates for the one,
two, and five walleye bag limit treatment, respectively, for a total of 22 lakes in
the experiment. Each lake was assigned a treatment level at random, complet-
ing the experimental design.

As with simple random sampling designs described earlier, completely random-
ized designs provide a basic standard against which to compare other designs.
Completely randomized designs have the advantage of allowing complete flexibil-
ity in the number of treatments and replicates allowed for the experiment (Cochran
and Cox 1957). Further, statistical analysis is relatively easy regardless of the num-
ber of replicates and treatments (Cochran and Cox 1957). This holds true even
when treatments or data are missing in the experiment (Cochran and Cox 1957),
a common problem with large-scale field experiments. Finally, completely ran-
domized designs have the advantage of maximizing the degrees of freedom for
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Figure 3.3 Examples of three experimental designs for testing how fish populations in lakes
(circles) in a landscape (rectangles) respond to the application of three different daily bag limits
in an angling fishery.

Randomly selected for bag limit of 1 walleye/day

Randomly selected for bag limit of 2 walleye/day

Randomly selected for bag limit of 5 walleye/day

Completely randomized design

Randomly selected for bag limit of 1 walleye/day

Randomly selected for bag limit of 2 walleye/day

Randomly selected for bag limit of 5 walleye/day

Randomized block design

Randomly selected for bag limit of 1 walleye/day

Randomly selected for bag limit of 2 walleye/day

Randomly selected for bag limit of 5 walleye/day

Random-effect block design
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Box 3.8 Example of a Completely Randomized Design

The goal of this study was to determine if walleye catch rates differed among Wisconsin lakes with
different daily bag limits (Beard et al. 2003). From the thousands of lakes in Wisconsin with walleye
populations, six lakes were randomly chosen to have a bag limit of one walleye per day, seven lakes
were randomly chosen to have a bag limit of two walleye per day, and nine lakes were randomly
chosen to have a bag limit of five walleye per day. For this analysis, the designation of North or
South was ignored. A fixed-effects general linear model (GLM, implemented in SAS; SAS 2005) was
used for the analysis of these data.

Program

* This data step reads the following information into a data set named

walleye;

data walleye;

input lake $ region $ bag_limit catch;

cards;

Willow North 1 2.21

Mud North 1 2.32

Pine North 1 2.74

Bass North 2 2.23

Perch North 2 2.25

Twin North 2 1.40

Park North 2 2.36

Mendota North 5 1.78

Silver North 5 1.64

Manistee North 5 1.97

Fox North 5 1.99

McGee South 1 2.70

Deep South 1 3.63

Round South 1 2.82

Long South 2 3.09

Portage South 2 3.63

Indian South 2 2.82

Wolf South 5 2.20

Gull South 5 1.74

Black South 5 2.85

Goose South 5 3.01

Fletcher South 5 1.72

;

run;

*These statements call the GLM procedure in SAS, declaring the variable

bag_limit to be a categorical variable, and catch to be the continuous re-

sponse variable. The lsmeans statement requests least-squares means and

standard errors of catch for each level of bag_limit;

proc glm;

class bag_limit;

model catch=bag_limit;

lsmeans bag_limit/stderr;

run;

(Box continues)
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Results and Interpretation

Table Results of the GLM procedure in SAS for the dependent variable catch of walleye in 22 lakes
with three different bag limits. Abbreviations are given for coefficient of variation (CV), mean
square error (MSE), sum of squares (SS), and least-squares means (LSMEAN).

Source df SS Mean square F-value P > F

Model 2 1.62317576 0.81158788 2.43 0.1153
Error 19 6.35613333 0.33453333
Corrected total 21 7.97930909

R2 0.203423 Root MSE 0.578389
CV 23.96337 Catch mean 2.413636

Source df Type I SS Mean square F-value P > F

Bag limit 2 1.62317576 0.81158788 2.43 0.1153

Source df Type III SS Mean square F-value P > F

Bag limit 2 1.62317576 0.81158788 2.43 0.1153

Least-Squares Means

Bag limit Catch LSMEAN SE P > |t|

1 2.73666667 0.23612614 <0.0001
2 2.54000000 0.21861033 <0.0001
5 2.10000000 0.19279619 <0.0001

The results of the analysis indicate that the daily bag limit had little effect on walleye catch rate.
Although the point estimates of mean catch rate (catch LSMEAN) differ somewhat among bag
limits, the differences were not greater than would be expected by random chance. The F-value for
the entire experiment was 2.43 and the resulting P-value was 0.1153, which is greater than the 0.05
alpha value commonly used when testing for significant differences among means. Therefore, we
would conclude that bag limits had no significant effect on catch rates.

Sums of squares can be computed in several ways. The simplest to understand and the most widely
reported in statistical analysis programs are type III SS, which are computed as the difference in SS
between two nested models in which one term is left out. Thus, the SS for each term is simply the
difference in SS between the full model with all terms present and a reduced model with the term
of interest absent. In contrast, SAS also reports type I SS, which are computed as the difference in SS
between hierarchical models in which each term is dropped in sequence, beginning with the right-
hand term and proceeding to the left. Thus, the SS for each term depend on the order in which the
terms are specified by the user. Type III SS are independent of the order in which terms are
specified in the model, so are generally preferred over type I SS.

Box 3.8 (continued)
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analysis (Cochran and Cox 1957), thus maintaining statistical power when the
number of replicates per treatment is small.

The main disadvantage of experiments using a completely randomized design
is that the power of these experiments to detect differences among treatments
may be relatively low (analogous to simple random sampling, where the precision
of point estimates may be low). Randomized designs are most commonly used in
laboratory studies, where experimental units are relatively homogeneous, thereby
increasing the power of the experiment. In field studies where experimental units
vary greatly from unit to unit (Cochran and Cox 1957), variation among units
may obscure systematic differences resulting from the treatment. One way to over-
come large variation among units is to increase the number of replicates in the
experiment, but this comes at additional monetary cost (Brown and Austen 1996).

Completely randomized designs have been used in fisheries management
projects mostly where sites were homogenous or where differences among sam-
pling units were not known. For example, Walsh et al. (2002) compared catches
from prepositioned area electrofishing and electric seining at 12 randomly se-
lected stream sites. Similarly, Kocik and Taylor (1994) placed brown trout and
steelhead in randomly selected sites within an experimental stream to quantify
their survival and growth. In both studies, sampling sites were assumed to be rela-
tively homogenous, thereby minimizing variability not accounted for in the ex-
periment. Although completely randomized designs are uncommon in fisheries,
they can be useful in small pilot studies that will provide some information about
the experimental unit for better design of a full-scale study. Before continuing on
with more sophisticated designs, we consider the analysis of this relatively simple
design, and discuss some of the critical considerations for data analysis.

3.3.1.1 Analysis of Completely Randomized Design

After the experiment has been conducted and data collected, how do we deter-
mine if the treatment(s) led to a response? One tool available is the general lin-
ear model (GLM), which contains the familiar analysis of variance (ANOVA) model.
General linear model is a term used to refer to an entire class of models that are
linear in their parameters (Yandell 1997; Montgomery 2001), which means that
no parameter in the model is an exponent or is multiplied or divided by another
parameter (Neter et al. 1996). The term general is used because both continuous
and categorical variables can be used as predictor variables (Quinn and Keough
2002). In most of these models, we measure a response variable and then deter-
mine how this response variable is influenced by one or more predictor variables.

In our creel limit example, the treatments (or predictor variables) are fixed
because the bag limits were determined prior to the start of the experiment and
then applied according to the completely randomized design. Moreover, we treat
the creel limits as categorical variables. This is in contrast to continuous variables
(such as lake area), which we will discuss later. When analyzing data from this
situation, we use what is called a fixed-effects GLM (Quinn and Keough 2002).
The objective of our analysis is to determine whether variation in the means for
different treatment levels differs more than would be expected by chance or if
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“real” differences in catch rate are related to the bag limit imposed. The GLM for
this case can be specified for i = 1 to p treatment levels and j = 1 to n replicates:

yij = � + �i + �i j , (3.15)

where yij are the observations, � is the overall population mean of the response
variable, �i is the treatment effect for each level, and �i j  is the unexplained varia-
tion among lakes (i.e., statistical error; Quinn and Keough 2002). In our example
(Box 3.8), i = 3 treatments (bag limits of 1, 2, and 5) and j = 6, 7, and 9 replicates.
The fixed-effects model can then be used to test the H0 that all treatment level
means (specified as �i) are the same:

H0 : �1 = �2 = . . . = �i = �.

This can also be specified in terms of the test of treatment effects:

H0 : �1 = �2 = . . . = �i = 0.

An F -test is used to compare the variability among groups to the residual vari-
ability (F -ratio = mean squared error for main effects divided by the mean squared
residual error), to determine if the observed differences in group means are greater
than would be expected by chance. The observed F -ratio is compared to an F -
distribution with the degrees of freedom in the numerator and denominator be-
ing those used for the two mean square errors. If H0 is true, both group and
residual mean square error should estimate the pooled population error term
and the F -ratio should be 1 (Quinn and Keough 2002). In our bag limit example
(Box 3.8), we would compare the F-ratio to an F -distribution with 2 df (3 treat-
ments; p – 1) for the numerator and 19 df (22 observations – 3 treatments) for the
denominator.

3.3.1.2 Assumptions

The most important assumption when sampling or performing any experiment is
that the treatments are randomly applied to the experimental units (Sokal and
Rohlf 1995). Failure to select samples at random or to apply treatments at ran-
dom may result in biased results that are not representative of the true response
(Sokal and Rohlf 1995). Applying treatments to lakes or rivers where the investi-
gator suspects they will be most successful is tempting, but the results of the study
will not be applicable to any other lakes or rivers. If the fully randomized experi-
mental design is implemented, this insures that the random-selection assumption
is satisfied.

Many statistical analyses assume that sample units or the selection of samples
are independent (Sokal and Rohlf 1995; Brown and Austen 1996). That is, changes
in one sample unit or one sample subject should not affect other sampling units
or subjects. Treatments or subjects must therefore be spatially and temporally
independent (Sokal and Rohlf 1995; Brown and Austen 1996). In our example
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(Box 3.8), this assumption implies that the bag limit imposed on one lake has no
effect on the catch rate of walleyes in nearby lakes. This assumption would be
violated, for example, if anglers shifted their effort away from lakes where the
creel limit was imposed to lakes where the bag limit was not imposed.

Repeated measurements of water bodies over time, which are often used to
detect changes in fish populations caused by management actions (stocking, habitat
manipulations, or regulations) in particular water bodies (often in relation to
water bodies where the management action was not implemented) are not tem-
porally independent. Lack of temporal independence is called time series bias
and can lead to problems in estimating parameters (Walters 1985; Caputi 1988;
Hilborn and Walters 1992; Myers and Barrowman 1996). To account for a lack of
temporal independence among sample units, a repeated-measures design is of-
ten used (section 3.3.8). Lack of spatial independence also occurs in fisheries
studies (as noted in the previous paragraph; also see examples in telemetry stud-
ies, Chapter 14, and watershed analyses, Chapter 18), and a variety of methods
have been developed to account for spatial dependency.

Another important assumption of a GLM analysis is that the residual variance
must be constant or homoscedastic among observations and treatments (Sokal
and Rohlf 1995; Montgomery 2001). Variability among experimental units com-
monly increases with an increasing mean, thereby leading to heteroscedastic re-
sidual variance (Sokal and Rohlf 1995). Inequality of variance is generally diag-
nosed by using plots of the residuals against the predictor variable and predicted
values and either Bartlett’s or the modified Levene test (Montgomery 2001). When
unequal variance occurs, the data are often transformed to equalize the variance,
or the unequal variance is accounted for using a mixed model (section 3.3.4). For
example, prior to transformation, catch data are often highly skewed in their
distribution, so variance often differs among treatment levels (heteroscedastic
residual variance; Figure 3.4). In contrast, after log transformation, catch data
may be normally distributed and have equal variance among treatment levels
(homoscedastic residual variance; Figure 3.4).

The final assumption necessary when performing many common statistical
analyses is that the residual errors are normally distributed (Sokal and Rohlf 1995;
Montgomery 2001). Although large departures from normality can significantly
affect inferences from a GLM analysis (Montgomery 2001), this is perhaps the
least important assumption because the central limit theorem states that with
large sample sizes (e.g., greater than 30), estimates of model parameters often
approximate a normal distribution regardless of the distribution of the data
(Yandell 1997). Departures from normality are tested using normal probability
plots and statistical tests such as the Shapiro–Wilk test or Kolmogorov–Smirnov
test (Box 3.9; Sokal and Rohlf 1995). Each of these tests examines different as-
pects of departures from normality, so they sometimes provide conflicting insights.
Our preference is for the Shapiro–Wilk test, which is more sensitive to departures
in the tails of the distribution, though the Kolmogorov–Smirnov test is also useful
because the test statistic, D, is a readily interpretable measure of the maximum
difference between the observed and expected cumulative distributions. When
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examining distributions of residuals for potential violations of the assumption of
normal distribution, more concern should be given to distributions with thinner
or thicker tails than expected than to distributions that are skewed (Montgomery
2001). Analyses that proceed with nonnormal data will generally lead to fewer
significant test results because of reduced power of the test (Montgomery 2001).

One important departure from normality is the presence of outliers, extreme
values that lie well outside the distribution of the rest of the data (e.g., more than
3 SDs from the mean) and that are often caused by sampling problems or because
the outliers belong to a population that differs from the target population (Mont-
gomery 2001). Outliers can significantly affect the outcome of a statistical analysis
and should be examined to determine if they are caused by sampling problems or
because they come from another population. If follow-up investigation of an out-
lier reveals that the outlying datum was caused by a failure of the sampling proto-
col, the datum can be rejected from the analysis. However, outliers can also be
extreme values of the target population so should not be rejected simply because
they are outliers.

Figure 3.4 Changes to the distribution of catch data following log transformation. The upper
panel in each pair of graphs illustrates the distribution of individual data points and the lower
panel depicts the hypothetical statistical distribution from which data points were drawn.
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Box 3.9 Example of How to Test Errors (Residuals) for Normality

In an extension to the example in Box 3.8, the results of the analysis were augmented to examine
the normality of residuals.

Program

proc glm;

class bag_limit;

model catch=bag_limit;

lsmeans bag_limit/stderr;

*The following output request saves a new data set named model_resid,

saving residuals into a variable named resid;

output out=model_resid r=resid;

run;

*These statements call the univariate procedure in SAS, requesting a

normality plot, normality test, and a q-q plot of the variable named resid;

proc univariate plot normal;

var resid;

qqplot resid;

run;

Results

Some output is not shown because it is not critical to this discussion; the pertinent results of this
analysis follow.

Table The univariate procedure of SAS was used to evaluate the normality of residuals generated
from the analysis in Box 3.8.

Moments

N 22 Sum weights 22
Mean 0 Sum observations 0
SD 0.55015726 Variance 0.30267302
Skewness 0.43350809 Kurtosis 0.01734467

Tests for Normality

Test Test statistic Statistic value P-test P-value

Shapiro–Wilk W 0.933623 P < W 0.1460
Kolmogorov–Smirnov D 0.155156 P > D >0.1500
Cramer–von Mises W 2 0.120727 P > W2 0.0557
Anderson–Darling A2 0.700157 P > A2 0.0602

(Box continues)



90 Chapter 3

When the assumptions of normality or equality of variability are not met, the
data can often be transformed into a new scale for which the assumptions are
satisfied. However, transformations should be logical and scientifically sound
(Yandell 1997). For example, body weight of virtually all organisms will increase
as an approximately cubic function of length, so variance in fish weight would
likely also increase as an approximately cubic function of length (Brown and Austen
1996). Consequently, the use of a linear model to describe the relationship be-
tween weight and length would be incorrect. Transformation of weight and length
into their logarithms (log10 or loge) permits the use of a linear model to estimate
parameters of the weight–length relationship and eliminates heteroscedasticity
of residual errors. Although transformations may help meet the assumptions of

Figure Normal probability plot of residuals versus normal quantiles.

In this example, we used the univariate procedure in SAS to produce a normal probability plot and
to provide statistical tests of normality. In a normal probability plot, we are looking for a relatively
straight 1–1 line in our plot. In this case, the data show some deviation from a straight line, but
none of the normality tests were significant, which indicates that the residuals did not differ
significantly from a normal distribution.
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the GLM, they may also bias parameter estimates (Hayes et al. 1995), so care must
be taken in interpreting point estimates.

The selection of an appropriate transformation should rely on an examination
of the distribution, mean, and variance of the data. When the mean of a sample is
positively correlated with its variance (i.e., variance increases as the mean gets
larger), a logarithmic transformation, either base 10 or base e, is often appropri-
ate (Sokal and Rohlf 1995). When the mean and variance are similar and do not
vary independently, which is often true of count data such as the number of fish
caught in a net, the data should be transformed into their square roots to make
the variance independent of the mean (Sokal and Rohlf 1995). When the distri-
bution of the data has fewer observations at the mean and at the tails and more
observations at intermediate regions than would a normal distribution (platykurtic),
which is true of proportion or percentage data such as the percent of lake trout
with sea lamprey wounds, the data should be transformed into their arcsines or
arcsine square roots (Sokal and Rohlf 1995).

Another approach to transforming the data is to use a nonparametric statisti-
cal test. Many nonparametric tests use a rank transformation (i.e., ranking each
observation) as a means of reducing the effects of outliers or nonnormality. Cov-
erage of nonparametric methods is beyond the scope of this chapter (see Chapter
1), but they provide a useful suite of methods. As with other transformations,
inferences drawn from analyses using a rank transformation do not strictly apply
to the arithmetic mean. In the case of rank transformations, inference is gener-
ally based on the median, 50th percentile, as a measure of central tendency.

Following transformation, the results of any analysis should be evaluated to
determine if the transformation was successful in correcting the observed prob-
lem. Also, transforming data to meet statistical assumptions may lead to a model
that is not interpretable in the original scale of measurement (Draper and Smith
1981), which may render the model useless for its original purpose. For example,
if data for a two-variable model are transformed to meet the assumption of nor-
mality, but data for the two variables are each transformed with a different trans-
formation, the resulting statistical model cannot be back-transformed into the
original measurement scales for interpretation. Thus, data should be transformed
only in the context of an understandable model and its transformation. Some-
times, transformations will still not meet the assumptions necessary for the de-
sired analysis. In such instances, a transformation that achieves approximately
equal variances among samples is usually sufficient for analysis, even if the data
are slightly nonnormal (Yandell 1997).

3.3.2 Randomized Block Design

One of the disadvantages of a completely randomized design is that natural varia-
tion among experimental units obscures the effect of the treatments, thereby
reducing the statistical power to detect real differences when they occur. Although
more replicates can be taken to overcome low power, a commonly used strategy is
to subdivide the population of interest into more homogeneous groups or blocks.
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For example, we may already know or suspect that the catch rate of walleye tends
to be higher in northern Wisconsin than in southern Wisconsin (Box 3.10). Thus,
if we take into account the location of the lake within the state, we can reduce the
variability among units within a block. This is directly analogous to the increased
precision of stratified random sampling over simple random sampling.

For many fisheries experiments, blocks are often created across time or space
(Quinn and Keough 2002). The purpose of blocking is to reduce variability within
each group (Cochran and Cox 1957) to estimate means more precisely and to
increase power of tests of treatment effects (Quinn and Keough 2002). In a ran-
domized block design, any number of treatments and replicates may be included
in the design, and the statistical analysis is straightforward (Cochran and Cox
1957). For a randomized block design to be favored over a completely random
design, the precision gained by blocking the treatments must offset the degrees
of freedom lost when blocks are used (Yandell 1997). Randomized block designs
can be used when blocks are missing, but completely randomized designs are
usually better for testing treatment effects if the number of missing blocks is large
(Cochran and Cox 1957).

The analysis of randomized block designs is similar to the fully randomized
design, except that the effects of the blocking factor are included as an additional
effect (Box 3.10). The statistical model for the randomized block design is

yi jk = � + �i + �k + �i jk , (3.16)

here yi jk are the observations, � is the population mean of the response variable,
�i is the treatment effect for each level, �k is the effect for each level of the block-
ing variable, and �i jk  is the unexplained variation among experimental units. This
model can then be used to test the null hypothesis that all treatment level means
(specified as �i) are the same, after taking account for the effect of the blocking
variable(s):

H0 : �1 = �2 = . . . = �i = �.

Randomized block designs are often used in fisheries. For example, Wilderbuer
et al. (1998) compared catch per unit effort of various fish species collected by
two different types of trawls (Wilderbuer et al. 1998). In this experiment, the two
trawl types were simultaneously hauled, and each paired haul was considered as a
block because of variability in catches between trawl runs (Wilderbuer et al. 1998).
Similarly, Sammons and Bettoli (1999) examined variation in catch and mean
length of largemouth bass caught by electrofishing, blocked by transects sampled.
Whalen and LaBar (1994) used stream sections as blocks to compare survival and
growth of Atlantic salmon stocked at different densities.

3.3.3 Analysis of Covariance

In the randomized block design, variability due to the effects of the categorical
blocking variable(s), such as the designation of north and south in the example
shown in Box 3.10, is used to remove the confounding effect of this variability.



Sampling and Experimental Design 93

Box 3.10 Example of a Randomized Block Design

In an extension to the example in Box 3.8, lakes were first blocked into northern and southern
Wisconsin lakes, and then treatments were randomly assigned to lakes in each block. A randomized
block design should include the blocking factor during the randomization process. The SAS
program for this analysis is similar to a completely randomized design, except that block and an
interaction term are included in the model.  For brevity, the data are not repeated here.

Program

*The following call to the GLM procedure indicates that bag_limit and

region are categorical predictor variables and catch is a continuous response

variable;

proc glm;

class bag_limit region;

model catch=bag_limit region region*bag_limit;

lsmeans bag_limit region/stderr;

run;

Results and Interpretation

Results of the above analysis are as follows.

Table The GLM procedure for a randomized block design (blocks being northern versus southern
lakes) with the dependent variable catch. This analysis is based on the data presented in Box 3.8.

Source df SS Mean square F-value P > F

Model 5 4.83082242 0.96616448  4.91 0.0065
Error 16 3.14848667 0.19678042
Corrected total 21 7.97930909

R2 0.605419 Root MSE 0.443599
CV 18.37888 Catch mean 2.413636

Source df Type III SS Mean square F-value P > F

Bag_limit 2 1.93517601 0.96758800 4.92 0.0216
Block 1 2.86174438 2.86174438 14.54 0.0015
Bag_limit*block 2 0.43851616 0.21925808 1.11 0.3523

Least-Squares Means

Bag_limit Catch LSMEAN SE P > |t|

1 2.73666667 0.18109869 <0.0001
2 2.62000000 0.16940231 <0.0001
5 2.07450000 0.14878776 <0.0001

Block Catch LSMEAN SE P > |t|

North 2.10944444 0.13498300 <0.0001
South 2.84466667 0.13765619 <0.0001

(Box continues)
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In this analysis, the bag limit (F = 4.92; P = 0.0216) and block (F = 14.54; P = 0.0015) both appear to
have an effect on angler catch rates. The interaction between these two factors does not appear to
be significant (F = 1.11; P = 0.3523), which suggests that the effect of bag limits was similar in
northern and southern Wisconsin lakes (blocks). Therefore, we can re-run the analysis without the
interaction term in the model.

proc glm;

class bag_limit region;

model catch=bag_limit region ;

lsmeans bag_limit region/stderr;

run;

Results of the analysis without the interaction term for region*bag limit are similar to those for the
model with the interaction term.

Table The GLM procedure for a randomized block design (blocks being northern versus southern
lakes) with the dependent variable catch. This analysis does not include the interaction term of bag
limits*region.

Source df SS Mean square F-value P > F

Model 3 4.39230627 1.46410209 7.35 0.0020
Error 18 3.58700282 0.19927793
Corrected total 21 7.97930909

R2 0.550462 Root MSE 0.446406
CV 18.49515 Catch mean 2.413636

Source df Type III SS Mean square F-value P > F

Bag_limit 2 1.95674263 0.97837132 4.91 0.0199
Block 1 2.76913051 2.76913051 13.90 0.0015

Least-Squares Means

Bag_limit Catch LSMEAN SE P > |t|

1 2.73666667 0.18224431 <0.0001
2 2.59097810 0.16927875 <0.0001
5 2.06035036 0.14918152 <0.0001

Block Catch LSMEAN SE P > |t|

North 2.10581833 0.13522076 <0.0001
South 2.81951176 0.13664751 <0.0001

Results of this analysis suggest that walleye catch rates differed significantly among daily bag limits
(F = 4.91; P = 0.0199) and between northern and southern Wisconsin lakes (F = 13.90; P = 0.015).
Importantly, differences in walleye catch rates between northern and southern Wisconsin lakes
obscured the effect of daily bag limits when the data were analyzed using a fully randomized
design (Box 3.8).

Box 3.10 (continued)
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Often, however, potential blocking variables are not categorical but are measured
on a continuous scale. For example, lakes can be arbitrarily categorized as “small”
and “large” based on their surface area but could also be measured in surface
area on a continuous scale. The GLM treats these variables as the independent
variable in a regression, and inferences based on these models evaluate the ef-
fects of a treatment on the response variable, after accounting for the effect of
continuous variable(s) on the response variable (Quinn and Keough 2002). This
particular application of a GLM is often termed analysis of covariance (ANCOVA).

As in a randomized block design, one of the main advantages of using an
ANCOVA design is that unexplained variability in the response variable is reduced,
thereby providing greater statistical power to detect and estimate the effects of
treatments. A further advantage is that the results provide insight into the effects
of covariates and potential interactions with the treatment variable. Thus, a greater
understanding of the experimental system can be obtained with ANCOVA. An-
other advantage of an ANCOVA design is that the value of the independent
covariate is not known a priori but is determined at the time of the experiment,
thereby reducing the need to have the entire sampling frame sorted into blocks
prior to the experiment.

When using ANCOVA, several assumptions must be met. First, a linear relation-
ship must exist between the response variable (e.g., weight) and the independent
variable used as a covariate (e.g., length; Montgomery 2001; Quinn and Keough
2002). We must also assume that the covariate values are similar among treatments
(Quinn and Keough 2002). The important implication of this assumption is that
ANCOVA should not be used to correct for different values of the covariate in each
group (Quinn and Keough 2002). For example, if initial lengths of fish in an ex-
periment were different, we should not include initial lengths to correct for this
difference (Quinn and Keough 2002). In regression, we must assume that the
covariate, x, is fixed and measured without error (Quinn and Keough 2002).

Because continuous factors are included in ANCOVA, the statistical model looks
somewhat different than the model for fully randomized or randomized block
designs. Multiple expressions of the ANCOVA model are available, but we prefer

yi j = �0 + �i + �x ij + �i j , (3.17)

where yi j are the observations, �0 is the intercept for the regression between x and
y for the population as a whole, �i is the treatment effect for each level, � is the
common slope for the regression between xij and yij , and �i j  is the unexplained
variation among experimental units. This model can then be use to test the H0

that all treatment effects (�i) are the same:

H0 : �1 = �2 = . . . = 0.

An equivalent way of thinking about the H0 is that all of the regressions between
the response variable (y) and the covariate (x) have the same intercept. However,
before testing the H0, we must first test whether the slopes of the regression lines
for all treatments are the same (i.e., all regression lines are parallel; Neter et al.
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1996; Quinn and Keough 2002). To test the hypothesis that slopes are equal for
all treatment levels, the interaction between the fixed effect and the continuous
variable (covariate) is evaluated using the slope heterogeneity test (Box 3.11; Neter
et al. 1996; Quinn and Keough 2002). If the interaction is significant, then the
ANCOVA model (equation [3.17]) does not apply and separate regression mod-
els should be fit to each treatment level and then compared (Neter et al. 1996). If
the interaction is not significant, then slopes are assumed to be equal, and the
ANCOVA model (equation [3.17]) is estimated.

The use of ANCOVA is common in the fisheries literature. Many analyses in-
clude the effect of a covariate that is important for understanding the effects of one
or more fixed treatments. This is especially common when the treatment effect may
be influenced by growth in either length or weight. The other common use of
ANCOVA in fisheries is to determine how data can be grouped. In many instances,
an analyst will be uncertain whether the covariate in question affects the results of
an outcome. For instance, Beard et al. (1997) used ANCOVA when building a pre-
dictive model of angler catch rate from walleye density to determine if walleye den-
sity differed among length-limit regulation categories and years sampled. When
length category and years sampled were not significant, walleye densities were
grouped together regardless of length regulation and year (Beard et al. 1997).

3.3.4 Random Effects and Mixed Models

In a randomized block design, the entire population of interest is broken into
subgroups (blocks) from which units are selected for treatment. In Box 3.10, for
example, all lakes in Wisconsin were designated as coming from the northern or
southern part of the state. Thus, a randomized block design is analogous to a
stratified random sampling design. In many fisheries investigations, blocking is
used to reduce variability, but samples are not collected from all blocks within the
population. For example, in an experiment to evaluate the effects of a herbicide
application on density of age-0 bluegill, we might randomly select five lakes to
receive a herbicide treatment and five lakes to receive no treatment. This could
be repeated for 4 years, resulting in 20 treatment lakes and 20 control lakes (Box
3.12). We suspect that recruitment of age-0 bluegill may vary annually because of
factors such as weather. Thus, we could use year as a blocking factor. However, our
interest lies not just in the years selected for study but also in future years. Thus,
the blocks (i.e., year) constitute only a sample of all possible years of interest.
Such factors are analogous to clusters in cluster sampling (Figure 3.2). When this
is the case, the blocking factor is appropriately treated as a random effect in the
statistical model. A model that includes both random effects (years, in this ex-
ample) and fixed treatments (also known as fixed effects; herbicide treatments,
in this example) is referred to as a mixed model.

The statistical model for simple mixed models (i.e., with only a single fixed and
a single random effect) is similar to that for the randomized block:

yijk = � + �i + �k + �i jk , (3.18)
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Box 3.11 Example of an Analysis of Covariance Design

The goal of this study was to determine how substrate size affected early growth of brook trout eggs.
In a lab experiment, a fisheries scientist placed individual brook trout eggs into containers with
different substrates. The investigator also believed that egg diameter would affect early growth, so
egg size was measured as a continuous covariate. An analysis of covariance model with egg diameter
as the continuous variable and substrate as the categorical treatment variable follows.

Program

*The following data step creates a data set named growth containing the
data that follow;

data growth;
input id substrate $ egg_diameter growth;
cards;
 1 Cobble 8.3 20.0
 2 Cobble 8.5 23.5
 3 Cobble 11.2 24.7
 4 Cobble 10.7 29.5
 5 Cobble 9.6 24.3
 6 Cobble 11.8 31.7
 7 Cobble 9.6 22.1
 8 Cobble 8.9 19.0
 9 Cobble 11.2 17.3
10 Cobble 8.9 23.3
 1 Gravel 10.3 36.4
 2 Gravel 9.5 25.7
 3 Gravel 8.5 13.6
 4 Gravel 9.9 33.9
 5 Gravel 8.6 17.1
 6 Gravel 8.9 22.6
 7 Gravel 10.4 32.0
 8 Gravel 10.8 40.2
 9 Gravel 9.9 26.6
10 Gravel 10.1 32.9
 1 Sand 9.3 20.4
 2 Sand 8.8 15.3
 3 Sand 9.2 21.6
 4 Sand 10.0 22.9
 5 Sand 10.5 21.2
 6 Sand 10.2 17.4
 7 Sand 9.4 12.4
 9 Sand 10.7 21.8
10 Sand 11.8 25.0
;
run;
*These statements call the GLM procedure in SAS, declaring the variable

substrate to be a categorical predictor variable and growth to be the
continuous response variable. By default, the variable egg_diameter is
treated as a continuous predictor variable;

proc glm;
class substrate;
model growth=substrate egg_diameter egg_diameter*substrate;
run;

(Box continues)
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Results and Interpretation

The results of the analysis follow.

Table The GLM procedure for the dependent variable growth of brook trout. The variable
substrate is a categorical predictor variable and the variable egg diameter is treated as a
continuous predictor variable.

Source df SS Mean square F-value P > F

Model 5 1025.104031 205.020806 17.64 <0.0001
Error 23 267.387693 11.625552
Corrected total 28 1292.491724

R2 0.793122 Root MSE 3.409626
CV 14.23951 Growth mean 23.94483

Source df Type III SS Mean square F-value P > F

Substrate 2 266.1171709 133.0585855 11.45 0.0004
Egg_diameter 1 557.0652164 557.0652164 47.92 <0.0001
Egg_diameter*substrate 2 311.4589773 155.7294887 13.40 0.0001

Results of the analysis indicate a significant interaction between egg diameter and substrate (F =
13.40; P = 0.0001), which indicates that egg diameter did not influence final length the same for all
substrate classes. Therefore, significance of the two main effects, substrate (F = 11.45; P = 0.0004)
and egg diameter (F = 47.92; P < 0.0001), cannot be interpreted because the ANCOVA model
(equation [3.17]) does not apply. If the interaction is significant, separate regression models should
be fit to each treatment level and then compared.

Box 3.11 (continued)

where yijk  are the observations, � is the population mean of the response variable,
�i is the treatment effect for each level, �k is the effect for each level of the ran-
dom effect variable, and �i jk  is the unexplained variation among experimental
units. This model can then be use to test the H0 that all treatment level means
(specified as �i) are the same, taking into account the effect of the random
variable(s):

H0 : �1 = �2 = . . . = �i = �.

Mixed models have been used occasionally in fisheries investigations but have
also not been used when they would be appropriate. The most common mistake
is to treat a random factor as a fixed effect, with the consequence that type I
errors are underestimated. Buynak and Mitchell (2002) provide an example
where a mixed model was applied in a fishery experiment. The study was designed
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With a significant interaction between a continuous and categorical variable, the best way to
interpret the results is graphically. For these data, growth generally increased with egg diameter,
but the increase was higher in gravel substrate (steeper slope) than it was in cobble or sand
substrate (shallower slope). In cobble and sand substrates, the relationship between egg diameter
and growth was consistent (similar slopes). In addition, growth was higher in gravel than in sand or
cobble for egg diameters greater than about 9.5 mm but lower in gravel than in sand or cobble for
smaller egg diameters.

to determine the effects of a slot size limit on smallmouth bass populations. In
this study, Buynak and Mitchell (2002) set up a mixed-effects model that tested
for differences in density between length limit treatment sites (slot size limit
versus no slot size limit) and across years. Year was considered a random variable
in this model, because Buynak and Mitchell were interested in determining if
the effect of years was the same for all years or differed among years (Buynak
and Mitchell 2002).

3.3.5 Factorial Design

The factorial design is used when an investigator wants to investigate the effects
of more than one factor on the response variable. In a factorial design, each com-
plete trial of the experiment explores all possible combinations of the levels of
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Box 3.12 Example of a Mixed-Model Design

The goal of this study was to determine the effect of herbicide treatment on the abundance of age-
0 bluegill in lakes. In theory, treatment with herbicide will create greater access to food resources,
so abundance of age-0 bluegill should increase. Funds were available for treating and sampling
only four lakes each year, along with sampling an equivalent number of untreated control lakes. To
increase the sample size available for the experiment, the fisheries scientists treated lakes over 4
years but were concerned that year-to-year variation in weather could obscure the real effect of
treatment.

Program

*This data step creates a data set named herb that contains the following

data;

data herb;

input year herbicide $ 13-22  lake_id bluegill_yoy;

cards;

 2001        Treatment        988          86

 2001        Treatment        116         100

 2001        Treatment        375         163

 2001        Treatment         17         135

 2001        Control          592          62

 2001        Control          677          69

 2001        Control          850          56

 2001        Control          566          50

 2002        Treatment        814         172

 2002        Treatment        397         200

 2002        Treatment        175         204

 2002        Treatment        867         153

 2002        Control          557          51

 2002        Control          106         122

 2002        Control          770          42

 2002        Control          111         127

 2003        Treatment        291         117

 2003        Treatment         76         125

 2003        Treatment         35         153

 2003        Treatment        997         123

 2003        Control          385          89

 2003        Control          712         106

 2003        Control          551          34

 2003        Control          567         197

 2004        Treatment        532          83

 2004        Treatment        424          65

 2004        Treatment        908          59

 2004        Treatment        369          69

 2004        Control          192         137

 2004        Control          371          66

 2004        Control          623          28

 2004        Control          515          23

;

run;
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(Box continues)

*These statements call the MIXED procedure in SAS, declaring herbicide and

year to be categorical predictor variables, and bluegill_yoy (age-0) to be a

continuous response variable. The model statement indicates that the Kenward-

Roger method should be used for computing the degrees of freedom. The random

statement identifies year as a random effect, and the lsmeans statement

requests least-squares means for bluegill density for the different levels of

herbicide treatment;

proc mixed  covtest;

class herbicide year;

model bluegill_yoy = herbicide / ddfm=kenwardroger;

random year/solution;

lsmeans herbicide;

run;

Results and Interpretation

Results of this analysis are as follow.

Table The mixed procedure of SAS. Herbicide treatment (fixed effect) and year (random effect)
are predictor variables, and age-0 bluegill density is the continuous response variable. The conver-
gence criteria were met. Abbreviations are given for –2 · residual log likelihood (–2Res log like);
Akaike’s Information Criteria (AIC); small sample corrected AIC (AICc); and Bayesian Information
Criteria (BIC). Note a smaller value is better for the information criteria indices.

Iteration History

Iteration Evaluations –2Res log like Criterion

0 1 321.73349015
1 1 317.52062502 0.00000000

Covariance Parameter Estimates

Covariance
parameter Estimate SE Z-value P > Z

Year 689.45 734.59 0.94 0.1740
Residual 1660.62 451.96 3.67 0.0001

Fit Statistics

–2Res log like 317.5
AIC 321.5
AICc 322.0
BIC 320.3
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factors investigated (Montgomery 2001). For example, an experiment with a lev-
els of factor A and b levels of factor B (where A and B are main effects) includes a
× b treatment combinations. In factorial designs, main effects are generally of
primary interest, and if no interactions are present between or among main ef-
fects, main effects are simple averages of the effects found for each treatment
level (Cochran and Cox 1957; Montgomery 2001). In factorial designs, the factors
are considered to be fixed effects (Quinn and Keough 2002).

As an example of a factorial design, the fisheries scientist of an aquaculture
facility may be interested in exploring how stocking density and different feeding
levels affect the yield of channel catfish in rearing ponds. The fisheries scientist
could use only the lowest and highest stocking densities and three feeding levels
for the fish, for six possible treatment combinations (Figure 3.5). The fisheries
scientist randomly assigns ponds to each treatment combination and runs the ex-
periment. If stocking levels and feeding levels do not interact, the interpretation of

Box 3.12 (continued)

Solution for Random Effects

Effect Year SE estimate Prediction df t-value P > |t|

Year 2001  –9.1751 18.5847 3.77 –0.49 0.6489
Year 2002 24.4509 18.5847 3.77 1.32 0.2626
Year 2003 12.2495 18.5847 3.77 0.66 0.5479
Year 2004 –27.5253 18.5847 3.77 –1.48 0.2169

Type 3 Tests of Fixed Effects

Effect Numerator df Denominator df F-value P > F

Herbicide 1 27 10.53 0.0031

Least-Squares Means

Effect Herbicide Estimate SE df t-value P > |t|

Herbicide Control 78.6875 16.6178 4.52 4.74 0.0067
Herbicide Treatment 125.44 16.6178 4.52 7.55 0.0010

Results of the analysis suggest that application of herbicide significantly increased the relative
abundance of age-0 bluegill (F = 10.53; P = 0.0031). In control lakes, the mean catch of age-0 bluegill
was 78.7 with a SE of 16.6, whereas in treated lakes the mean catch of age-0 bluegill was 125.4 with
a SE of 16.6. The effect of the random year effect was not so clear because the covariance estimate
for the year effect was 689.45, but the covariance had a SE of 734.59 and a P-value of 0.1740.
Although this P-value is greater than the often-used 0.05, accounting for the potential effects of
years is likely an important structural component of the design, and therefore, year should still be
included in the model.
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the main effects is straightforward. For instance, the main effect of feeding level,
given stocking densities, would be simply the difference between the averages of
the results from high and low feeding levels, regardless of the stocking density.
That is, we calculate the average for high feeding levels (across all units) and the
average for low feeding levels (across all units) and subtract the mean of the low
feeding levels from the high feeding levels. The effect is then interpreted as in-
creasing factor A from a low to high feeding level causes an average effect equal to
the difference between the means (Montgomery 2001). In the absence of interac-
tion, main effects are additive so they are simple to calculate and interpret (Quinn
and Keough 2002).

The factorial design helps to understand if and how the effects of each factor
interact (Montgomery 2001). Failure to use a factorial design may lead to misin-
terpretation of results or failure to ascribe results to proper effects. With the pres-
ence of an interaction, the effect of factor A depends on the level of factor B
(Montgomery 2001). For example, in our hatchery experiment, at a low stocking
density fish may grow at a similar rate regardless of feeding level, but at a high
stocking rate feeding rate may affect growth. Interactions are very common in
fisheries science because main effects may have synergistic or antagonistic effects
(Quinn and Keough 2002). Interactions can make interpretation of main effects
difficult and often are easier to interpret when main effects are plotted.

High stocking
High feeding

High stocking
Low feeding

Low stocking
Medium feeding

Low stocking
Low feeding

High stocking
Medium feeding

Low stocking
High feeding

Low stocking
Low feeding

Low stocking
Medium feeding

High stocking
High feeding

High stocking
Low feeding

Low stocking
High feeding

High stocking
Medium feeding

Figure 3.5 Example of a fully randomized factorial design for testing the effect of two
stocking densities and three feeding rates. The entire experiment has two replicates for each
combination of the factors.
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Factorial designs have many advantages over other designs. Factorial experi-
ments are especially useful when the goal of the experiment is to obtain a broad
picture of the effects of the factors (Cochran and Cox 1957). If the factors are
independent of one another, the factorial experiment can save considerable time
and expense (Cochran and Cox 1957; Montgomery 2001). The factorial experi-
ment is most often used in manipulative experiments and in exploratory work,
where the factor effects are explored over a range of values (Cochran and Cox
1957; Quinn and Keough 2002).

The statistical model for a simple factorial design with two factors is

yijk = � + �i + �j + ��i j + �i jk , (3.19)

where yijk are the observations, � is the population mean of the response variable,
�i is the treatment effect for each level of the first factor, �j is the effect for each
level of the second factor, ��i j is the interaction between main effects, and �i jk  is
the unexplained variation among experimental units. This model can then be
use to test the H0 that the means for each level of each factor are the same and
that the interaction between the factors is 0.

H0 : �1 = �2 = . . . = �i ;
�1 = �2 = . . . = �j ; and

�1�1 = �1�2 = �2�1 = �2�2 = . . . = �i�j .

Factorial designs are commonly used in studies of fisheries management and
ecology (Box 3.13). For example, Nowlin and Drenner (2000) used mesocosms to
examine the effects of the presence or absence of a planktivore in conjunction
with the presence or absence of a fish assemblage on zooplankton densities. Simi-
larly, Dahl (1998) used a factorial design to evaluate the effects of benthivory on
benthic assemblages by enclosing standard lengths of stream and then examining
the invertebrate assemblage in streams sections with no fish, bullheads, brown
trout, and brown trout plus bullheads. In a more complex design, Drenner et al.
(1998) examined the effects of nutrient loading, levels of omnivory, and levels of
clay on phytoplankton biomass present in mesocosms. In all of these experiments,
interactions between factors were suspected, so factorial designs were necessary
to understand the effects.

Factorial designs are also beneficial in other types of experiments. For ex-
ample, Aas et al. (2000) used a factorial design on results of a mail survey to
produce hypothetical profiles of fishing opportunities that were based on fish-
ing regulations and expectations of anglers who fished certain waters. Factorial
experiments can also be used in computer modeling. For example, Sampson
and Yin (1998) used computer simulations of a fractioned factorial design to
examine the effects of natural mortality, fishing mortality, and recruitment on
the demographic history of a fishery. Factorial designs are common in fisheries,
although investigators may not refer to their designs as factorial. If multiple
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Box 3.13 Example of a Factorial Design

The goal of this study was to determine how size and stocking location of fingerling Chinook
salmon affected survival and subsequent return to the Snake River. Bugert and Mendel (1997) used
a 2 × 2 factorial design in which size (subyearling versus yearling) and location of release (on-
station versus off-station) were compared to see how these factors affected survival. For this
example, we have included only years when all treatment combinations were implemented.

Program

data chinook;

input year size$ release$ survival;

cards;

1987 Sub On .058

1987 Sub Off .155

1987 Yearling On .406

1987 Yearling Off .319

1988 Sub On .058

1988 Sub Off .004

1988 Yearling On .350

1988 Yearling Off 1.376

1989 Sub On .014

1989 Sub Off .008

1989 Yearling On .092

1989 Yearling Off .320

1990 Sub On .047

1990 Sub Off .044

1990 Yearling On .599

1990 Yearling Off 3.048

;

run;

Because survival was expressed as a percentage, the data were first transformed using the arcsine
transformation. The program used to analyze these data follows.

data chinook1;

set chinook;

arcsurv=arsin(survival/100);

run;

proc glm;

class size release;

model arcsurv=size release size*release;

lsmeans size release size*release/stderr;

run;

Results and Interpretation

Results of this analysis are as follow.

(Box continues)
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Table The GLM procedure for a 2 × 2 factorial design to assess fingerling Chinook salmon survival
with size (subyearling versus yearling) and location of release (on-station versus off-station) as
factors (based on Bugert and Mendel 1997). The dependent variable is the arcsin transformation of
the percent survival (arcsurv); the number of observations is 16.

Class Level Information

Class Levels Values

Size 2 Sub Yearling
Release 2 Off On

General Linear Model

Source df SS Mean square F-value P > F

Model 3 0.00039779 0.00013260 3.10 0.0672
Error 12 0.00051284 0.00004274
Corrected total 15 0.00091063

R2 0.436827 Root MSE 0.006537
CV 151.6227 Arcsurv mean 0.004312

Source df Type III SS Mean square F-value P > F

Size 1 0.00023428 0.00023428 5.48 0.0373
Release 1 0.00008329 0.00008329 1.95 0.1880
Size*release 1 0.00008021 0.00008021 1.88 0.1958

Least-Squares Means

Size Arcsurv LSMEAN SE P > |t|

Sub 0.00048500 0.00231130 0.8373
Yearling 0.00813815 0.00231130 0.0042

Release Arcsurv LSMEAN SE P > |t|

Off 0.00659315 0.00231130 0.0146
On 0.00203001 0.00231130 0.3970

Size Release Arcsurv LSMEAN SE P > |t|

Sub Off 0.00052750 0.00326866 0.8745
Sub On 0.00044250 0.00326866 0.8946
Yearling Off 0.01265879 0.00326866 0.0022
Yearling On 0.00361751 0.00326866 0.2901

Results of the analysis suggest that size at stocking significantly affected survival of juvenile
Chinook salmon (F = 5.48; P = 0.0373), but that release location did not significantly affect survival (F
= 1.95; P = 0.1880). Further, the interaction between release location and size at stocking was not
significant (F = 1.88; P = 0.1958).

Box 3.13 (continued)
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factors and interactions are included in the study design, a factorial design is
very likely the basis for the experiment.

3.3.6 Nested Design

Nested designs often occur when subsamples are taken from the experimental
units included in a study. A common type of nesting in fisheries research is to
have individual sample sites nested within lakes or streams. In such studies, indi-
vidual lakes or streams are experimental units, but we need to account for varia-
tion among sites within each lake or stream. Similarly, individual fish sampled
from a lake are generally not true replicates but should be treated as a nested
subsample. For example, in Figure 3.6, fish are nested subsamples within lakes,

Nested design

Herbicide lakes

Control lakes

Figure 3.6 Example of a nested design in which lakes are the main experimental unit and
individual fish are nested subsamples within each lake. Open circles indicate lakes that were not
included in the study as either herbicide lakes or control lakes.
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which were randomly selected for application of herbicide or held as control lakes.
To account for the experimental design properly, a nested effect needs to be
included in the statistical model. The nested effect variable is generally a categori-
cal identifier for each experimental unit. In nested designs, the effects can be
either random or fixed, but in the biological sciences the main effect (e.g., the
treatment applied) is often fixed and the nested effect (e.g., individual lake iden-
tifier) is often random (Quinn and Keough 2002).

The experimental units can sometimes be difficult to identify properly in nested
designs (Yandell 1997). For example, in a design in which sampling transects are
nested within habitat types in a lake, the primary experimental units are habitat
patches, not sampling transects or the lake. Difficulties in identifying primary
experimental units in nested designs can also lead to pseudoreplication (Hurlbert
1984), where subsamples (e.g., fish in nets) are confused with truly replicated
experimental units (e.g., nets in lakes).

The statistical model for nested designs is similar to that for mixed models
(section 3.3.4); an example of a nested design is given in Box 3.14. Nested designs
are common in fisheries. The design discussed above, with sampling transects or
locations nested in streams or lakes, is appropriate when comparing effects across
water bodies. For example, to determine how various benthic taxa varied at differ-
ent spatial scales, Boyero and Bailey (2001) used a nested design with sampling
points nested within riffles nested within streams. Boyero and Bailey (2001) were
able to attribute the variation in taxa to these different spatial scales. Using a
similar approach, Cole (2001) nested sample cells of different sizes to assess spa-
tial variability in the abundance of clams. Pierce et al. (2001) used a nested design
to examine differences in species richness in relation to diel sampling period,
sampling gears, and sites, all nested within each lake sampled. Using a random-
effects model, Radomski and Goeman (2001) nested developed and undeveloped
lakeshore plots within lake development classes to quantify differences in vegeta-
tive abundance among lakes and between shoreline types. Toepfer et al. (1999)
nested individual leopard darter results within separate trials to separate indi-
vidual variation in burst speed and numbers when assessing overall swimming
performance. Conover et al. (1997) used a nested design to attribute variance in
growth rate of young striped bass to individual mothers, nested within the lati-
tude from which they came, to separate genetic and physiological effects of each
mother from the effect of latitude.

3.3.7 Split-Plot Design

In a split-plot design, the main experimental units are divided into two or more
parts (Cochran and Cox 1957). Different levels of treatments are then applied to a
subunit within the main experimental unit. This type of design is similar to a ran-
domized block design, except in the randomized block, the treatment combina-
tions are assigned randomly, not randomly within each main plot (Cochran and
Cox 1957). For example, consider a hatchery experiment with two levels of stock-
ing density (high and low) and two feeding levels (high and low). In a split-plot
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Box 3.14 Example of a Nested Design

For the example in Box 3.12, where the effect of herbicide treatment on age-0 bluegill density was
investigated, we may also be interested in how herbicide treatment affects mean length of age-0
bluegill at the end of the growing season (for this example, assume that length of individual bluegill
from each lake in the study was measured). In a nested design, the primary experimental unit is a
lake, so each bluegill is not an independent replicate but rather is a subsample from the lake. For
brevity, only the lakes sampled in 2001 from Box 3.12 are used in this example.

Table Hypothetical data on lengths of age-0 bluegills from lakes treated with herbicide and
control lakes that were not treated with herbicide (an extension of Box 3.12 data).

Length of age-0 bluegills

Summary
Treatment lakes Control lakes

statistic 988 116 375 17 592 677 850 566

103 88 97 116 70 83 102 79
90 95 94 94 79 85 89 72
98 82 103 112 78 92 82 67
90 100 94 111 85 85 86 78
96 84 83 96 65 84 99 83
88 92 93 111 68 83 88 68
97 94 90 91 93 79 99 87

100 79 107 116 80 90 80 75
89 103 94 109 89 77 81 79

108 81 86 110 65 85 93 90

Mean 95.9 89.8 94.1 106.6 77.2 84.3 89.9 77.8

Program

The SAS program used to analyze these data follows.

data bluegill;

input herbicide $ 1-9 lake length;

cards;

Treatment 988 103

Treatment 988 90

(input data)

;

run;

* This call to the MIXED procedure is much like in Box 3.12, except that

the random statement is used to indicate that individual bluegills within a

lake are a subsample from a herbicide treatment class;

proc mixed covtest;

class lake herbicide;

model length=herbicide;

random lake(herbicide);

lsmeans herbicide;

run;
(Box continues)
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Results and Interpretation

Results of the analysis follow.

Table The effect of herbicide treatment on age-0 bluegill length. The mixed procedure with the
random statement is used to indicate that individual bluegills within a lake are a subsample from
an herbicide treatment class. Convergence criteria were met. The estimation method was restricted
maximum likelihood (REML).

Model Information

Data set WORK.BLUEGILL
Dependent variable Length
Covariance structure Variance components
Estimation method REML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees of freedom method Containment

Class Level Information

Class Levels Values

Lake 8 17 116 375 566 592 677 850 988
Herbicide 2 Control treatment

Dimensions

Covariance parameters 2
Columns in X 3
Columns in Z 8
Subjects 1
Maximum observations per subject 80
Observations used 80
Observations not used 0
Total observations 80

Box 3.14 (continued)

experiment, the investigator would randomly select a stocking density for each of
four ponds, divide the ponds in half with barriers, and randomly select a feeding
rate to apply to each half of each pond (Figure 3.7). The sample size for feeding
rate increased from two, using a factorial design with four ponds, to four, using
the split-plot design.

When performing a split-plot experiment, the B effect and A × B interaction
(the feeding rate and feeding rate × stocking density effects in the hatchery ex-
periment) are estimated more precisely than are the A effects (stocking density;
Cochran and Cox 1957). As described with the hatchery experiment, the degrees
of freedom are smaller for the whole unit than for the subunit comparisons. The
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Iteration History

Iteration Evaluations –2Res log like Criterion

0 1 579.91706840
1 1 561.75492286 0.00000000

Covariance Parameter Estimates

Covariance
parameter Estimate SE Z-value P > Z

Lake (herbicide) 37.3500 25.1356 1.49 0.0686
Residual 61.5000 10.2500 6.00 <0.0001

Fit Statistics

–2Res log like 561.8
AIC 565.8
AICc 565.9
BIC 565.9

Type 3 Tests of Fixed Effects

Effect Numerator df Denominator df F-value P > F

Herbicide 1 6 9.40 0.0220

Least-Squares Means

Effect Herbicide Estimate SE df t-value P > |t|

Herbicide Control 82.3000 3.2977 6 24.96 <0.0001
Herbicide Treatment 96.6000 3.2977 6 29.29 <0.0001

Results of the analysis indicate that age-0 bluegill in control lakes were significantly shorter (82.3
mm) than in herbicide-treated lakes (96.6 mm; F = 9.40; P = 0.0220).

primary advantage of the split-plot design is realized when the B and A × B effects
are of greater interest than is the A effect, or when the A effect cannot be tested
on small experimental units because the cost or size of the A experimental unit is
prohibitive (Cochran and Cox 1957; Montgomery 2001). For example, in the hatch-
ery example the primary interest was in the feeding rate and feeding rate × stock-
ing density effects, whereas the secondary interest was in the stocking density
effect. However, the increase in precision of estimating B effects can often lead to
results where the effect of factor B is significant and the effect of factor A is not
significant (Cochran and Cox 1957). Analysis of data collected using a split-plot
design are often complicated and require detailed coding of data to assure analysis
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Figure 3.7 Example of a split-plot design to test the effects of feeding and stocking density on
growth rates of muskellunge in hatchery ponds. In this experiment, four ponds are each divided
in half and two ponds each are randomly selected for high and low stocking density. Within
each pond, each side is randomly selected for high or low feeding rates. The overall design
includes two replicates for stocking density and four replicates for feeding rate.

programs work correctly. Split-plot designs often contain a mixture of random
(e.g., ponds) and fixed effects (e.g., feeding or stocking rates), which may further
complicate analysis (Quinn and Keough 2002).

Split-plot designs are uncommon in fisheries, though the repeated-measures
split-plot design has been widely applied (Box 3.15; Maceina et al. 1994). More
details of that design will be covered in the next section because it combines the
aspects of the split-plot and repeated-measures design. An example of a split-plot
design by Secor et al. (2000) tested differences in growth performance between
anadromous and nonanadromous strains of striped bass; a split-plot design was
used to separate growth and salinity effects at three levels of growth and salinity.
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3.3.8 Repeated-Measures Design

The repeated-measures design generally refers to experiments in which individual
experimental units are observed more than once (Quinn and Keough 2002). In
some cases, a single treatment is applied and the experimental unit is observed
over time, but in other cases multiple treatments are applied and the experimen-
tal unit is observed multiple times. When the same experimental units are ob-
served multiple times, the observations on the response to a treatment are poten-
tially correlated because the same experimental unit is used (Quinn and Keough
2002). Thus, observations are not necessarily independent, and the design and
analysis should take this into account. In such experiments, the treatment is typi-
cally considered to be a fixed effect and the subject is often a random effect (Mont-
gomery 2001). As with split-plot designs, repeated-measures designs are often com-
plex, and the analysis depends on the details of the situation (e.g., how many
times the units are observed and how observations are correlated in time).

Repeated-measures designs are not commonly used in fisheries. A repeated-
measures design was used to estimate the retention rate of coded wire tags in
paddlefish, which were marked in four locations with coded wire tags. Each indi-
vidual fish then was examined monthly to determine if tags had been retained or
lost in each location, and total tag retention rate was estimated (Fries 2001). In an
experiment to train grass carp to respond to different types of sound, Willis et al.
(2002) used sound at different frequencies to determine if response varied with
frequency. Because individual response types were measured on individual grass
carp, the type of sound needed to be corrected for the measurement from indi-
vidual grass carp to assure that individual grass carp behavior was taken into ac-
count in analysis of response to the type of sound (Willis et al. 2002).

In fisheries, repeated-measures designs often refer to a specialized version of
the split-plot design in which the repeated measures are taken from the same set
of sites (Box 3.15; Maceina et al. 1994). The sites selected are usually thought of
as random effects in such designs, so repeated-measure designs are essentially
split-plot designs that allow for correlation within each nested random effect
(Yandell 1997). The repeated-measures design or the repeated-measures split-
plot design often assigns treatments to experimental units, which are then mea-
sured over different time intervals (which become the plots). The main differ-
ence between a split-plot design and a repeated-measures split-plot design is that
the split-plot design allocates within-plot treatments to subunits within each plot,
whereas the repeated-measures split-plot design allocates within-subjects treatments
sequentially to each subject (Quinn and Keough 2002). In a fisheries experiment
that uses a repeated-measures split-plot design, sampling stations are often fixed,
so treatments are measured repeatedly at the same site (correlation is present)
with interactions between site, treatment, and time (Maceina et al. 1994).

The use of repeated-measures split-plot designs has become common in fisher-
ies because of interest in time period effects of sampling at fixed sites (Maceina et
al. 1994). Maceina et al. (1994) were the first to advocate use of repeated-measures
split-plot designs in fisheries. In one experiment, Maceina et al. (1994) quantified
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Box 3.15 Example of Repeated-Measures Split-Plot Design

The goal of this study was to determine the effects of vegetation removal by grass carp on fish
biomass. Maceina et al. (1994) sampled the same six coves twice before and twice after treatment.
Main plot A included cove, treatment, and cove*treatment interaction effects, and subplot B
included time and time*treatment interaction effects. Maceina et al. (1994) popularized the use of
repeated-measures split-plot designs in fisheries, which is appropriate for analyzing data collected
through time at fixed stations. The analysis relies on standard analysis of variance techniques.

Program

data cove;
input year treat$ time cove area biomass;
cards;
1980 PRE  1 1 1.51 13854
1980 PRE  1 2  .67  4091
1980 PRE  1 3 2.19 17195
1980 PRE  1 4  .63  5138
1980 PRE  1 5  .64  5148
1980 PRE  1 6  .45  2971
1981 PRE  2 1 1.60  6374
1981 PRE  2 3 1.97 21441
1981 PRE  2 4  .74 17830
1981 PRE  2 5  .66  3577
1981 PRE  2 6  .32  2678
1985 POST 1 1 1.83 3209
1985 POST 1 3 2.39 11556
1985 POST 1 4  .88  8132
1985 POST 1 5  .70  5094
1985 POST 1 6  .49  1973
1986 POST 2 1 1.83 10643
1986 POST 2 2  .43   479
1986 POST 2 3 2.39 11103
1986 POST 2 4  .88  2852
1986 POST 2 5  .70  2489
1986 POST 2 6  .49  8898
 ;
data cove;
set cove;
logbio=log10(biomass);
run;

proc glm;
class cove treat time;
model logbio=cove treat treat*cove time treat*time;
      test h=treat e=treat*cove;
      test h=cove e=treat*cove;
run;

Results and Interpretation

The main fixed effects are cove and treatment, and main plot is split into time effects. The inter-
actions were estimated to see if any spatial (treat*cove) or temporal (treat*time) correlations
affected the results.
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Table The GLM procedure to determine the effects of vegetation removal by grass carp on fish
biomass. Six coves were sampled twice before (PRE) and twice after (POST) treatment. Main plot A
included cove, treatment, and cove*treatment interaction effects, and subplot B included time and
time*treatment interaction effects (based on Maceina et al. 1994). The dependent variable is
log10biomass of fishes (logbio), and the number of observations was 22.

Class Level Information

Class Levels Values

Cove 6 1 2 3 4 5 6
Treatment 2 POST PRE
Time 2 1 2

The GLM Procedure

Source df SS Mean square F-value P > F

Model 13 2.46565668 0.18966590 2.15 0.1406
Error 8 0.70628807 0.08828601
Corrected total 21 3.17194474

 R2 0.777333 Root MSE 0.297130
CV 7.943952 Logbio mean 3.740325

Source df Type III SS Mean square F-value P > F

Cove 5 1.76323921 0.35264784 3.99 0.0409
Treat 1 0.36593102 0.36593102 4.14 0.0762
Cove*treat 5 0.43968044 0.08793609 1.00 0.4767
Time 1 0.01186994 0.01186994 0.13 0.7234
Treat*time 1 0.00436853 0.00436853 0.05 0.8295

Tests of Hypotheses with Type III MS for Cove*Treat as Error Term

Source df Type III SS Mean square F-value P > F

Treat 1 0.36593102 0.36593102 4.16 0.0969
Cove 5 1.76323921 0.35264784 4.01 0.0768

The type III SS, which are properly calculated using the cove*treat interaction MSE, indicate that the
main fixed effects of coves (F = 4.01; P = 0.0768) and vegetation removal by grass carp treatments
(F = 4.16; P = 0.0969) were significant at an alpha of 0.10, which suggests that the treatment
affected fish biomass. Time (F = 0.13; P = 0.7234) and time*treatment (F = 0.05; P = 0.8295) effects
were not important in explaining differences in fish biomass.
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the abundance between years of age-0 black crappie and white crappie that were
collected in trap nets at fixed stations over 2 d. The repeated-measures split-plot
analysis treated stations as replicates, year as the main treatment effect, and day as
the plot effect, along with interactions between years and stations and between
days and years (Maceina et al. 1994). Using a similar approach, Pierce et al. (2001)
determined the effect of the number of marked fish, station, year, and month on
capture efficiency of beach seines for various species of fish. In this experiment,
the replicate was the station, the fixed effect was the year, and the plot was the
month (Pierce et al. 2001). Year and month were significant in explaining cap-
ture efficiency (Pierce et al. 2001). Jackson and Hightower (2001) used individual
movement data from striped bass (the plot) to separate variance of individual fish
from sex and season. They determined how sex and season affected site fidelity of
striped bass (Jackson and Hightower 2001). Finally, to quantify spawning substrate
preferences of yellow perch in Lake Michigan, Robillard and Marsden (2001)
used a repeated-measures split-plot design that treated stations as replicates, year
as the main effect, and substrate types as plots.

3.4 CONCLUSION

One point of potential confusion in experimental design is how to distinguish
between fixed factors, fixed blocking effects, and random effects. In the hatchery
example above, stocking density and feeding rate were factors assigned randomly
to individual ponds because we were interested in understanding the response of
the system to these factors. Thus, both of these factors are fixed effects. In con-
trast, the designation of lakes as being northern or southern in Box 3.10 is not
something under the control of the investigator; all lakes are assigned to one of
these two groupings before the start of the experiment. As such, this is an ex-
ample of a fixed blocking factor. However, we may be interested in making predic-
tions for lakes in the northern or southern part of the state, even if they were not
present in our sample. We can appropriately make predictions for such a case
because unsampled lakes must belong to either the northern or southern block.
The trickiest situation is for random effects. Imagine, for example, that the state
of Wisconsin had been subdivided into 20 different blocks, but we only selected
lakes in three of the 20 blocks. We could still use region as a blocking factor, but
the three selected blocks do not constitute the entire population (lakes) of 20
blocks, so we could not make predictions for a lake in one of the 17 blocks that
were not included in the experiment. Treating the regional designation as a ran-
dom effect appropriately allows us to take into account block-to-block variation,
thereby enabling predictions about lakes in all 20 blocks.

Throughout this discussion, we have focused on true experiments where lev-
els of treatment can be assigned at random by the investigator. However, in
many fisheries studies, we are interested in how naturally varying factors affect
fish populations, habitat, or anglers. Strictly speaking, such observational stud-
ies do not really fall into the category of an experimental design because we
cannot infer cause and effect relationships from such studies. Observational
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studies are common in fisheries science and yield insight into the dynamics of
fishery systems. Many of the methods we have presented in this section are use-
ful for the analysis of observational studies, but we caution the reader to recog-
nize that the conclusions reached from such analyses are akin to correlation
and do not imply causality.

As a final comment, the experimental designs presented here represent only a
simple subset of the experimental designs used in practice. Elements of several
designs are often used to achieve the goals of an experiment. For example, nested
designs are frequently used with a factorial design. This occurs because our unit
of measurement (e.g., individual fish) is often part of a larger experimental unit
(e.g., lake or pond). Elements of repeated-measure designs are also frequently
combined with other experimental design components to allow us to determine
how experimental units vary over time in response to treatment. Because of the
complexity of many experimental designs and analyses in fisheries, we recom-
mend that you consult with a professional statistician before an experiment is
started. This will assure that the proper experimental design is used and that the
correct analyses techniques are considered and used. The analysis of data from
more complex designs needs to be carefully considered but provides much deeper
insights into the biology of fisheries systems.
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4

■ 4.1  INTRODUCTION

4.1.1 Recruitment Assessment in Freshwater Fisheries

Recruitment of young fish into catchable, harvestable, or adult size is necessary to
sustain any population and fishery. Recruitment failure, due to overfishing, habi-
tat alteration, or abiotic or biotic events, can lead to reduced adult abundance
and reduced angler catch rates. If severe, recruitment failure can ultimately re-
sult in severe population declines and collapse of a fishery. However, larval, juve-
nile, and even adult fish can be stocked to augment a fishery or a population if
natural recruitment is low or nil. Conversely, if recruitment is high, then catch-
able-size abundance and fishing success should be greater if density-dependent
mortality and growth reduction are not excessive. Recruitment is typically the
strongest determinate influencing populations among the three major factors
affecting populations, that is, growth, recruitment, and mortality (Carline et al.
1984; Allen and Pine 2000).

Recruitment success typically varies from year to year in most populations due
to a number of factors. Some species from certain water bodies may display fairly
constant recruitment each year, whereas other species or populations display highly
variable recruitment that will cause wide fluctuations in the number of fish reach-
ing a certain age or length. In marine systems, recruitment rates tend to be log-
normally distributed with many average and below average years interspersed with
periodic strong year-classes (Hennemuth et al. 1980). Although a similar review
has not been conducted for North American freshwater fishes, we suspect a simi-
lar pattern. Fecundity in fishes is typically high, and recruitment variability is of-
ten caused by density-independent factors, but density-dependent regulation can
stabilize recruitment (Cowan et al. 2000). The processes and mechanisms that
cause recruitment variation have been intensively investigated for many years (re-
viewed by Cowan et al. 2000). In this chapter, analysis of the effects of environ-
mental factors and parental abundance on recruitment will be explored.

Protection of adult fish stocks from overexploitation to prevent recruitment over-
fishing has primarily been addressed for commercially important marine fisheries
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(Musick 1999). Recruitment overfishing occurs when a fishing rate is maintained
over a long time period that results in low yields due to reduced recruitment of
fish to adult or catchable size. These concepts of recruitment overfishing can also
be important to the conservation of freshwater fishes. Loss of critical habitat and
migration barriers in conjunction with overfishing have been cited as the cause
for the decline of many Pacific salmon stocks in the northwestern USA (Stouder
et al. 1997). Striped bass recovery in the Chesapeake Bay coincided with protec-
tion of mature females from exploitation, which increased juvenile abundance
and recruitment (Richards and Rago 1999). Conservation of sturgeons has fo-
cused on protection of adults (long-lived species with late time to maturity) and
habitat due to the low intrinsic rate of population increase via recruitment (Secor
and Waldman 1999; Musick et al. 2000).

Fisheries scientists often evaluate the response of a population and fishery to
habitat manipulations or regulation changes. However, an accurate result may
not be evident due to recruitment variability, particularly if the evaluation time
period is short (Allen and Pine 2000). For example, Bettoli et al. (1992) attempted
to determine the effects of the complete removal of all submersed aquatic plants
by grass carp on harvestable-size (>25 cm in total length [TL]) largemouth bass.
Following vegetation removal, density of age-1 largemouth bass declined but growth
rates increased. Although 3 years of post-vegetation-removal data were collected,
the long-term effects on the adult population were difficult to detect because
largemouth bass longevity was greater than 10 years, and obviously recruitment
success or failure may take a number of years to detect (Maceina et al. 1994).

Recruitment is typically defined in terms of age or size, and this definition
needs is to be assigned by the fishery scientist. Terms such as age-0 or age-1 re-
cruits refers to the age at the time of collection. For example, catch rates of age-1
crappies collected with trap nets in fall (fish about 18 months old) were used by
Maceina and Stimpert (1998) as an index of recruitment. Hansen et al. (1998)
estimated density of age-0 walleye in September over a 39-year period, and thus
fish were about 5 months old.

The number of fish reaching a certain length can also be used to define re-
cruitment (e.g., number of fish greater than 100 mm), but length categorization
is mostly used either as some minimum length of fish that can be caught by an-
glers and possibly harvested or as some regulated minimum length. For example,
number of recruits entering the fishery at a particular length can be used.

4.1.2 Data Required to Assess Recruitment

Fisheries scientists can collect either long-term monitoring data or specific re-
search data to quantify recruitment in a population or among populations. For a
particular species or population, the fisheries scientist must determine what time
in the early life of a fish confers recruitment to adult size or the fishery. For ex-
ample, Sammons and Bettoli (1998) showed that low and high larval abundance
of white bass, white crappie, and black crappie were associated with weak and
strong year-classes, respectively. Pitlo (1997) reported an increase in the commer-
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cial catch of channel catfish in the upper Mississippi River was associated with
increased abundance of age-0 fish. Buynak et al. (1999) found the abundance of
cohorts (year-classes) of age-5 largemouth bass was correlated to electrofishing
catch of these same cohorts at age 1.

Either to document recruitment abundance and variability fully or  relate some
environmental factor to recruitment variation directly, long-term data collection
is necessary. Typically, any sampling method that measures density or catch per
effort (C/f ) can by used to estimate recruitment (see Chapters 7 and 8). These
samples should be taken about the same time each year and ideally under similar
environmental conditions. Either fixed or random stations serve as replicates
samples taken each year (Chapter 3). Conducting statistical analyses when ran-
dom sampling is used is easier, but spatial variability in recruits may be greater
than year-to-year variation, and low or zero catches can complicate the analysis.
Thus, more replicate samples may be needed when random sampling is employed.
With fixed-station sampling, repeated-measures analysis of variance (ANOVA) can
be used to detect temporal or spatial differences in recruits (Maceina et al. 1994),
but the analysis is more complicated than simple ANOVA.

Evaluation of recruitment enhancement from habitat manipulation or stock-
ing requires a specific study design. Typically, these investigations are shorter in
duration and may involve a few years of pre- and postmanipulation data collec-
tion. In addition, the frequency of sample collection may be greater than once
per year, particularly if the fisheries scientist wants to investigate the effects of
manipulation on successful recruitment.

Annual estimates of recruitment can be generated with monitoring data rou-
tinely collected by many state, federal, and provincial natural resource agencies in
conjunction with population assessments. Many agencies conduct standardized
electrofishing, gill netting, trap netting, seining, and sometimes rotenone sampling
of age-0 fishes. Sampling bias and differences in catchability either with gear or
location can occur and should be assessed (see Murphy and Willis 1996). Specific
investigations to address a priori hypotheses pertaining to recruitment may require
more sampling but typically can take place over a shorter period of time.

To determine if a relation exists between recruit and spawner (or parental abun-
dance), long-term data collection of both these variables is necessary. Madenjian et
al. (1996) used as little as 13 years of walleye data, whereas Myers et al. (1994)
limited their analysis of 72 finfish populations to those with at least 20 years of data.
Sources for recruitment–spawner data may include direct estimates from mark–
recapture experiments, C/f derived from indices (Tyler and Crawford 1991; Myers
et al. 1997), or estimates from stock assessment modeling derived from some form
of sequential population analysis, virtual population assessment, or catch at age. We
urge caution in any recruit–spawner analysis with fewer than 20 observations.

4.1.3 Freshwater versus Marine Recruitment Assessment

Similar to freshwater systems, recruitment of marine fishes can be highly variable
and is regulated by both density independent and dependent factors. In addition,
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low parental abundance due to either overexploitation or natural population cycles
can drastically reduce reproductive output, which can ultimately result in a de-
cline of recruits into the population and confound detection of environmental
variables related to variable recruitment (Walters and Collie 1988). The areal ex-
tent of marine ecosystems, the sometimes longer interval between juvenile and
adult harvestable ages, the difficulty of sampling certain life stages,  and the greater
difficulty in sampling recruits can confound recruitment assessment in marine
environments as compared with freshwater environments.

Walters and Collie (1988) questioned the use of public funds to support cor-
relative approaches to explain recruitment variation due to environmental vari-
ables, particularly for variables that cannot be controlled in marine fisheries. Sub-
sequent predictions can fail due to the short-term period or window of data
collection “at the frustrating rate of one observation per year” that will not en-
compass an even prohibitively longer period of recruitment variability (Walters
and Collie 1988). In addition, correlative relations between environment vari-
ables and recruitment may be spurious (Walters and Collie 1988; Myers 1998).
Myers (1998) examined numerous studies that had reexamined recruitment pat-
terns primarily of marine fishes and found after retesting that many of the previ-
ously derived correlates failed to predict recruitment after additional data had
been collected.

An early focus in marine stock assessment focused on recruit–spawner rela-
tions. In general, these described the number of recruits as a function of parental
spawners either as (1) an asymptotic relation whereby recruitment will not in-
crease once a certain number of spawners occur in the population (Beverton–
Holt, with compensation) or (2) a domed-shaped relation (Ricker, with overcom-
pensation) whereby the greatest numbers of recruits will be produced at some
intermediate abundance of spawners. With a greater number of spawners, re-
cruits will decline due to density dependence (Ricker 1975). In freshwater, Ricker
recruit–spawner relations have been shown, for example, for walleye (Madenjian
et al. 1996; Hansen et al. 1998) and lake trout (Hansen et al. 1996).

Typically, attempts to define a critical abundance of spawning adults necessary
for adequate recruit production based on Ricker or Beverton–Holt equations have
been wrought with high variability, confounding effects of environmental factors
that affect recruitment, and the necessity to collect long-term data (Hilborn and
Walters 1992; Goodyear 1993; Hansen et al. 1998). To circumvent the problem of
defining recruit–spawner relations, marine fisheries scientists have attempted to
address recruitment overfishing quantitatively by means of the spawning poten-
tial ratio (Goodyear 1993).  Slipke et al. (2002) introduced the use of the spawn-
ing potential ratio to address recruitment overfishing for a freshwater commer-
cial fishery.

■ 4.2 ESTIMATION OF RECRUITMENT

A variety of gears can be used to sample young fish and estimate recruitment. In
freshwater, electrofishing gear, gill nets, seines, trap nets, fyke nets, push nets,
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bottom and midwater trawls, and rotenone have been used to sample recruits
(see Chapters 5–10 in Murphy and Willis 1996). Gear selectivity can cause bias in
estimating recruitment (Jackson and Noble 1995) and should be thoroughly evalu-
ated to ensure representative sizes of all members of a cohort are sampled.

4.2.1 Estimates of Recruitment from Population Estimates

The density and biomass of recruits can be estimated with single or multiple mark–
recapture methods, depletion methods, and toxicants (Chapter 8). Serns (1982)
used electrofishing to conduct multiple mark–recapture procedures to estimate
the population of age-0 smallmouth bass in the fall from 1974 to 1981 in Lake
Nebish, Wisconsin, and estimates varied from 1,174 to 7,764 fish. Rider et al. (1994)
blocked off 0.1–0.2-ha coves that contained submersed vegetation or open water
to estimate the density of age-0 largemouth bass by means of an electrofishing
catch depletion technique. Typically, four to seven 10-min passes were required to
deplete the number of individuals in order to compute a Leslie and Davis (1939)
linear regression line (Rider et al. 1994).

Long-term (>20 years) annual cove rotenone samples were used to estimate
the biomass of age-0 black basses in Bulls Shoals Reservoir, Arkansas (Ploskey et
al. 1996) and age-0 crappie density in four Mississippi reservoirs (Allen and Miranda
1998). Hoyer and Canfield (1996) used 0.1-ha block nets and rotenone applied in
limnetic and littoral regions of Florida lakes to estimate annual density of age-0
largemouth bass. Allen et al. (1999) used a shoreline rotenone technique to re-
late age-0 largemouth bass density to chlorophyll-a concentrations and larval giz-
zard shad and threadfin shad densities. Fisher and Zale (1993) used a 12.2-m-long
by 1.8-m-deep bag seine with 4.8-mm mesh and captured age-0 largemouth bass
from quadrants of a known area. Average annual catch rates varied from 0.42 to
3.12 fish/100 m2, and density was related to water-level fluctuations in conjunc-
tion with the implementation of a new water-level regulation schedule on Grand
Reservoir, Oklahoma (Fisher and Zale 1993).

4.2.2. Estimates of Recruitment from Indices

In many instances, estimating the density and biomass of recruits (either at age 0
or age 1) is not feasible or too costly. Sampling with electrofishing gear, gill nets,
seines, trawls, and trap nets can provide standardized units of effort for either
time or distance and can be used to index recruit abundance. Willis and Stephen
(1987) and Sammons and Bettoli (2000) used experimental monofilament gill
nets to estimate catch per net-night of age-0 walleye and age-1 white bass; recruits
of both species varied over two orders of magnitude, and this variation was related
to hydrologic variables.

Maceina and Stimpert (1998) used age-1 catch rates (N/net-night) of black
crappie and white crappie in trap nets as an index of recruitment in Alabama
reservoirs and related the variation in recruitment to reservoir hydrologic variables.
Sammons and Bettoli (2000) used DC electrofishing in the spring to capture age-1
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largemouth bass along 40 randomly chosen 100-m transects throughout Normandy
Reservoir, Tennessee, and average annual catch rates varied from about 0.1 to
about 1.7 fish/100 m. Jackson and Noble (2000) used a handheld electrofishing
apparatus from a boat to collect age-0 largemouth bass during 3-week intervals
from June to October from 1988 to 1998; peak average catch rates among years
varied from 3.8 to 46.7 age-0 fish/20 min.

Bronte et al. (1993) used a semiballoon bottom trawl with a 11.9-m headrope,
a 15.6-m footrope, and a 12.7-mm-mesh cod end to sample all sizes of yellow perch,
and the total catch of age-2 fish was used as an index of recruitment and year-class
strength. Similarly, Madenjian et al. (2000), using 8-m and 11-m bottom trawls,
documented a reduction in catch of age-0 white bass over a 20-year period from
Lake Erie that was related to the subsequent decline in the fishery. Counihan et
al. (1999) used a 6.2-m high-rise bottom trawl to assess abundance of age-0 white
sturgeons. Highly variable catches were due to patchy distributions and were not
normally distributed (Counihan et al. 1999). These authors recommended that
indices of presence and absence and C/f  both be used to assess recruitment levels
of age-0 white sturgeons in the Columbia River. Beach seines were used to collect
age-0 striped bass from the Chesapeake Bay from 1954 to 1996 to develop a quan-
titative juvenile index, which was later used to determine that recruitment over-
fishing caused the collapse of this valuable fishery (Richards and Rago 1999).

4.2.3 Use of Marks and Tags to Assess Recruitment

Coded wire tags, dyes, chemical marking, morphological marks, and genetic tags
can be employed to determine the success of stocking and may also be used to
examine recruitment processes of wild fish. To evaluate stocking success, otoliths
of juvenile fishes can be marked with alizarin complexone,  calcein, or oxytetracy-
cline, and these chemicals can be applied by immersion, injection, or orally through
prepared foods in a hatchery (Thomas et al. 1995).

Isermann et al. (2002) successfully used oxytetracycline immersion to form
marks on young crappie otoliths and suggested this technique can be used effec-
tively to identify stocked crappies up to about 2 years old. Paragamian et al. (1992)
established the reliability of stress checks on otoliths of hatchery-reared kokanees
to distinguish these fish from wild fish in Lake Pend Oreille, Idaho. Counts of
daily increments in relation to stress checks allowed for correct identification of
fish from several co-occurring release groups that had been stocked at different
times in the same season (Paragamian et al. 1992).

Buynak and Mitchell (1999) used alternating pectoral fin clips of stocked age-
0 largemouth bass (about 11 cm TL) over a 5-year stocking period to evaluate
contribution of stocked fish to naturally produced fish in a 1,200-ha Kentucky
reservoir. Over time, stocked fish contributed 25% of the total electrofishing catch
(Buynak and Mitchell 1999).

Ryan et al. (1998) stocked genetically distinct Florida largemouth bass adults
that contained a unique allele (sIDHP*109) expressed in the allozyme locus for
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isocitrate dehydrogenase (IUBMB [1992] number 1.1.1.42 ) that was differ-
ent than the sIDHP*100 and sIDHP*122 alleles found, respectively, in the north-
ern largemouth bass and Florida largemouth bass population in Lake Galdwater,
Texas. Offspring homozygous for the sIDHP*109 allele were produced, grown
out in nursery ponds, and stocked at rate of 8.8 fish/ha in summer (Ryan et
al. 1998). To assess stocking success, age-0 and age-1 largemouth bass were
sampled in fall and spring with DC electrofishing, and recruits were identified
using electrophoresis (Ryan et al. 1998). Murphy et al. (1983) identified allele
frequencies at the malate dehydrogenase locus (mMDH-2*; IUBMB [1992]
number 1.1.1.37) of hatchery-raised walleye, and the success of supplemental
stocking was evaluated by quantifying shifts in cohort allele frequencies due to
the stocking of juvenile fish with allele frequencies different from resident-
hatched fish.

Ludsin and DeVries (1997) used three different color dyes that were injected
into small (<100 mm TL), medium (100–150 mm TL), and large (>150 mm TL)
age-0 largemouth bass in the fall to assess overwinter size-dependent mortality. In
the spring at age 1, a higher proportion of the larger-size individuals were col-
lected, which indicated that size in the fall influenced recruitment to age 1. Par-
sons and Pereira (2001) used coded wire tags to evaluate walleye stockings and
estimated the extent of natural reproduction in three Minnesota lakes. About
95,000 hatchery-reared striped bass were individually marked with coded wire tags
and released into Delaware Bay, and a total population estimate of age-0 striped
bass was derived from recaptures of both tagged and wild-produced fish (Burton
and Weisberg 1994).

4.2.4 Otolith Microstructure Analysis to Assess Recruitment

The analysis of daily increments on the otoliths of fishes (Pannella 1971) can
provide fisheries scientists with insights on early life history aspects of fish popula-
tion dynamics, including recruitment. Research has sometimes shown that early
hatched cohorts, identified by enumerating daily growth rings, not only have a
size advantage compared with later-hatched cohorts but grow faster and are more
likely to recruit to the population due to increased survival (Ludsin and DeVries
1997). Conversely, early hatching in spring could be detrimental to larval fish
survival and subsequent recruitment due to unstable climatic conditions such as
low water temperatures, high variation in air and water temperatures, or windy
conditions (Kramer and Smith 1962; Summerfelt 1975; Crecco and Savoy 1987;
Rice et al. 1987).

Isely et al. (1987) and Maceina et al. (1988) used incremental counts of daily
growth rings to assess temporal spawning patterns, growth, and recruitment po-
tential of mixed populations of northern and Florida largemouth bass. Crecco
and Savoy (1987) identified 5-d cohorts of American shad, estimated cohort mor-
tality, and found that recruitment was influenced by density-dependent processes
and strongly mediated by hydrologic and climatic conditions.



128 Chapter 4

■ 4.3 RECRUITMENT VARIABILITY AND FACTORS RELATED
TO YEAR-CLASS STRENGTH

4.3.1 Temporal Variation in Recruitment

Abundance of recruits can be relatively stable or highly variable over time. Fisher-
ies scientists collect long-term monitoring or research data to assess temporal varia-
tion in recruitment. Generally, data should be collected at about the same time
each year from a random, systematic, or stratified sampling design (Chapter 3).

Allen and Pine (2000) reviewed data on recruitment variability in white crap-
pie and black crappie populations and largemouth bass populations based on
age-0 and age-1 abundances, which were assessed using electrofishing,  trap nets,
and rotenone sampling. Coefficients of variation (CV; 100 · SD/mean) for re-
cruits averaged 82% (55–124%) for crappies and 66% (11–189%) for largemouth
bass. In Lake Escanaba, Wisconsin, mark–recapture population estimates based
on electrofishing were conducted for age-0 walleye each September–October from
1958 to 1996 (Hansen et al. 1998). In this lake, age-0 walleye density averaged 99
fish/ha, varied from 5 to 299 fish/ha, and had a CV of 78% (Hansen et al. 1998).
This long-term database is useful for understanding the dynamics of walleye re-
cruitment in Lake Escanaba but represented a tremendous amount of sampling
effort over a long time period that obviously cannot be achieved for every system.

High CV values in recruitment will cause population characteristics and associ-
ated angler catches to fluctuate. In short-lived populations (i.e., less than 8 years),
three to four successive weak year-classes can cause a population to decline drasti-
cally. Software programs such as GIFSIM (Taylor 1981), MOCPOP (Beamesderfer
1991), and FAST (Slipke and Maceina 2000) can be used to simulate the response
of a fish population over time to stochastic recruitment. Fisheries scientists may
be interested in examining some mean or median level of recruitment and associ-
ated variance and incorporating this variation (SD, CV, or range) into modeling
or other types of analyses.

Kimura (1988) presented a two-way ANOVA technique based on log-linear mod-
els that can be applied to catch data of different age fish to test for differences
among year-class abundances. In many instances with sampling, collection gears
may be positively or negatively biased for a certain age. This bias was evident in the
crappie data presented in Table 4.1; age-1 catch was higher than age-0 catch for the
1993 year-class. If fish are collected over time from a number of different age-groups,
then potential age-selective bias in the sample can be ameliorated by considering
multiple catches of different age fish from the same year-class (Box 4.1).

Over time, recruitment will vary and may show an increasing, decreasing, or
stable pattern. Long-terms changes in recruitment may be a function of variation
in water quality, habitat, climatic factors, introduction of a competitive species, or
excessive exploitation. Bettoli et al. (1992) found a significant correlation (r =
0.80; P < 0.05) between density of age-1 largemouth bass and macrophyte cover-
age. A reduction in age-0 channel catfish and striped bass abundance was associ-
ated with high exploitation of adults for both of these species, and a subsequent
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reduction in exploitation resulted in increased recruitment (Pitlo 1997; Richards
and Rago 1999). White bass decreased over time in Lake Erie, and this trend was
related to a declining temporal trend in the abundance of age-0 fish (Madenjian
et al. 2000; Box 4.2).

Fisheries scientists can also examine temporal differences in recruitment from
changes in habitat features or by manipulating habitat characteristics. Fisher and
Zale (1993) examined abundance of age-0 largemouth bass during a 12-year pe-
riod for which data were collected prior to and after a change in the reservoir-
regulated water levels. In many instances, a manipulation is conducted in a single
area or water body and pre- and postmanipulation responses in recruitment are
measured. If young fish are collected over time, then one can use one of the
ANOVA designs presented by Hubert and Fabrizo (Chapter 7).

4.3.2 Spatial Variation in Recruitment

Fish recruitment can vary among water bodies, within water bodies, and among
different habitats within a single water body (Allen and Pine 2000). For example,
Wrenn et al. (1996) found that density of age-0 largemouth bass was greater in
areas of Lake Guntersville, Alabama, that contained Eurasian water milfoil com-
pared with areas that were devoid of aquatic vegetation. Sammons and Bettoli (2000)
collected age-0 largemouth bass for a 6-year period to examine the relation of
reservoir hydrology and largemouth bass recruitment. Four distinct areas of the

Table 4.1 Age-0, age-1, and age-2 black crappie and white crappie catch rates (species catch
per unit effort, C/f, were pooled) for 11 year-classes collected with trap nets from Weiss Lake,
Alabama, from 1989 to1999. Three reservoir hydrologic variables are also provided (partial data
set presented in Maceina and Stimpert 1998). Water levels in Weiss Lake are regulated for flood
control and power generation. Mean winter stage was the average daily stage between 1
January and 31 March (prior to crappie spawning).  Mean winter retention was derived by
dividing average daily volume by discharge, which was computed from average daily readings
for Weiss Lake. Full summer pool is normally obtained around 15 April each year at an elevation
of 171.95 m above mean sea level (msl).  Mean spring stage was computed from average daily
stages between 1 April and 31 May and coincided with crappie spawning (Travnichek et al. 1996).

Year- Catch per unit effort Mean winter Mean winter Mean spring
class Age-0 Age-1 Age-2 stage (m msl) retention (d) stage (m msl)

1989 3.12  0.49    170.85      7.2     171.79
1990 8.03 5.32  2.43    171.76      4.2     171.75
1991 0.47 0.39  0.39    170.73      7.4     171.75
1992 0.61 0.97  0.61    170.67      6.6     171.82
1993 1.38 3.59  1.32    170.99      6.2     171.77
1994 2.73 2.62  0.92    170.93      5.9     171.87
1995 1.66 0.57  0.47    170.88      6.8     171.80
1996 9.89 8.63  2.11    171.39      5.5     171.85
1997 1.86 0.93  0.21    170.83      6.1     171.90
1998 3.72 1.17    171.04      5.6     171.83
1999 2.18    170.77      9.7     171.82
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Box 4.1 Log-Linear Model to Test for Year-Class Abundance Differences

Below we conduct a test for year-class abundance differences among the 1990 to 1997 year-classes
(YEARCL) based on catch rates of age-0, age-1, and age-2 crappies (AGE in years) from Weiss Lake
(Table 4.1). Trap-net catch rates are transformed to natural log values (LCATCH) to homogenize
variances as recommended by Kimura (1988) for log-linear analysis. The data in Table 4.1 were
rearranged to conduct the analysis. Year of collection (YEARCOL) was included in the data file, and
the following SAS (2001) program was written to conduct the analysis.

Program

DATA WECRA;

INPUT YEARCOL YEARCL AGE CATCH;

LCATCH=LOG(CATCH);

LINES;

1990    1990    0    8.03

1991    1990    1    5.32

1992    1990    2    2.43

1991    1991    0    0.47

1992    1991    1    0.39

1993    1991    2    0.39

1992    1992    0    0.61

(continue data input)

;

PROC GLM; CLASS YEARCL AGE;

MODEL LCATCH=YEARCL AGE;

LSMEANS YEARCL/T PDIFF STDERR;

MEANS YEARCL/LSD LINES ALPHA=0.001786; RUN;

Results

Table Output for two-way analysis of variance (ANOVA) and comparison of least-squares means
for catch (dependent variable LCATCH). There were 24 observations in the data set. Abbreviations
are given for coefficient of variation (CV), mean square error (MSE), sum of squares (SS), and least-
squares mean (LSMEAN).

Class Level Information

Class Levels Values

YEARCL 8 1990 1991 1992 1993 1994 1995 1996 1997
AGE 3 0 1 2

Analysis of Variance

Source df SS Mean square F-value P > F

Model 9 23.11022510 2.56780279 11.67 0.0001
Error 14 3.07916486 0.21994035
Corrected total 23 26.18938997

R 2 0.882427 Root MSE 0.46897798
CV 138.6533 LCATCH mean 0.33823792
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Source df Type III SS Mean square F-value P > F

YEARCL 7 19.01504754 2.71643536 12.35 0.0001
AGE 2 4.09517756 2.04758878 9.31 0.0027

Least-Squares Means for H0 LSMEAN = 0

LSMEAN
YEARCL LCATCH LSMEAN SE  P > |t|  number

1990 1.54751636 0.27076456 0.0001 1
1991 –0.87941322 0.27076456 0.0058 2
1992 –0.33968395 0.27076456 0.2302 3
1993 0.62595581 0.27076456 0.0365 4
1994 0.62803144 0.27076456 0.0360 5
1995  –0.27010797 0.27076456 0.3354 6
1996 1.73115220 0.27076456 0.0001 7
1997  –0.33754732 0.27076456 0.2330 8

Least-Squares Means for H0 LSMEAN I = LSMEAN j

LSMEAN
number (j)
t-test, and Pa 1 2 3 4 5 6 7 8

1
t-value 6.337973 4.928459 2.406673 2.401252 4.74676 –0.47957 4.922879
P 0.0001 0.0002 0.0305 0.0308 0.0003 0.6389 0.0002

2
t-value –6.33797 –1.40951 –3.9313 –3.93672 –1.59121 –6.81754 –1.41509
P 0.0001 0.1805 0.0015 0.0015 0.1339 0.0001 0.1789

3
t-value –4.92846 1.409513 –2.52179 –2.52721 –0.1817 –5.40803 –0.00558
P 0.0002 0.1805 0.0244 0.0242       0.8584       0.0001     0.9956

4
t-value –2.40667 3.9313 2.521787 –0.00542 2.340088 –2.88624 2.516207
P 0.0305 0.0015 0.0244 0.9958 0.0346 0.0120 0.0247

5
t-value –2.40125 3.93672 2.527207 0.005421 2.345508 –2.88082 2.521627
P 0.0308 0.0015 0.0242 0.9958 0.0343 0.0121 0.0244

6
t-value –4.74676 1.591212 0.181699 –2.34009 –2.34551 –5.22633 0.176119
P 0.0003 0.1339 0.8584 0.0346 0.0343 0.0001 0.8627

7
t-value 0.479568 6.817541 5.408028 2.886241 2.880821 5.226329 5.402448
P 0.6389 0.0001 0.0001 0.0120 0.0121 0.0001 0.0001

8
t-value –4.92288 1.415093 0.00558 –2.51621 –2.52163 –0.17612 –5.40245
P 0.0002 0.1789 0.9956 0.0247 0.0244 0.8627 10.0001

(Box continues)

LSMEAN number (I)
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Least-Significant-Difference Test for Variable LCATCH b

T grouping Mean N YEARCL

        A 1.7312 3 1996
        A
        A 1.5475 3 1990
        A
B      A 0.6280 3 1994
B      A
B      A 0.6260 3 1993
B
B            C –0.2701 3 1995
B            C
B            C –0.3375 3 1997
B            C
B            C –0.3397 3 1992
              C
              C –0.8794 3 1991

a To ensure overall protection level, only probabilities associated with preplanned comparisons should be used.

b Means with the same letter are not significantly different. Alpha = 0.001786, df = 14, MSE = 0.21994, critical
value of t = 3.84, and least significant difference = 1.4723. This test controls the type I comparisonwise error rate
not the experimentwise error rate.

Interpretation
The two-way ANOVA indicated that both age and year-class were significant (P < 0.01) class
variables related to crappie C/f. Inspection of the data in Table 4.1 suggested abundance of a year-
class decreased at older ages, and this was supported by the analysis (F = 9.31; df = 2, 14). Account-
ing for the effects of age, C/f also varied by year-class (F = 12.35; df = 7, 14).

Box 4.1 (continued)

reservoir were chosen each year, and replicate electrofishing transects were con-
ducted to collect fish in August and September each year. A split-plot repeated-
measures design (Maceina et al. 1994) was used to test for spatial differences in
C/f among these four areas of the reservoir for data collected in 1992 because the
same six electrofishing transects were sampled repeatedly in August and Septem-
ber for that year (Table 4.2; Box 4.3).

4.3.3 Use of Adult Age-Structure Data to Estimate Recruitment Variability

Total annual mortality in a fish population can be obtained from catch-curve re-
gression analysis (see Chapter 6) by which a sample of fish that has recruited to
the fishery is collected and aged and the natural log of the number at age (y-
variable) is regressed against age (x-variable). When a single sample of fish is
collected that represents a number of cohorts or year-classes, highly variable
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Below the ANOVA is a table that presents the least-squares means (LSMEANS) for loge(C/f), LCATCH,
the associated SE, and a probability value from a t-test that the least-squares mean is not equal to 0
(null hypothesis, H0: LSMEAN = 0). A number assigned to each least-squares mean represents each
year-class. The LSMEANS procedure in SAS creates least-squares means for the class variables. These
are also referred to as adjusted means (SAS 2001). For one-way ANOVA, or in this example, a
balanced two-way ANOVA, least-squares means are computed as arithmetic means. In this example,
each year-class is weighted by sample size or the number of age-groups (N = 3).

Next, a matrix table is presented that shows pairwise t-tests among all eight year-classes and
corresponding probability levels. These comparisons allow the fisheries scientists either to accept
or reject the H0 that the least-squares means or year-class abundance estimates are the same for
the two year-classes being compared. A caution statement at the end of the table warns the analyst
only to make preplanned comparisons (SAS 2001). If many comparisons are being made, some
statistical differences may be detected due to random chance and are not true differences.

Because 28 comparisons were made among these eight year-classes (7 + 6 + 5 + 4 + 3 + 2 + 1), a
Bonferroni correction can be applied to an alpha level to reduce the probability of making a type I
error. For this example, if we set alpha at 0.05 and divide by 28, the new alpha level of 0.001786 can
be specified in the SAS program to perform Fischer’s least-significance-difference multiple- range
test, which is analogous to multiple pairwise t-tests. Thus, fewer statistical differences would be
evident compared with a standard alpha value of 0.05. The fisheries scientist needs to decide what
level of a type I error is acceptable when making multiple comparisons. In this example, the
Bonferroni correction is clearly highly conservative and would become more restrictive in rejecting
the H0 as the number of years of data collection increases. If a priori assignment of year-class
groups can be assigned, then a Bonferroni correction for preplanned comparisons would be less or
contrast statements can be set up to test for preplanned comparisons. From these results, the 1990
and 1996 year-classes were more abundant than were the 1991, 1992, 1995, and 1997 year-classes.
Abundance of the 1993 and 1994 year-classes was intermediate and statistically similar to some of
these weaker and more abundant year-classes.

recruitment will cause the relation between number at age and age to vary (Ricker
1975; Maceina 1997).

Guy and Willis (1995) introduced and used the recruitment variability index
(RVI) to assess black crappie reproductive success in South Dakota. To compute
the RVI, the cumulative relative frequency (CRF) distribution (the same as pre-
sented for the Kolmogorov–Smirnov one-sample test or PROC CHART in SAS
[2001]) is used to describe the magnitude and distribution of the frequency-of-
occurrence-at-age data. This index is sensitive to year-classes that are completely
missing from the sample. The RVI is computed as

RVI = [CRF/(Nm + Np)] – Nm/Np , (4.1)

where Nm is equal to the number of missing year-classes (no fish  were collected),
Np is equal to the number of year-classes present in the sample, and the Np must
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Box 4.2 Evaluation of Time Series Trends in Recruit Abundance

The following program presents a plot and computes the Pearson correlation coefficient between
age-0 C/f (AGE0CPE) of white bass and year and the Kendall tau-b nonparametric correlation
coefficient for ranks between these two variables (data published in Mandenjian et al. 2000). In
addition, the simple linear regression between C/f and year was computed along with the Durbin–
Watson statistic (DW) to determine temporal autocorrelation. Finally, the residuals from the
regression were plotted against year by means of the following SAS program.

Program

DATA WHBASS;

INPUT YEAR AGE0CPE @@;

LINES;

1972 24.38 1973 4.29 1974 10.06 1975 18.16 1976 23.44 1977 20.38 1978 8.06

1979 11.36 1980 25.24 1981 20.49 1982 4.88 1983 2.1 1984 7.68

1985 4.52 1986 3.14 1987 0.57 1988 4.25 1989 1.35 1990 8.42 1991 2.04

1992 3.66 1993 2.84 1994 2.49 1995 0.6 1996 4.85 1997 3.14

;

PROC PLOT; PLOT AGE0CPE*YEAR;

PROC CORR; VAR AGE0CPE YEAR;

PROC CORR KENDALL; VAR AGE0CPE YEAR;

PROC REG; MODEL AGE0CPE=YEAR/DW;

OUTPUT OUT=A R=RES;

PROC PLOT; PLOT RES*YEAR/VFRE=0; RUN;

Results

Figure Age-0 C/f (AGE0CPE) of white bass versus year, in which A represents one observation.
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Table Output for Pearson and Kendall tau-b correlation coefficients. Computed are the Pearson
correlation coefficient between AGE0CPE of white bass and year and the Kendall tau-b nonpara-
metric correlation coefficient for ranks between these two variables. Both correlation coefficients
test for P > |R| under the H0 that R (rho) = 0 and N = 26.

Simple Statistics

 Variable N Mean SD Sum  Minimum Maximum

 AGE0CPE  26 8.5535 8.0782 222.3900 0.5700 25.2400
 YEAR 26 1985 7.6485 51597 1972  1997

Pearson Correlation Coefficients

AGE0CPE YEAR

AGE0CPE  1.00000 –0.67212
0.0 0.0002

YEAR –0.67212 1.00000
0.0002 0.0

Kendall’s Tau-b Correlation Coefficient

AGE0CPE YEAR

AGE0CPE  1.00000 –0.48690
 0.0 0.0005

YEAR –0.48690 1.00000
0.0005 0.0

Time Series Regression and Test for Autocorrelation

Source df SS Mean square F-value P > F

Model 1 736.99067 736.99067 19.775 0.0002
Error  24 894.43972 37.26832
Corrected total 25 1631.43039

R2 0.4517 Root MSE 6.10478
Adjusted R2 0.4289 AGE0CPE mean 8.55346
CV 71.37202

Parameter
Variable df estimate SE t-value P > |t|

Intercept 1 1417.304215 316.79344310  4.474 0.0002
YEAR 1 –0.709877 0.15963274 –4.447 0.0002

Durbin–Watson statistic (DW) 1.500
Number of observations  26
First-order autocorrelation 0.216

(Box continues)
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exceed the Nm. The RVI varies from –1 to 1, and increases in RVI indicate less
recruitment variability. The index assumes that fish are fully recruited to the sam-
pling gear, that catch at age is a valid representation of year-class strength, and
that there are not year-classes beyond the last age-group represented in the sample
(Guy and Willis 1995). In addition, Guy (1993) recommended that the RVI should
not be computed when less than three year-classes are present.

Maceina (1997) built upon the RVI concept and developed a quantitative in-
dex of recruitment variability based on the residuals or errors associated with

Interpretation
The SAS plot that examines the relationship between age-0 C/f and year clearly showed a decline in
white bass recruitment over time. Correlation and regression analyses indicated a significant (P <
0.01) decrease in C/f of age-0 white bass over time. The Kendall tau-b correlation coefficient is a
nonparametric test that numerically ranked the years and age-0 C/f and then computed the

Box 4.2 (continued)

Figure Residuals from the time series regression of age-0 white bass C/f versus year, in which A
represents one observation.
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association between these two ranks. Similar to Pearson correlation coefficients, Kendall tau-b
correlation coefficients can vary from –1 to 1, and these values would be computed if ranks
completely matched. The value of Kendall tau-b correlation coefficient was less than that of the
Pearson coefficient, but both tests indicated a strong, significant (P � 0.01) decreasing temporal
trend in age-0 C/f. The Kendall tau-b correlation coefficient is useful for time series data because
one or a few extremely high or low values can be so influential when using linear methods that the
results would be biased.

Autocorrelation can be troublesome with time series analysis because errors or residuals may not
be independent. For example, when measuring the response of a variable to some factor, the same
factor also influenced that variable of interest some time in the past. The same processes could be
evident with recruitment data, for example, due to long-term temporal patterns in climate or
recruitment overfishing. If adults have been overexploited to the extent that not enough recruits
are being produced to replace adults, then a negative feedback loop occurs; fewer adults confer
fewer recruits to become adults, and then there are fewer recruits in the next generation. Although
autocorrelation is somewhat troublesome statistically with time series analysis, this should not
preclude the inferences drawn from primary trends.

The SAS plot of the residuals from the regression of age-0 C/f versus year showed a somewhat even
cyclic pattern of high and low residuals from 1972 to the early 1980s, negative residuals during the
rest of the 1980s, followed by residual values around 0 or greater in the 1990s. These residuals did
not appear randomly scattered, particularly from 1972 to about 1985, and suggested a weak cyclic
pattern in white bass recruitment. The Durbin–Watson statistic (DW) is a test for the existence of a
first-order autoregressive process. The personal computer version of SAS (2001) does not provide a
statistical probability that tests for a first-order autocorrelation, but probability distribution tables
for the DW values can be found in Montgomery and Peck (1982). For this example, the computed
DW was 1.5, which exceeded the critical DW value of 1.45 (P = 0.05). Thus, errors were
autocorrelated based on the DW statistic. The first-order correlation is the actual correlation
between adjacent residuals. We computed a first-order autocorrelation of  0.22, which is moderately
low, but for time series analysis, the number of years of data was relatively high (N = 26). Values
approaching –1 or 1 show a high degree of autocorrelation. See Montgomery and Peck (1982) and
Freund and Littell (1991) for more information. High values for first-order correlations and signifi-
cant DW values suggest a cyclic pattern and dictate that the fisheries scientist should investigate
this phenomenon in more detail.

catch curves and subsequently verified the index (Maceina 2004). An assumption
of this analysis is that positive and negative residuals associated with catch-curve
regressions represent strong and weak year-classes. Thus, variation about the catch-
curve regression is primarily associated with recruitment variability, though in
some instances density-dependent mortality among adult fish may also influence
the relation between number at age and age. Maceina (2004) more thoroughly
explained the use of this approach for quantifying recruitment, and an example
is provided (Box 4.4).
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4.3.4 Examination of the Influence of Environmental Factors on Recruitment

Correlation, simple and multiple linear regression, and nonlinear regression tech-
niques are commonly used to explain and predict variation in recruitment be-
cause biotic and abiotic variables that influence recruitment typically vary from
year to year. For example, Busch et al. (1975), Kallemeyn (1987), and Hansen et al.
(1998) found that adverse climatic conditions in spring during walleye spawning

Table 4.2 Catch (N/100 m) of age-0 largemouth bass along six 100-m transects (Rep) in four
different regions of Lake Normandy for three successive time periods (Time) spaced 2 weeks
apart in August (Aug) and September (Sep) 1992 (partial data set from Sammons and Bettoli
2000). The four areas were the Lower Basin (LB), Riley Creek (RC), the Upper Basin (UB), and
Carroll Creek (CC).

Month Area Rep  Time Catch Month Area Rep Time Catch

Aug  CC    1     1    0 Aug RC    1     2    2
Aug CC    2     1    3 Aug RC    2     2    0
Aug CC    3     1    0 Aug RC    3     2    2
Aug CC    4     1    0 Aug RC    4     2   1
Aug CC    5     1    2 Aug RC    5     2   4
Aug CC    6     1    1 Aug RC    6     2   1
Aug LB    1     1    4 Aug UB    1     2   0
Aug LB    2     1    2 Aug UB    2     2   1
Aug LB    3     1  11 Aug UB    3     2   0
Aug LB    4     1   3 Aug UB    4     2   0
Aug LB    5     1   6 Aug UB    5     2   1
Aug LB    6     1   3 Aug UB    6     2   0
Aug RC    1     1   3 Sep  CC    1     3   0
Aug RC    2     1   2 Sep CC    2     3   3
Aug RC    3     1   0 Sep CC    3     3   1
Aug RC    4     1   5 Sep CC    4     3   0
Aug RC    5     1   3 Sep CC    5     3   1
Aug RC    6     1   0 Sep CC    6     3   1
Aug UB    1     1   2 Sep LB    1     3   2
Aug UB    2     1   1 Sep LB    2     3   3
Aug UB    3     1  4 Sep LB    3     3   0
Aug UB    4     1  0 Sep LB    4     3   2
Aug UB    5     1  3 Sep LB    5     3   3
Aug UB    6     1  0 Sep LB    6     3   4
Aug  CC    1     2  0 Sep RC    1     3   0
Aug CC    2     2  4 Sep RC    2     3   0
Aug CC    4     2  1 Sep RC    4     3   1
Aug CC    5     2  0 Sep RC    5     3    0
Aug CC    6     2  1 Sep RC    6     3   0
Aug LB    1     2  4 Sep UB    1     3   1
Aug LB    2     2  1 Sep UB    2     3   0
Aug LB    3     2  3 Sep UB    3     3   3
Aug LB    4     2  1 Sep UB    4     3   0
Aug LB    5     2  5 Sep UB    5     3   0
Aug LB    6     2  3 Sep UB    6     3   0
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Box 4.3 Evaluation of Spatial Differences in Recruit Abundance

Table 4.2 contains a data set to test for spatial differences in age-0 largemouth bass catch in Lake
Normandy, Tennessee (data from Sammons and Bettoli 2000). In this example, four distinct areas of
the reservoir (Lower Basin [LB], Riley Creek [RC], Upper Basin [UB], and Carroll Creek [CC]) were
chosen to examine spatial variation in abundance of fish along 100-m shoreline electrofishing
transects. A handheld DC electrofishing unit was used at night. Six fixed sites, or replicate transects,
were chosen within each area and sampled three times at 2-week intervals starting the second
week of August 1992 and ending the second week of September 1992. Thus, 24 transects were
conducted over three time intervals for a total of 72 transects, or observations.

Because replicate samples were collected at fixed locations over the three time periods within each
of the same areas, a split-plot repeated-measures ANOVA was used to test for differences in
number of fish among areas (Maceina et al. 1994). In addition, this analysis also tested for differ-
ences in catch over time and examined the time × area interaction. The program and analysis were
divided into main-plot A, which included the class variables area, replicates (REP), and the area ×
replicate interaction, and subplot B, which contained the time and the time × area interaction
effects. The mean square error (MSE, or type III sums of squares) of the area × replication term was
used as the error term in the denominator and the MSE for area as the numerator of an F-test for
statistical differences in the number caught among the four areas in main-plot A. The MSE gener-
ated from the entire ANOVA was used in the denominator of the F-test to determine if statistical
differences in catch occurred over the three time periods (subplot B), as well as for testing for any
interaction between time periods and areas (subplot B).

The following SAS (2001) program provides output to test for differences in catch among areas.

Program

DATA NORM_LMB;

INPUT YEAR MONTH AREA $ REP TIME CATCH;

LINES;

92     8     CC      1       1        0

92     8     CC      2       1        3

92     8     CC      3       1        0

(continue data input)

;

PROC GLM; CLASS TIME AREA REP;

MODEL COUNT = AREA REP  REP*AREA TIME  TIME*AREA;

TEST H = AREA E = REP*AREA;

MEANS AREA/SNK E=REP*AREA;

MEANS TIME/SNK;

RUN;

(Box continues)
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Results

Table Output for split-plot repeated-measures ANOVA (type 1 SS omitted) for which the depen-
dent variable is catch. Four areas in analysis are the Lower Basin (LB), Riley Creek (RC), the Upper
Basin (UB), and Carroll Creek (CC). The Student–Newman–Keuls’ (SNK) multiple-range test compares
the variable catch among these sites.

Class Level Information

Class Levels Values

TIME 3 1 2 3
AREA 4 CC LB RC UB
REP 6 1 2 3 4 5 6

Analysis of Variance

Source df SS Mean square F-value P > F

Model 31 163.2083333 5.2647849 2.05 0.0166
Error 40 102.7777778 2.5694444
Corrected total 71 265.9861111

R2 0.613597 Root MSE 1.602949
CV 92.32984 COUNT mean 1.736111

Source df Type III SS Mean square F-value P > F

AREA 3 65.26388889 21.75462963 8.47 0.0002
REP 5 21.40277778 4.28055556 1.67 0.1652
AREA*REP 15 43.31944444 2.88796296 1.12 0.3678
TIME 2 18.36111111 9.18055556 3.57 0.0374
TIME*AREA 6 14.86111111 2.47685185 0.96 0.4618

Test of Hypotheses Using Type III MSE for AREA*REP as an Error Term

Source df Type III SS Mean square F-value P > F

AREA 3 65.26388889 21.75462963 7.53 0.0026

Box 4.3 (continued)
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Student-Newman-Keuls’ Test for CATCH by AREAa

Number of means 2 3 4
Critical range 1.2073957 1.4713811 1.6326421

SNK Grouping Mean N AREA

A 3.3333 18 LB

B 1.5556 18 RC
B
B 1.1667 18 CC
B
B 0.8889 18 UB

Student-Newman-Keuls’ Test for CATCH by Timeb

Number of means 2 3
Critical range 0.9352266 1.1262514

SNK Grouping Mean N TIME

A 2.4167 24 1
A

B A 1.5833 24 2
B
B 1.2083 24 3

a This test controls the type I experimentwise error rate under the complete H0 but not under partial H0s.
Alpha = 0.05, df = 15, and MSE = 2.887963. Means with the same letter are not significantly different.

b This test controls the type I experimentwise error rate under the complete H0 but not under partial H0s.
Alpha = 0.05, df = 40, and MSE = 2.569444. Means with the same letter are not significantly different.

The main-plot A test detected a significant (P < 0.01) difference in catch among areas. Student–
Newman–Keuls’ (SNK) multiple-range test based on the proper variance term (MSE of the area ×
replicate interaction) indicated that catch of fish in the Lower Basin was greater than that in the
other three areas, and no differences in catch were evident among Riley Creek, Carroll Creek, and
the Upper Basin. The Student–Newman–Keuls’ test represents one of many multiple-range tests
offered by SAS (2001). Other multiple-ranges tests that statistically separate mean values among
treatments can be more or less likely to control the type I error rate.

In addition, the split-plot repeated-measures ANOVA indicated time, a temporal change in catch,
was a significant (P < 0.05) term in the model. The multiple-range test showed that for all four areas
combined, catch was highest during the first sampling time period and declined during the second
and third sampling time period. This might be expected as young fish abundance would be
expected to decline over time due to natural mortality. An interaction between area and time was
not evident (P = 0.46) and, thus, did not confound interpretation of temporal effects due to
differences in catch among areas for different time periods.
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Box 4.4 The Use of Catch-Curve Regression to Identify Weak and Strong
Year-Class Formation

This example contains a data set (data published in Maceina and Bettoli 1998) that uses catch-curve
regression to detect strong and weak year-class formation in a largemouth bass population. In
addition, a reservoir hydrologic variable is included that will be used later (see section 4.3.4) to
examine the association between year-class strength and an environmental variable. In spring
1993, 653 age-2 to age-11 largemouth bass were collected using DC electrofishing. Age–length
keys (Bettoli and Miranda 2001) were used to estimate the age structure for the entire sample from
examination of 190 otoliths.

The SAS program below first computed the regression between the natural log of number at age
(LNUM) against age and used the predicted values for the natural log of number at age (PLNUM) as
weighting factors when the catch-curve analysis was recomputed. Thus, the second catch-curve
regression computed the least-squares fit using the predicted values from the first fit as weights.
From this regression, the residuals were computed and printed with the year-class (YEARCL) and
age identified. For this analysis, we assumed all fish age 2 and older were fully recruited to the
electrofishing gear and the fishery.

Program

DATA GUN_LMB;
INPUT YEARCL AGE NUM MEANRET @@;
LNUM=LOG(NUM + 1);
LMEANRET=LOG10(MEANRET);
LINES;
91 2  175  13.7 90 3  273  16.9 89 4   28   9.6 88 5   79  47.7
87 6   18  19.5 86 7   49  49.5 85 8   21  31.0 84 9    8   9.6
83 10   0  10.5 82 11   2  23.2
;
PROC REG NOPRINT; MODEL LNUM=AGE/R; ID YEARCL AGE;
OUTPUT OUT=A P=PLNUM;
DATA B; SET A;
W=PLNUM;
PROC PRINT; VAR YEAR AGE NUM LNUM W;
PROC REG; WEIGHT W; MODEL LNUM= YEARCL AGE/R; RUN;

Results

Table Data for 653 age-2 to age-11 largemouth bass collected using DC electrofishing. The
number at age (NUM) is given with its associated weighting factor, LNUM (=loge[NUM + 1]).  Weight
is the predicted value for the natural log of number at age.

Observation YEARCL AGE NUM LNUM Weight

1 1991 2 175 5.17048 5.48748
2 1990 3 273 5.61313 4.97418
3 1989 4 28 3.36730 4.46088
4 1988 5 79 4.38203 3.94758
5 1987 6 18 2.94444 3.43428
6 1986 7 49 3.91202 2.92098
7 1985 8 21 3.09104 2.40768
8 1984 9 8 2.19722 1.89438
9 1983 10 0 0.00000 1.38108
10 1982 11 2 1.09861 0.86778
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Table Catch-curve regression for LNUM versus AGE.

Analysis of Variance

Source df SS Mean square F-value P > F

Model 1 47.50049 47.50049 23.584 0.0013
Error 8 16.11255 2.01407
Corrected total 9 63.61304

R2 0.7467 Root MSE 1.41918
Adjusted R2 0.7150 LNUM mean 3.86169
CV 36.75024

Parameter Estimates

Parameter
Variable df estimate SE t-value P > |t|

Intercept 1 6.344692 0.56991090 11.133 0.0001
AGE 1 –0.480520 0.09894628 –4.856 0.0013

Predicted LNUM (PLNUM) and Residuals from Weighted Regression

Observation AGE YEARCL Weight LNUM PLNUM Predicted SE Residual

1 2 1991 5.4875 5.1705 5.3837 0.402 –0.2132
2 3 1990 4.9742 5.6131 4.9031 0.331 0.7100
3 4 1989 4.4609 3.3673 4.4226 0.277 –1.0553
4 5 1988 3.9476 4.3820 3.9421 0.252 0.4399
5 6 1987 3.4343 2.9444 3.4616 0.265 –0.5171
6 7  1986 2.9210 3.9120  2.9811 0.310 0.9310
7 8  1985  2.4077 3.0910 2.5005 0.377 0.5905
8 9 1984 1.8944 2.1972 2.0200 0.455 0.1772
9 10 1983 1.3811 0 1.5395 0.540  –1.5395
10 11 1982 0.8678 1.0986 1.0590 0.630 0.0396

Residuals and Associated Outlier Statistics from Weighted Regression

SE Student
Observation AGE YEARCL residual residual –2–1–0 1 2a Cook’s D

1 2 1991 0.453  –0.470 |         |        | 0.087
2 3 1990 0.544 1.306 |         |**    | 0.316
3 4 1989 0.612 –1.724 |   ***|        | 0.304
4 5 1988 0.668 0.658 |         |*      | 0.031
5 6 1987 0.719 –0.720 |     *  |        | 0.035
6 7 1986 0.770 1.209 |         |**    | 0.119
7 8 1985 0.833 0.709 |         |*      | 0.051
8 9 1984 0.925 0.192 |         |        | 0.004
9 10 1983 1.080 –1.426 |    ** |        | 0.254
10 11 1982 1.387 0.029 |         |        |  0.000

(Box continues)
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Residuals and Associated Outlier Statistics from Weighted Regression (continued)

Sum of residuals 0
Sum of squared residuals 16.1125
Predicted residual SS (Press) 24.7446

a Graphical representation of Student residuals.

Using weighted regression for catch-curve analysis deflates the importance of rare and older fish
when computing regression coefficients by proportioning the contribution to each product and
cross product by the corresponding PLNUM–age data point. Thus, residuals for older and rarer
cohorts of fish such as the 1983 year-class will be less with weighted than with unweighted
regression. Generally, older and rarer year-classes are less likely to be accurately represented if a
small to moderate sample of fish is collected, and this weighted regression procedure is recom-
mended. Larger samples of fish will more accurately represent all year-classes, hence residuals from
unweighted catch-curves regressions can be used.

From the analysis, the 1985 and 1988 year-classes could be considered moderately strong whereas
the 1986 and 1990 year-classes were relatively more abundant and represented greater year-class
strength. Conversely, the 1987 and 1991 year-classes were moderately weak, and even poorer year-
class formation was evident for the 1983 and 1989 year-classes. The graphic below illustrates the
number at age versus year-class (not a plot from SAS). The solid line represents the least-square fit
to the data using weighted regression and the dashed lines are the residuals.

Box 4.4 (continued)

Figure The number at age versus year-class. The solid line represents the least-square fit to the
data using weighted regression and the dashed lines are the residuals.
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activity inhibited successful recruitment. Allen et al. (1999) found a positive cor-
relation (r = 0.61) between chlorophyll-a concentrations and density of age-0 large-
mouth bass. Using linear regression, Reinert et al. (1997) used a host of reservoir
hydrologic variables to explain 58–99% of the variation in electrofishing catch
rates of age-0 and age-1 largemouth bass and spotted bass. Serns (1982) used
linear regression and found that mean water temperature from June to August
explained 74% of the variation in age-0 smallmouth bass density. Maceina and
Stimpert (1998) found winter (January–March) retention in reservoirs prior to
spawning and post-winter (April–November) retention were negatively and posi-
tively related to, respectively, black crappie and white crappie recruitment (R 2 =
0.62). An example of using correlative and regression techniques to explain re-
cruitment variation is given in Box 4.5

The collection of long-term data to document recruitment variation and relate
this variation to abiotic and biotic variables is desirable for fisheries scientists at-
tempting to explain fluctuations in recruitment. In the absence of long-term data
on recruitment levels, the residuals or errors associated with catch-curve regres-
sions can be used as an index of recruitment variability and compared to biotic
and abiotic variables (Maceina 1997). Maceina (1997) expanded the use of simple
linear catch-curve regression to incorporate an additional independent environ-
mental variable(s) (ENVIR) that was measured when fish were age 0. The gener-
alized equation is

logenumber = b0 – b1(age) ± b2(ENVIR). (4.2)

For this equation, weighted regression is used to deflate the influence of rarer
and older fish in the analysis similar to the procedures in Box 4.5. This technique
has been used to explain environmental factors related to variation in fish recruit-
ment for a number of species (Maceina and Bettoli 1998; Slipke et al. 1998; DiCenzo
and Duval 2002; Maceina 2003), and an example is shown in Box 4.6. In addition,
residuals can be pooled among water bodies and different years of collections and
examined in relation to environmental variables to explain recruitment variation
(Maceina and Bettoli 1998).

In regression analysis, transforming independent and dependent variables to
natural log, common log, or inverse values can improve fit, reduce heteroscedastic
variances, and sometimes explain better nonlinear fit between variables. Nonlin-
ear regression can be a useful tool to explain and show graphically, for example,
that progressively higher levels of some independent variable will result in an
increase (or decrease) in some measure of recruitment before eventually reach-
ing an asymptotic level.

■ 4.4 RECRUIT–SPAWNER RELATIONSHIPS

An important component of fisheries management is to determine if a relation-
ship exists between recruitment and spawner abundance. A quantitative under-
standing of the amount of recruitment that is necessary to sustain a fishery is



146 Chapter 4

Box 4.5 Use of Correlation, Simple Regression, and Multiple Regression Analyses
to Explain Recruitment Variation

From the data presented in Table 4.1, the relations between C/f of age-0 crappies (CPE0) and
reservoir hydrologic conditions were determined. The respective year-classes (YEARCL) were also
noted. The following SAS (2001) program plots bivariate relations between C/f of age-0 fish and
hydrologic variables, computes the Pearson product moment correlation coefficients among age-0
catch and the reservoir hydrologic terms, and finally computes multiple regressions to describe
and predict age-0 catch from these hydrologic variables.

Program

DATA WECRA;

INPUT YEARCL CPE0   WINSTAGE WINRET SPRSTAGE;

LINES;

1989     .        170.85    7.2    171.79

1990     8.03      171.76    4.2    171.75

(continue data input)

;

PROC PLOT; PLOT CPE0*WINSTAGE; PLOT CPE0*WINRET; PLOT CPE0*SPRSTAGE;

*/ plots not presented but should be examined by the fisheries scientist;

PROC CORR; VAR CPE0 WINSTAGE WINRET SPRSTAGE;

PROC REG; MODEL CPE0=WINSTAGE WINRET SPRSTAGE/SS1 SS2 SCORR1 PCORR2 VIF

COLLINOINT;

PROC REG; MODEL CPE0=WINSTAGE SPRSTAGE/SS1 SS2 SCORR1 PCORR2 VIF

COLLINOINT;

PROC REG; MODEL CPE0=WINSTAGE; RUN;

Results

Table Output for correlation analysis among C/f of age-0 crappies (CPE0) and the three hydro-
logic variables, mean winter stage (WINSTAGE), mean winter retention (WINRET), and mean spring
stage (SPRSTAGE) (see Table 4.1). The Pearson correlation coefficient tests for P > |R| under the H0

that R (rho) = 0.

Simple Statistics

 Variable N Mean SD Sum  Minimum Maximum

CPE0 10 3.25300  3.18380 32.53000 0.47000 9.89000
WINSTAGE 11 170.98545 0.32163 1880.84000 170.67000 171.76000
WINRET 11 6.47273 1.39075  71.20000 4.20000 9.70000
SPRSTAGE 11 171.82273 0.05781 1890.05000 171.75000 171.92000
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Pearson Correlation Coefficients

CPE0 WINSTAGE WINRET SPRSTAGE

CPE0
R 1.00000  0.89313 –0.56302 –0.03217
P 0.0 0.0005 0.0902 0.9297
N 10  10 10  10

WINSTAGE
R 0.89313  1.00000 –0.71949 –0.29292
P 0.0005 0.0 0.0126 0.3820
N 10  11 11 11

WINRET
R –0.56302 –0.71949  1.00000  0.38038
P 0.0902 0.0126 0.0 0.2485
N 10  11 11 11

SPRSTAGE
R –0.03217 –0.29292  0.38038  1.00000
P 0.9297 0.3820 0.2485 0.0
N 10 11  11  11

Table Multiple and linear regression analyses for the dependent variable CPE0.

Analysis of Variance  with Three Hydrologic Variables

Source df SS Mean square F-value P > F

Model 3 79.79125 26.59708 13.952 0.0041
Error 6 11.43796  1.90633
Corrected total 9 91.22921

R2 0.8746 Root MSE 1.38070
Adjusted R2 0.8119 CPE0 mean 3.25300
CV 42.44383

Parameter Estimates

Parameter
Variable df estimate SE t-value P > |t| Type I SS

Intercept 1 –4237.774608 1511.6915952 –2.803  0.0310 105.820090
WINSTAGE 1 9.614666  1.95648369  4.914 0.0027  72.771053
WINRET 1 0.084910 0.47521332 0.179 0.8641 1.008889
SPRSTAGE 1 15.110553 8.50931361 1.776 0.1261 6.011308

(Box continues)
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Squared Squared
semi-partial partial Variance

Variable  df Type II SS correlation correlation inflation

Intercept 1 14.981201 0.00000000
WINSTAGE 1 46.037663 0.79767273 0.80099459 2.03665416
WINRET 1 0.060861 0.01105884 0.00529277 2.22235140
SPRSTAGE 1 6.011308 0.06589236 0.34450202 1.22457891

Colinearity Diagnostics (Intercept Adjusted)

Condition
Number Eigenvalue index WINSTAGE WINRET SPRSTAGE

1 1.99908 1.00000 0.0912 0.0913 0.0911
2 0.72319 1.66261 0.1262 0.0340 0.8576
3 0.27773 2.68288 0.7826 0.8747 0.0512

Analysis of Variance  with Two Hydrologic Variables

Source df SS Mean square F-value P > F

Model 2 79.73039 39.86519 24.268 0.0007
Error 7 11.49882  1.64269
Corrected total 9 91.22921

R2 0.8740 Root MSE 1.28167
Adjusted R2 0.8379 CPE0 mean 3.25300
CV 39.39976

Parameter Estimates

Parameter
Variable df estimate SE t-value P > |t| Type I SS

Intercept 1 –4273.240691  1391.1235060 –3.072 0.0180  105.820090
WINSTAGE 1 9.380227  1.34721346 6.963 0.0002 72.771053
SPRSTAGE 1 15.553433  7.55648750 2.058 0.0786 6.959337

Squared Squared partial
semi-partial correlation Variance

Variable  df Type II SS correlation type I type 2 inflation

Intercept 1 15.500246  0.00000000
WINSTAGE 1 79.635947 0.79767273 0.87382619 1.12067509
SPRSTAGE 1 6.959337 0.07628408 0.37703313 1.12067509

Box 4.5 (continued)

Variable proportion
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Colinearity Diagnostics (Intercept Adjusted)

Condition
Number Eigenvalue index WINSTAGE  SPRSTAGE

1 1.32815 1.00000 0.3359 0.3359
2 0.67185 1.40600 0.6641 0.6641

Analysis of Variance  with One Hydrologic Variable

Source df SS Mean square F-value P > F

Model 1 72.77105 72.77105 31.540 0.0005
Error 8 18.45816  2.30727
Corrected total 9 91.22921

R2 0.7977 Root MSE 1.51897
Adjusted R2 0.7724 CPE0 mean 3.25300
CV 46.69443

Parameter
Variable df estimate SE t-value P > |t|

Intercept 1 –1445.158045 257.90658352 –5.603 0.0005
WINSTAGE 1 8.470290 1.50823184 5.616  0.0005

Based on C/f of age-0 crappies as a recruitment index, this variable was positively correlated to
winter water stage prior to spawning (R = 0.89; P < 0.01) and weakly, but negatively, correlated to
corresponding winter retention (R = –0.56; P = 0.09). No relation was evident between spring stage
(R = –0.03; P = 0.92) and age-0 C/f. As expected, winter stage and retention were inversely related
(R = –0.72; P < 0.05).

Of the three hydrologic terms used as regressors in multiple regression analysis of C/f of age-0
crappies, winter retention was the weakest independent variable. The overall model was highly
significant (P < 0.01), and the three hydrologic terms explained about 87% of the variation in age-0
C/f. However, diagnostics used to detect multicolinearity among independent variables showed
winter stage and winter retention covaried. The condition index was elevated (2.683), and the
colinearity diagnostics (variable proportion) associated with this condition index was 0.783 and
0.875 for winter stage and retention, respectively, and showed multicolinearity existed in the
model. In addition, winter retention was not a significant (P = 0.86) regressor in the model. Hence,
winter retention was dropped from subsequent analyses, and age-0 C/f was regressed against
winter stage and spring stage. We decided for this example to keep spring stage in the analysis
even though winter stage was obviously the most influential regressor. In this multiple regression,

(Box continues)

Variable proportion
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extremely useful information. Some fisheries scientists have argued that a quanti-
fiable relation between recruits and spawners does not exist and that abiotic and
biotic processes influence recruitment independently of spawner abundance (Van
Den Avyle and Hayward 1999). However, Myers and Barrowman (1996) provided
clear evidence for a positive relationship between recruits and spawners, though
the results were more compelling for marine than for freshwater populations.
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P < 0.01

Full summer pool

the partial regression coefficient for spring stage was modestly significant (P = 0.08) and positive,
which suggested after accounting for the effects of winter stage, slightly higher water levels in
spring may enhance crappie recruitment. With the use of squared partial correlation coefficients
(pr2, squared partial correlation type II in table above), winter stage provided the greatest contribu-
tion (pr2 = 0.87) to age-0 C/f compared with spring stage (pr2 = 0.38). The squared semi-partial
correlations (squared semi-partial correlation type I) were fitted to the independent variables in the
order that they were entered into the model and showed that after first accounting for the effects
of winter stage (79.8%), spring stage explained an additional 7.6% of the variance for age-0 C/f. The
sum of the squared semi-partial correlations will equal the coefficient of determination for the
entire model. Finally, a simple linear model was computed that regressed age-0 C/f to winter stage
(see figure below; not a plot from SAS 2001).

Box 4.5 (continued)

Figure Linear model of C/f of age-0 crappies versus winter stage. Numeric values along regression
line refer to year-classes.
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Box 4.6 Incorporation of an Environmental Term into a Catch-Curve Regression to Explain
Fluctuations in Recruitment

From the data presented in the SAS program in Box 4.4 and the program below, April–July reten-
tion will first be plotted against the residuals from the weighted catch-curve regression for
largemouth bass. Then, this term will be added to the simple linear catch-curve regression to
compute a multiple regression. The mean retention (MEANRET) between April–July corresponds to
the hatching and post-hatching time period for each year-class when fish were age 0 (Maceina et
al. 1995). The variables YEARCL, AGE, NUM, and LNUM are defined in Box 4.4.

Program

DATA GUN_LMB;

INPUT YEARCL  AGE NUM MEANRET;

LNUM=LOG(NUM + 1);

LMEANRET=LOG10(MEANRET);

LINES;

91 2  175  13.7 90 3  273  16.9 89 4   28   9.6 88 5   79  47.7

(continue data input)

;

PROC REG NOPRINT; MODEL LNUM=AGE/R; ID YEARCL AGE;

OUTPUT OUT=A  P=PLNUM;

DATA B; SET A; W=PLNUM;

PROC REG NOPRINT; WEIGHT W; MODEL LNUM=AGE/R;

OUTPUT OUT=C R=RES;

PROC PLOT; PLOT RES*MEANRET/VREF=0;

PROC CORR; VAR RES MEANRET;

PROC REG; WEIGHT W; MODEL LNUM=AGE LMEANRET/SS1 SS2 PCORR2; RUN;

(Box continues)

4.4.1 Types of Recruit–Spawner Relations

Several recruit–spawner models are commonly used, and detecting density de-
pendence, or compensation, is of primary importance in fitting these models.
Recruitment in wild populations will be limited by environmental constraints at
relatively high densities, and therefore the rate of recruitment (i.e., the number
of recruits produced per unit of spawners) may decrease at high levels of spawner
abundance. Two common curves have two coefficients with similar functions. One
coefficient (�) represents density-independent recruitment and is often referred
to as the productivity coefficient. This is the rate of recruitment in the absence of
any environmental constraints, and represents the slope of the stock–recruitment
curve at the origin. The second coefficient (�) arises from density-dependent
processes. At relatively high spawning stock levels various ecological processes
(e.g., rate of predation, habitat or food limitations) will result in compensation in
the survival of recruits, and recruitment rate will decline with an increase in spawner
abundance.
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Results

Box 4.6 (continued)

Figure Plot of residuals from the weighted catch-curve regression for largemouth bass versus
mean retention, in which A represents one observation.
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Table Output for correlation analysis between residuals (RES) from the weighted catch-curve
regression for largemouth bass and the mean retention (MEANRET) in the reservoir between
April–July.

Simple Statistics

 Variable N Mean SD Sum  Minimum Maximum Label

RES 10 –0.0437 0.7975 –0.4368 –1.5395  0.9310 Residual
MEANRET 10 23.1200 15.0095 231.2 9.6000 49.5000

Pearson Correlation Coefficients

RES  MEANRET

RES
R 1.00000  0.65716
P 0.0 0.0390

MEANRET
R  0.65716  1.00000
P 0.0390 0.0

Table Multiple regression analysis for the dependent variable LNUM (loge[NUM + 1]) of large-
mouth bass. Log10(mean retention) is given by LMEANRET.

Analysis of Variance

Source df SS Mean square F-value P > F

Model 2 55.57442 27.78721 24.197 0.0007
Error 7 8.03862 1.14837
Corrected total 9 63.61304

R2 0.8736 Root MSE 1.07162
Adjusted R2 0.8375 LNUM mean 3.86169
CV 27.75011

Parameter Estimates

Parameter
Variable df estimate SE t-value P > |t|

Intercept 1 3.950567  1.00022232 3.950 0.0055
AGE 1 –0.526061 0.07666302 –6.862 0.0002
LMEANRET 1 2.048881  0.77270892 2.652 0.0329

(Box continues)
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4.4.1.1 Beverton–Holt Recruit–Spawner Curve

The recruitment curve developed by Beverton and Holt (1957) assumes that com-
petition among early life stages for any limited resource (e.g., food or space) will
cause recruits (R) to increase initially, then to decline to an asymptotic value as
spawner abundance (S) increases (Figure 4.1). One form of the Beverton–Holt
curve is

R  =
�S

(4.3) ______ ,
1 + �S

where � is the productivity or density-independent coefficient and is the maxi-
mum recruitment rate (R/S) at low spawner abundance (i.e., the initial slope),
and � determines the level of density dependence. Maximum recruitment repre-
sented by the asymptote is equal to �/�. An example of estimating a Beverton–
Holt recruit–spawner curve is given in Box 4.7.

4.4.1.2 Ricker Recruit–Spawner Curve

In some fish populations, the recruit–spawner relation may be dome shaped, with
the number of recruits declining at higher levels of spawner abundance due to
overcompensation (Ricker 1954). Overcompensation may arise from such obvious
processes as cannibalism but more importantly can be induced by predation on

Box 4.6 (continued)

Squared
partial

correlation
Variable df Type I SS Type II SS type II

Intercept 1 473.867469 17.914685 .
AGE 1 47.500491 54.073342 0.87057856
LMEANRET 1  8.073930 8.073930 0.50109573

The SAS plot of residuals of the weighted catch-curve regression against April–July retention
(MEANRET) showed higher retention was associated with progressively higher residuals, or
stronger year-class formation for largemouth bass, whereas lower retention (<15 d) was associated
with lower recruitment for those year-classes, and the relation was not linear. The significant
correlation (R = 0.66; P < 0.05) was computed between catch-curve residuals and April–July
retention, and thus the variation about the catch-curve plot in Box 4.4 was related to this hydro-
logic term. The plot of catch-curve residuals against April–July appeared nonlinear, hence retention
was transformed to log10 values and the multiple regression equation computed. The addition of
the retention term explained an additional 13% of the variation in the catch-curve above that
explained by the simple catch-curve regression (Box 4.4). Based on the squared partial correlation
coefficient (pr2 = 0.50), retention was an important variable in explaining the variation in number at
age beyond that explained by age alone (see Maceina and Bettoli 1998 for further analysis).
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Figure 4.1 Beverton–Holt recruit–spawner curves computed from equation (4.3). The three
curves show different productivity coefficients (�) but approximately the same maximum level
of density dependence (�), showed by the asymptote.

Spawner abundance

Re
cr

u
it

 a
b

u
n

d
an

ce

prerecruits, including predation by other species. Specifically, if a predator responds
to increased prey (i.e., the potential recruits in our stock–recruit relationship) ei-
ther by increasing its own abundance or predatory effectiveness, then overcompen-
sation may occur. Thus, while cannibalism may be an attractive explanation for
overcompensation, predation by a variety of species may also result in a domed
recruit–spawner curve. Ricker (1954) also suggested that overcompensation may
be a prevalent condition in lake ecosystems that are more confining and potentially
habitat limited in comparison to large marine systems. Hilborn and Walters (1992)
reported that overcompensation will also arise when growth of young fish is density
dependent and predation is size dependent. Therefore, fisheries scientists should
examine their data for a dome shaped recruitment curve even for species that are
not expected to be cannibalistic. In semelparous salmon species, overcompensa-
tion may arise from superpositioning of spawning redds and disease outbreaks af-
fecting egg mortality at high spawner densities (Ricker 1954) .

The Ricker curve is defined by

R = Se � – �S, (4.4)

where � is the density-independent or productivity coefficient, representing the
rate of recruitment at low spawner abundance (i.e., the slope at the origin), and �
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Box 4.7 Computation of the Beverton–Holt Recruit-Spawner Curve

From 1991 to 1996, crappies were collected from three Alabama reservoirs (LAKE) that displayed
similar hydrologic conditions (data from Ozen 1997); 16 to 20 trap nets were used as described in
Box 4.1. Fish were collected in the fall of each year, aged, and weighed (1 g). The variable SPAWNER
was determined by dividing total weight of all age-2 and older crappies (assumed to be adults) by
the number of net-nights of effort and RECRUIT was determined by dividing the total number of
age-0 crappies by the number of net-nights of effort. The program below plots the relation
between recruits and spawners, then describes the relations between recruits and spawners using
nonlinear regression for untransformed and loge transformed data (equations [4.3] and [4.5],
respectively). From the last nonlinear regression, predicted recruits (PRE_LREC) was regressed
against observed recruits to provide additional statistical inference. The predicted number of
recruits and associated residuals from the last nonlinear regression were derived and printed. In the
nonlinear procedure in SAS (PROC NLIN), the parameters (PARMS) statement refers to approximate
coefficients for � (A in SAS) and � (B in SAS) in the nonlinear regression that are provided by the
fisheries scientist to initiate the analysis. Hougaard’s skewness values for � and � were computed
for each nonlinear regression. Finally, residual values from the last nonlinear regression were
summed.

Program

DATA REC_SPA;

INPUT LAKE $ YEAR SPAWNER RECRUIT @@;

*/ SPAWNER = INDEX OF ADULT BIOMASS OF AGE-2 AND OLDER CRAPPIE;

*/RECRUIT = TRAP NET CATCH RATE OF AGE-0 CRAPPIE;

LRECRUIT=LOG(RECRUIT);

LINES;

AL 91 340 5.41 AL 92 907 3.00 AL 93 171 2.41 AL 94 1040 2.25

AL 95 55 0.41 AL 96 524 8.71

DE 92 213  1.13 DE 93 1034 4.66 DE 94 457 1.94 DE 95 200 7.28

DE 96  669 10.56

JB 90 372 9.33 JB 91 386 2.19 JB 92 585 6.75 JB 93 660 13.85

JB 94 337 3.58 JB 95 396 3.48 JB 96 620 23.70

;

PROC PLOT; PLOT RECRUIT*SPAWNER; */ plot not shown;

PROC NLIN HOUGAARD; PARMS A=0.03 B=0.002;

MODEL RECRUIT=(A*SPAWNER)/(1 + B*SPAWNER);

PROC NLIN HOUGAARD; PARMS A=0.01 B=0.002;

MODEL LRECRUIT=LOG((A*SPAWNER)/(1 + B*SPAWNER));

OUTPUT OUT=A P=PRE_LREC R=RES;

PROC REG; MODEL PRE_LREC=LRECRUIT;

DATA B; SET A;

PRE_REC=EXP(PRE_LREC);

PROC PRINT; VAR LAKE YEAR RECRUIT SPAWNER PRE_LREC RES;

PROC MEANS NOPRINT; VAR RES;

OUTPUT  OUT=B SUM=SUMRES;

PROC PRINT; VAR SUMRES; RUN;
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Results

Table Nonlinear regression (NLIN) of RECRUIT (total number of age-0 crappies divided by number
of net-nights of effort) versus SPAWNER (total weight of age-2 and older crappies divided by
number of net-nights of effort). In the estimation summary, R, PPC(B), and RPC(B) are measures and
diagnostics of the degree of convergence of the model; smaller values represent better model fit.
An intercept was not specified for this model.

Iterative Phase

Iteration  A  B SS

0  0.0300 0.00200 502.9
1  0.0418 0.00388 486.2
.
.
.
17  0.0386 0.00369 484.5
18  0.0386 0.00369 484.5

Estimation Summary

Method Gauss-Newton

Iterations 18
R 9.328 × 10–6

PPC(B) 0.000068
RPC(B) 0.000103
Object 6.74 × 10–11

Objective 484.4791
Observations read 18
Observations used 18
Observations missing 0

Analysis of Variance

Approximate
Source df SS Mean square F-value P > F

Regression 2 747.8 373.9 12.35 0.0006
Residual 16 484.5 30.2799
Uncorrected total 18  1232.3
Corrected total 17 552.2

Parameter Estimates

Approximate Approximate 95% Hougaard’s
Parameter  Estimate SE  confidence limits skewness

A 0.0386 0.0474 –0.0619  0.1391 5.6771
B 0.00369  0.00675 –0.0106  0.0180 6.1140

(Box continues)
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Box 4.7 (continued)

Approximate Correlation Matrix

A B

A 1.0000000 0.9864924
B 0.9864924 1.0000000

Table Nonlinear regression of logeRECRUIT (LRECRUIT) versus SPAWNER, with right side of
equation (4.5) transformed using a natural log. This is followed by a linear regression between
predicted (PRE_LREC) and observed recruits. Nonlinear regression model details as above.

Iterative Phase

Iteration A  B SS

0  0.0100 0.00200 18.3365
1  0.0147 0.00110 10.2141
.
.
.
9  0.0170 0.00142 10.1303
10 0.0170 0.00142 10.1303

Analysis of Variance

Approximate
Source df SS Mean square F-value P > F

Regression 2 42.5153 21.2576 9.38  0.0074
Residual 16 10.1303  0.6331
Uncorrected total 18 52.6455
Corrected total 17 16.0679

Parameter Estimates

Approximate Approximate 95% Hougaard’s
Parameter  Estimate SE confidence limits  skewness

A  0.0170 0.00934 –0.00282  0.0368 2.6078
B  0.00142  0.00192 –0.00264 0.00549  2.9081

Linear Regression of Predicted versus Observed Recruits

Source df SS Mean square F-value P > F

Model 1 1.66803 1.66803 9.71  0.0067
Error 16 2.74841 0.17178
Corrected total 17 4.41644

R2 0.3777 Root MSE 0.41446
Adjusted R2 0.3388 PRE_LREC mean 1.42551
CV 29.07430
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Table Predicted number of recruits (PRE_LREC) and associated residuals (RES) and the sum of the
residuals (SUMRES). Also given are the variables SPAWNER, RECRUIT, LAKE (from Ozen 1997), and
YEARCL.

Observation
and sum LAKE YEARCL RECRUIT SPAWNER PRE_LREC RES

1 AL 1991 5.41 340 3.89039 0.32974
2 AL 1992 3.00 907 6.72230 –0.80682
3 AL 1993 2.41 171 2.33517 0.03154
4 AL 1994 2.25  1040 7.11974 –1.15194
5 AL 1995 0.41 55 0.86608 –0.74782
6 AL 1996 8.71 524 5.09635 0.53595
7 DE 1992 1.13 213 2.77528 –0.89854
8 DE 1993 4.66  1034 7.10312 –0.42152
9 DE 1994 1.94 457 4.70153 –0.88520
10 DE 1995 7.28 200 2.64343 1.01305
11 DE 1996 10.56 669 5.81874 0.59599
12 JB 1990 9.33 372 4.12979 0.81501
13 JB 1991 2.19 386 4.23010 –0.65832
14 JB 1992 6.75 585 5.42008 0.21943
15 JB 1993  13.85 660 5.77837 0.87416
16 JB 1994 3.58 337 3.86719 –0.07717
17 JB 1995 3.48 396 4.30019 –0.21163
18 JB 1996  23.70 620 5.59234 1.44408

SUMRES –2.02 × 10–9

Interpretation
For 18 iterations, an optimal solution (convergence criteria met) was found that minimized the
residual error for this recruit–spawner data. The analysis indicated that the nonlinear regression
was highly significant (F = 12.35; df =2, 16; P < 0.01), but this test is highly suspect (see section 4.4.3).
The nonlinear regression procedure in SAS (2001) does not compute a coefficient of determination,
but this can be approximated by subtracting the residual SS from the corrected total SS and then
dividing this by the corrected SS. For this example, r2 = (552.2 – 484.5)/552.2 = 0.12. The spawner
abundance did not explain a high proportion in variation in crappie recruits, although statistically
significant. The coefficients for � (0.0386) and � (0.00369) are given along with approximate SEs and
95% confidence limits for these coefficients. Thus from equation (4.3),

R = 0.0386 × S/(1 + 0.00369 × S) .

Hougaard’s skewness values for � and � were 5.7 and 6.1, respectively, which were high and
indicated these parameters were not normally distributed and were potentially biased. Thus, the
equation may be inaccurate. Finally a correlation matrix was presented that estimates the relation
between � and �; correlations typically will also be high as these coefficients will covary when the
least-squares solution is computed through iteration.

(Box continues)
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The second model includes lognormal error structure by taking the natural logarithms of both
sides of the nonlinear Beverton–Holt recruit–spawner equation  An optimal solution was found
(convergence criteria met), and the output suggested that the regression was significant (P < 0.01).
The approximate r2 value was 0.37 ([16.07 – 10.13]/16.07). Next, the coefficients are given for
� (0.0170) and � (0.00142) with approximate SEs and confidence intervals. Hougaard’s skewness
values were still high for � and � (2.6 and 2.9) but lower than those computed for normal error
structure. The next analysis presents the linear regression between predicted and observed recruits
(loge transformed). The F-statistic (9.71) and r2 value (0.38) were very similar to those derived from
the previous nonlinear regression.

The last table contains a print of predicted crappie recruits (PRE_LREC) and residuals (RES) for a
given level of crappie spawners computed from the last nonlinear regression equation. Observed
and predicted recruits and spawners can be used to construct a bivariate plot, and the nonlinear
regression line (not a plot from SAS) of the relation between crappie recruits and spawners is
shown below. The sum of the residuals (SUMRES) was approximately 0, which suggested an optimal
least-squares fit to the data.

Figure Plot of the raw data (loge scale) and the nonlinear regression of the relation between
crappie recruits and spawners.
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loge(Recruits) = loge[0.0170*Spawner)/(1 + 0.00142*Spawners)]
r2 = 0.38

Box 4.7 (continued)
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is the density-dependent coefficient, with the curve reaching a maximum at �1

units of spawners before declining (Figure 4.2). An example of computing a Ricker
recruit–spawner curve is given in Box 4.8.

4.4.1.3 Additional Recruit–Spawner Curves

Fisheries scientists may attempt to construct an alternative recruit–spawner curve
that differs from the Beverton–Holt and Ricker forms. Alternate curves may inte-
grate other processes that affect the early life history of a species. The Beverton–
Holt and Ricker recruit–spawner curves typically will accommodate most of these
conditions. However, a variety of other mathematical models for describing these
relationships can be found in Cushing (1971, 1973), Deriso (1980), Shepherd
(1982), with further elaboration by Schnute (1985), and Reish et al. (1985).

4.4.2 Estimation of Recruit–Spawner Coefficients

There are several methods available to fisheries scientists for fitting models to
recruit–spawner data, and these include both linear and nonlinear regression
procedures. Extreme data points, especially those associated with abnormally high
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Figure 4.2 Ricker recruit–spawner curves computed using equation (4.4). The three curves
have different values for the density-independent coefficient (�) but display approximately the
same values for the density-dependent coefficient (�). This results in variation in the maximum
recruitment, but the maximum occurs at approximately the same abundance of spawners.
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Box 4.8 Computation of Ricker Recruit–Spawner Curves with the Inclusion
of an Environmental Term to Explain Recruit Variation

Population estimates for age-5 and older adult walleye (SPAWNER) and age-0 walleye (RECRUIT)
were made in Escanaba Lake, Wisconsin, from 1958 to 1991 (data presented in Hansen et al. 1998;
see Table 4.3). The following SAS (2001) program computes a nonlinear regression to describe the
relation between recruits and spawners assuming lognormal error structure (equation [4.6]). From
this regression, predicted recruits are regressed against observed recruits to provide additional
statistical inference. Next the program computes the Ricker recruit–spawner relation (equation
[4.7]) using linear regression. The corrected coefficient of determination and associated F-statistic
was given by regressing predicted recruits against observed recruits. Finally, the program also
computes the nonlinear regression with lognormal error structure in the recruit–spawner relation
to include the variation in May air temperature (MTEMPCV) as an additional regressor of walleye
recruits (equation [4.9] modified to include lognormal error structure).

Program

DATA WALLEYE;

NPUT YEAR RECRUIT SPAWNER MTEMPCV;

*/AGE0 AND AGE5 IS THE NUMBER OF WALLEYE IN ESCANABA LAKE, WI;

*/ MAYTEMP IS THE CV FOR MAY AIR TEMPERATURES;

RATIO=RECRUIT/SPAWNER;

LRATIO=LOG(RATIO);

LRECRUIT=LOG(RECRUIT);

LINES;

1958    4532    775     0.24125

1959    22996   2310    0.16319

.

.

.

1990    35607   735     0.19356

1991    4876    1261    0.32032

;

PROC NLIN DATA=WALLEYE HOUGAARD; PARMS A=4 B=0;

MODEL LRECRUIT=LOG(SPAWNER*EXP(A + B*SPAWNER));

OUTPUT OUT=A P=PRE;

PROC REG; MODEL PRE=LRECRUIT;

PROC REG DATA=WALLEYE; MODEL LRATIO=SPAWNER;

OUTPUT OUT=B P=P R=RESIDUAL;

DATA C; SET B;

PRATIO= EXP(P);

PRECRUIT=PRATIO*SPAWNER;

LPREC=LOG(PRECRUIT);

PROC REG; MODEL LPREC=LRECRUIT;

PROC NLIN DATA=WALLEYE HOUGAARD; PARMS A=4 B=0 C=-7.0;

MODEL LRECRUIT=LOG(SPAWNER*EXP(A + B*SPAWNER + C*MTEMPCV));

RUN;
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Results

Table Ricker recruit–spawner curve using nonlinear regression and accounting for lognormal
error structure. The Gauss-Newton method is employed and convergence criterion was met.

Iterative Phase

Iteration  A  B SS

0  4.0000  0 194.0
1  3.3916 –0.00118 33.7931

Analysis of Variance

Approximate
Source df SS Mean square F-value P > F

Regression 2  2724.0 1362.0 2.13  0.1540
Residual 32  33.7931  1.0560
Uncorrected total 34  2757.8
Corrected total 33 36.0449

Parameter Estimates

Approximate Approximate 95% Hougaard’s
Parameter  Estimate SE  confidence limits skewness

A 3.3916 0.4118 2.5529  4.2303 –771 × 10–20

B –0.00118  0.000302 –0.00179 –0.00056 –292 × 10–19

Table Linear regression between predicted logeRECRUIT (PRE; from the previous nonlinear
regression) and observed recruits (loge transformed).

Analysis of Variance

Source df SS Mean square F-value P > F

Model 1 0.15590 0.15590 2.14 0.1534
Error 32 2.33335 0.07292
Corrected total 33 2.48925

R2 0.0626 Root MSE 0.27003
Adjusted R2 0.0333 PRE mean 8.94712
CV 3.01809

(Box continues)
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Table Linear regression between loge(RECRUIT/SPAWNER) (LRATIO) versus SPAWNER and linear
regression between re-predicted (LPREC) and observed recruits.

Analysis of Variance  of LRATIO versus SPAWNER

Source df SS Mean square F-value P > F

Model 1 16.04272 16.04272  15.19  0.0005
Error 32 33.79315 1.05604
Corrected total 33 49.83587

R2 0.3219 Root MSE 1.02764
Adjusted R2 0.3007 LRATIO mean 1.94113
CV 52.93998

Parameter Estimates

Parameter
Variable df estimate SE t-value P > |t|

Intercept 1 3.39157  0.41176  8.24 <0.0001
SPAWNER 1 –0.00118 0.00030179 –3.90 0.0005

Analysis of Variance  of LPREC versus Observed Recruits

Source df SS Mean square F-value P > F

Model  1 0.15590 0.15590 2.14 0.1534
Error 32 2.33335 0.07292
Corrected total 33 2.48925

R2 0.0626 Root MSE 0.27003
Adjusted R2 0.0333 LPREC mean 8.94712
CV 3.01809

Table Ricker recruit–spawner curve from nonlinear regression using lognormal error structure
and including the variation in May air temperature as a environmental predictor (coefficient C) of
recruitment variation (LRECRUIT). The Gauss-Newton method is employed and convergence
criterion was met.

Iterative Phase

Iter  A  B C SS

0  4.0000  0 –7.0000 32.5687
1  4.7915 –0.00073 –7.8388 21.9990

Box 4.8 (continued)
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Analysis of Variance

Source df SS Mean square F-value P > F

Regression 3  2735.8 911.9 9.90 0.0005
Residual 31 21.9990 0.7096
Uncorrected total 34  2757.8
Corrected total 33 36.0449

Parameter Estimates

Approximate Approximate 95% Hougaard’s
Parameter  Estimate SE  confidence limits  skewness

A 4.7915 0.4815 3.8095 5.7736 2.23 × 10–16

B –0.00073  0.000271 –0.00128 –0.00018  1.06 × 10–16

C –7.8388 1.9228 –11.7604  –3.9173 –485 × 10–19

Interpretation
The nonlinear regression for the Ricker recruit–spawner relation assuming lognormal error
structure converged quickly to find an optimal least-squares fit to the data. However, based on this
nonlinear regression and the linear regression between predicted and observed recruits, the
relation was not significant (F = 2.13 – 2.14; P = 0.15), and spawners only explained about 6% of the
variation in recruits. The confidence intervals for � and � were positive and negative, respectively,
and did not overlap with 0, which suggested that adult walleye abundance explained only a small
percentage of the total variation in walleye recruits. Hougaard’s skewness values approximated 0
and showed the parameter coefficients were normally distributed and potentially not biased.
Walleye recruitment in Escanaba Lake was weakly explained as

logeR = loge(Se3.392 – 0.00188S).

Similar to the Beverton–Holt recruit–spawner relation, � and � were just approximated in the
PARMS statement, and SAS (2001) estimates the optimal solution for these two coefficients.

For the liner regression method (equation [4.7]) between the loge of the ratio of recruit to spawner
(LRATIO) against spawner, identical values for � (3.3916) and � (–0.00118) were derived by this
method as compared with the nonlinear regression, but the computed coefficient of determination
and F-statistic were much higher. Note that the errors, or residual SS, were identical (33.79) for both
the linear and nonlinear regression, but the corrected total SS varied. However, the linear regression
of predicted versus observed recruits for the linear method (equation [4.7]) computed nearly an
identical coefficient of determination (0.06) and F-statistic (F = 2.14) to that derived in the previous
analysis using nonlinear regression.

(Box continues)
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Finally, the variation in May air temperature (MTEMP) that occurred during walleye hatch in
Escanaba Lake was obviously a highly significant regressor of recruits when included in the recruit–
spawner curve and improved the approximate coefficient of determination from 0.062 to 0.390. The
equation was

logeR = loge[Se4.792 – 0.00730S – 7.839(MTEMP)].

The slope coefficient for the variation in May air temperature was negative and indicated that
greater fluctuations in air temperatures in May was related to reduced production of walleye
recruits. Hougaard’s skewness values approximated 0 and indicated the three parameters included
in the nonlinear regression were normally distributed. Inclusion of additional regressors can be
tested using full and reduced model techniques presented in Montgomery and Peck (1982), which
test for the reduction in the residual SS or error in the full model. Fisheries scientists should be
cautious and conservative when adding additional predictors to stock–recruitment models. A plot
(not a SAS 2001 plot) of the recruit–spawner relation and the nonlinear regressions for normal and
lognormal error structure is presented below for walleye from Lake Escanaba.

Figure Recruit–spawner relation and the nonlinear regressions for normal and lognormal error
structure is presented below for walleye from Lake Escanaba, Wisconsin.

Box 4.8 (continued)
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number of recruits, will influence the curve, and thus robust-fitting algorithms
may also be appropriate. An important initial consideration in fitting recruit–
spawner curves is the error distribution for the model. Many parameter estimation
methods have the common assumption that the model residuals are normally dis-
tributed, but Peterman (1981) showed that models with lognormal errors were more
appropriate to recruit–spawner data. Two common observations of recruit–spawner
data are that (1) distributions are skewed to the left and display a long right tail, and
(2) the amount of variation will be proportional to the average recruitment ex-
pected at a given spawner abundance, and recruitment will appear more variable at
high spawner abundance when compared with low abundance. Thus, lognormal
errors typically are apparent, and data transformation is usually necessary.

Nonlinear regression algorithms can be used to fit the Beverton–Holt (equation
[4.3]) and Ricker (equation [4.4]) models that will provide for lognormal errors by
taking the logarithm of both sides of these equations. Expressed in this manner, the
Beverton–Holt (equation [4.5]) and Ricker (equation [4.6]) models are

loge(R) = loge[�S/(1 + �S)], (4.5)

and

loge(R) = loge(S� – �S ). (4.6)

These equations can be fitted using nonlinear procedures in SAS (2001; see
Boxes 4.7 and 4.8). Equation (4.6) can also be expressed in a linear form as

 loge(R/S) = � – �S , (4.7)

which retains the lognormal equation structure contained in equation (4.6) (see
Box 4.8). Thus, the intercept will provide an estimate of productivity parameter,
�, with the density-dependent term, �, estimated by the slope of equation (4.7).
Equations (4.6) and (4.7) provide identical estimates of � and � (see Box 4.8),
but statistical properties and associated inferences usually vary between these two
equations (see section 4.4.3).

4.4.3 Statistical Properties and Inferences Associated
with Recruit–Spawner Models

Recruit–spawner models can be computed using nonlinear regression techniques,
but some of the properties that exist for linear regression do not apply for nonlin-
ear least-squares estimates (Neter et al. 1996). For nonlinear regression, the sum
of the residuals may not equal 0 and nonlinear models have no intercept, hence
the corrected sum of squares (SS) may have no meaning (Freund and Littell
1991). The error or residual SS and the regression SS may not necessarily sum to
the total SS for nonlinear models (Neter et al. 1996). Thus, the computation of
the coefficient of determination and associated mean squares used in F-tests will
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likely be incorrect. Finally, the linear method (equation [4.7]) to estimate coeffi-
cients of � and � for the Ricker recruit–spawner model has spawner abundance
on both sides of the equation, and a spurious test for � (density-dependent term)
will typically arise. The error or residual SS are identical when computing the
nonlinear (equation [4.6]) and linear (equation [4.7]) equations, but the model
and total SS vary. Thus, coefficient of determination and corresponding F-statistic
computed from the mean squares will typically be different between nonlinear
and linear computations.

In our review of published papers, most fisheries scientists report the coeffi-
cient of determination and sometimes the probabilities associated with F-statis-
tics for recruit–spawner relations. We recommend fisheries scientists use cau-
tion and careful evaluation when making statistical inferences pertaining to
recruit–spawner relations. To assist fisheries scientists in interpreting the statis-
tical strength of the recruit–spawner relations and other nonlinear regressions,
we recommend the following procedures be used. Some of these were recom-
mended by Neter et al. (1996).

1. Although not statistical, a plot of the normal and lognormal error structure
of the recruit–spawner relation should always be conducted to help interpret
the shape (Ricker, Beverton–Holt, or other) and relative fit or strength of
the relation.

2. For nonlinear regression, the closer the sum of the residuals is to 0, the more
likely a better fit to the model has occurred (see Box 4.7).

3. For most computational programs such as SAS (2001), numerous iterations are
conducted that minimize the residual SS to produce a least-square fit to the data,
hence producing the “optimal” model and associated parameters coefficients. If
the number of iterations to solve the equation is high (>10–20), then the re-
sults may be suspect. In SAS, users are required to provide an initial estimate of
the specified regression coefficients, such as � and � for the Beverton–Holt
and Ricker recruit–spawner relations (see Boxes 4.7 and 4.8). If the number of
iterations is high, then the fisheries scientist can adjust the initial estimate of
the regression coefficients to reduce the number of iterations required to ob-
tain the optimal least-squares fit.

4. Hougaard (1985) presented a method to measure the skewness of each of the
parameter coefficients generated from nonlinear regression. Coefficient esti-
mates that are more normally distributed, hence are less biased, display abso-
lute skewness values close to 0 (see Boxes 4.7 and Box 4.8).

5. Bootstrap parameter estimation can provide a method to examine if the esti-
mates of the parameter coefficients are approximately normal and whether
the bias in each of the parameter coefficients is relatively small (see section
4.4.5 and Box 4.9).

6. Fisheries scientists can predict the number of recruits from nonlinear regres-
sion (normal or lognormal error structure) and regress this value against the
observed number of recruits (see Boxes 4.7 and 4.8). The coefficient of deter-
mination and associated F-statistic to test that a recruit–spawner relation exists
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Box 4.9 Computation of Bootstrapped Parameter Estimates for the
Ricker Recruit–Spawner Curve

The SAS program below conducts bootstrapped parameter estimation for walleye recruit–spawner
data (recruits given as R, spawners given as S) listed in Table 4.3. The program uses the nonlinear
form of the Ricker recruit–spawner relation and incorporates lognormal error structure (equation
[4.6]). In total, 500 estimates were generated. The program includes information that provides an
explanation of the computations that each statement is doing (noted by */).

Program

*/INPUT DATA;

DATA ALLDATA;

INPUT J YEARCLASS R S @@;

CARDS;

1 1958 4532 775

2 1959 22996 2310

(continue data input)

33 1990 35607 735

34 1991 48761261

;

*/transform data;

DATA TRANSDATA;

SET ALLDATA;

LOGR=LOG(R);

LOGS=LOG(S);

RUN;

*/ FIT CURVE TO ORIGINAL DATA SET USING EQN. 4.6;

PROC NLIN DATA=TRANSDATA MAXITER=60 METHOD=MARQUARDT;

PARMS ALPHA=1  BETA=.001;

MODEL LOGR=LOGS+ ALPHA - BETA*S;

OUTPUT OUT=PREDOUT PREDICTED=PRCT;

RUN;

*/creates data set that contains 34 residuals for logR;

DATA NEWDATA;

SET PREDOUT;

RESRCT=LOGR-PRCT;

DROP J YEARCLASS R S LOGR LOGS PRCT;

RUN;

*/define bootstrap macro;

%MACRO BOOT;
%DO I=1 %TO 500;

*/create bootstrap data set;

*/creates data set of 34 random residuals;

DATA TEMP;

CHOICE=INT(RANUNI(23456+&I)*N)+1;

SET NEWDATA POINT=CHOICE NOBS=N;

J+1;

IF J>N THEN STOP;

RUN;

(Box continues)
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*/creates data set containing logS, logR, predicted logR and predicted logR

+ random residual;

data analysis;

SET PREDOUT;

SET TEMP;

*/ADDS RANDOM RESIDUAL TO PREDICTED LOGR;

BSRCT=PRCT+RESRCT;

RUN;

*/fit curve to bootstrap data set;

 PROC NLIN DATA=ANALYSIS MAXITER=60 METHOD=MARQUARDT NOPRINT;

PARMS ALPHA=1  BETA=.001;

MODEL BSRCT=LOGS+ ALPHA - BETA*S;

IF _ITER_=60 THEN CONVERGE=0;

IF _ITER_<60 THEN CONVERGE=1;

ID CONVERGE;

OUTPUT OUT=BOOTOUT PARMS=ALPHA BETA CONVERGE;

RUN;

*/ delete unnecessary data;

DATA TEMPBOOT;

SET BOOTOUT;

IF J<34 THEN DELETE;

RUN;

*/save parameter estimates from each bootstrap run;

PROC APPEND BASE=ALLBOOT DATA=TEMPBOOT;

RUN;

%END;

%MEND;

*/end macro define;

*/run bootstrap macro;

%BOOT;

*/summarize bootstrap results;

PROC UNIVARIATE DATA=ALLBOOT;

VAR ALPHA BETA;

OUTPUT OUT=BOOTSUM P10=P10 P90=P90;

RUN;

QUIT;

Box 4.9 (continued)
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Results

Table Output for bootstrapped estimation of Ricker recruit–spawner curve assuming lognormal
error structure. The Marquardt method is employed. The dependent variable is logeR (logR).

Iterative Phase

Iteration A B SS

0  1.0000 0.00100 194.9
1  3.3916 0.00118 33.7931

Analysis of Variance

Approximate
Source df SS Mean square F-value P > F

Regression  2  2724.0 1362.0 2.13 0.1540
Residual 32 33.7931  1.0560
Uncorrected total 34  2757.8
Corrected total 33 36.0449

Approximate Correlation Matrix

A B

A 1.0000000  –0.9037713
B  –0.9037713 1.0000000

Table Distribution patterns of � for the Ricker recruit–spawner curve as described by the
UNIVARIATE procedure.

Moments

N  500 Sum weights  500
Mean 3.38337872 Sum observations 1691.68936
SD  0.40222105 Variance 0.16178178
Skewness  –0.2077502 Kurtosis –0.0742384
Uncorrected SS 5804.35489 Corrected SS  80.7291065
CV 11.8881475 SE Mean 0.01798787

Basic Statistical Measures

Location Variability

Mean 3.383379 SD 0.40222
Median 3.390297 Variance 0.16178
Mode Range  2.17523

Interquartile range  0.53847

(Box continues)
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Tests for Location: Mu0 = 0

Test Statistic symbol Statistic value Comparison P-value

Student’s t t 188.0922 P  > |t| <0.0001
Sign M 250 P � |M| <0.0001
Signed rank S  62625 P � |S| <0.0001

Quantiles

Quantile  Estimate

100% Maximum 4.30214
99%  4.22918
95%  4.04890
90%  3.91125
75% Q3 3.66141
50% Median 3.39030
25% Q1  3.12294
10% 2.88759
5% 2.68240
1% 2.36726
0% Minimum 2.12691

Table Distribution patterns of � for the Ricker recruit–spawner curve as described by the
UNIVARIATE procedure.

Moments

N 500 Sum weights  500
Mean 0.00117151 Sum observations 0.58575379
SD  0.00029632 Variance 8.78072 × 10–8

Skewness  –0.0636916 Kurtosis –0.0124084
Uncorrected SS 0.00073003 Corrected SS 0.00004382
CV 25.2941464 SE mean  0.00001325

Basic Statistical Measures

Location Variability

Mean 0.001172 SD 0.0002963
Median 0.001169 Variance 8.78072 × 10–8

Mode Range 0.00168
Interquartile range 0.0003932

Box 4.9 (continued)
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Tests for Location: Mu0 = 0

Test Statistic symbol Statistic value Comparison P-value

Student’s t t 88.40259 P  > |t| <0.0001
Sign M 250 P � |M| <0.0001
Signed rank S 62625 P � |S| <0.0001

Quantiles

Quantile  Estimate

100% Maximum 0.002026458
99% 0.001804193
95% 0.001680089
90% 0.001553971
75% Q3 0.001367037
50% Median 0.001169344
25% Q1 0.000973827
10% 0.000807687
5% 0.000676374
1% 0.000422876
0% Minimum 0.000343403

From the 500 estimates of the Ricker recruit–spawner, � and � were positively correlated (r = 0.91),
similar to the r-value of –0.90 from the approximate correlation matrix from the single nonlinear
equation computed at the beginning of the SAS output. High correlation between nonlinear
parameters typically occurs as these coefficients are simultaneously determined and are not
independent regressors of the dependent variable.

The output for 500 randomized Ricker recruit–spawner  curves and coefficients showed that the
mean and median values for � and � were very similar to the empirical estimates generated from
the nonlinear equation (� = 3.392 and � = –0.00188). Student t-tests, sign, and sign ranks tests for
both � and � indicated these coefficients were not equal to 0 for these 500 estimates. The mini-
mum value for � was not less than 0, and thus this bootstrap method provided evidence that weak
density dependence occurred in the recruit–spawner relation for walleye in Escanaba Lake. Finally,
the UNIVARIATE procedure in SAS showed � and � were approximately normally distributed, similar
to the results from Hougaard’s skewness values computed in Box 4.8.
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using this method can provide more accurate and correct statistical inference
information. In some instances, both the nonlinear and the linear regression
between predicted and observed recruits will compute nearly identical coeffi-
cients of determination and F-statistics, and conducting both analyses can pro-
vide a level of confidence to the statistical properties of the recruit–spawner
relation. The degrees of freedom for the linear model associated with the pre-
dicted versus observed recruits is equal to 1 (spawners are the only indepen-
dent variable), which is correct, compared with 2 df for the Beverton–Holt and
Ricker recruit–spawner models, where the � and � coefficients are generated
for nonlinear regression.

7. For equation (4.7), the linear regression between predicted and observed re-
cruits will compute a nearly identical coefficient of determination and F-statis-
tic as equation (4.6) for the lognormal error structure for the Ricker recruit–
spawner relation (see Box 4.8). Slight differences are due to computational
differences between linear and nonlinear methods. If equation (4.7) is used to
estimate � and �, then the linear regression of predicted versus observed re-
cruits is recommended to make statistical inferences.

4.4.4 Incorporation of Environmental Terms to Explain Additional Variation
in Recruit–Spawner Models

A broad suite of both abiotic and biotic factors such as climate and prey abun-
dance may explain recruitment variation above that explained by spawners. Addi-
tional explanatory variables can easily be added to the traditional recruit–spawner
models. The Beverton–Holt model (equation [4.3]) can be modified as

R =
�S

(e c1x1 + . . . + cnxn),
(4.8)______

1 + �S

where x1 to xn are n additional independent variables, and c1 to cn are the respec-
tive estimated coefficients. Hilborn and Walters (1992) suggested expressing the
x-values as deviations from a mean value. A similar modification can be applied to
the Ricker model for equation (4.4) as

R = Se� – �S + c1x1 + . . .  + cnxn, (4.9)

where the additional terms are defined as in equation (4.8). An example of add-
ing an environmental term to a Ricker recruit–spawner curve with lognormal er-
ror structure is shown in Box 4.8.

The addition of external variables to recruit–spawner models has been exten-
sively debated and should be used with caution (Walters and Collie 1988). Robust
analysis of environmental factors should include testing the integrity of any rela-
tions over a relatively long period of time. Myers (1998) reanalyzed a large num-
ber of previous studies of recruitment–environmental correlates and found that
few relations persisted over time. Tyler (1992) argued in support of research on
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environmental factors while acknowledging the criticisms of such work and spe-
cifically cautioned against “data dredging,” whereby a fisheries scientist assembles
an extensive list of environmental factors and tests for correlation with a recruit-
ment time series. This analytical approach can be highly vulnerable to spurious
correlation that may arise simply at random or may be due to the selection of an
improper error rate for hypothesis testing. Tyler (1992) suggested that data suit-
able for correlative studies should include several time periods of both increasing
and decreasing trends in recruitment. An iterative, operational approach that
combines mechanistic simulation with additional analyses from natural experi-
ments will help reject some of the alternate hypotheses developed from the con-
ceptual phase of the study. Finally, we urge caution in the interpretation of statis-
tical output based on either linear or nonlinear methods when environmental
variables are added to recruit–spawner models (see section 4.4.3).

4.4.5 Estimates of Uncertainty in Recruit–Spawner Curves

To obtain reliable estimates of uncertainty for recruit–spawner coefficients is dif-
ficult for a variety of reasons (Hilborn and Walters 1992). One problem with re-
cruit–spawner data is that model errors are often autocorrelated and thus result
in time series bias of parameter estimates. Thus, the assumption of independent
errors that is necessary for standard parametric statistical inference is violated.
Equations (4.5) and (4.6) provide relatively reliable estimates of the recruit–
spawner model parameters, as these equations incorporate lognormal errors
(Hilborn and Walters 1992).

Hilborn and Walters (1992) recommended jack-knife and bootstrap methods
for producing reliable confidence intervals about recruit–spawner coefficients.
Although the bootstrap method is computationally more intensive than is the
jack-knife method, the former will provide frequency distributions of parameter
estimates, and reasonable confidence intervals can be extracted even when the
distribution is asymmetrical. The bootstrap involves resampling with replacement
either the original data pairs or residuals from the model fit. For regression models,
Efron and Tibshirani (1998) recommend bootstrapping residuals due to strong
assumptions that must be made regarding linear models when bootstrapping data
pairs. One iteration would involve drawing n random residuals with replacement
and adding these to the original observations of the y-variable. The parameters are
reestimated from this resampled data set. This process is repeated from 100 to 1,000
times to obtain a frequency distribution of the estimated parameters from which we
can then estimate the variance of this distribution and bias corrected and acceler-
ated confidence intervals (Efron and Tibshirani 1998). An example of utilizing
bootstrapped methods for a Ricker recruit–spawner curve is presented in Box 4.9.

4.4.6 Sources of Bias in Recruit–Spawner Relations

Two primary sources of bias in estimating recruit–spawner coefficients are time
series bias and measurement error bias. In wild populations, spawner abundance
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fluctuates and quite often, mortality from juvenile life stages to the time of matu-
ration (i.e., recruitment to the spawning population) may or may not be relatively
constant over time. Thus, variation in spawner abundance will not be indepen-
dent of the process errors that impart variation in recruitment. Large recruitment
events will therefore lead to increased spawner abundance in the future, and vice
versa. Under this condition, the errors in recruit–spawner models are not inde-
pendent but are autocorrelated (i.e., a good year is likely to be followed by a good
year, and vice versa), and we therefore violate a key assumption of parametric
statistics resulting in potential bias of parameter estimates.

For walleye from Escanaba Lake (Hansen et al. 1998; see Table 4.3), the largest
observed spawner abundance (2,990) was about eight times greater than the small-
est (369). Hilborn and Walters (1992) suggested that biases can be ignored if the
smallest stocks are less than 10% the size of the largest; in Escanaba Lake this
ratio was about 12%. Walters and Ludwig (1981) suggested that if spawners are
estimated with ± 30% error or better, then bias from measurement errors is prob-
ably not severe. In Escanaba Lake, spawner abundance was estimated with mark–
recapture methods, and standard deviations of these estimates varied from 5.1%
to 19.2% and averaged 10% of the mean from 1959 to 1991 (Carpenter et al.
1994). Thus, measurement error of spawner abundance may not impose serious
bias on the estimated recruit–spawner coefficients for walleye in Escanaba Lake.

■ 4.5 USE OF ADULT SPAWNER DATA TO ASSESS RECRUITMENT OVERFISHING

In some instances in freshwater fisheries, recreational or commercial exploitation
(or both) can so severely deplete the number of adults in the population at such
a high rate that recruitment is reduced. Evidence presented by Davidoff et al.
(1973) and Walker et al. (1993) for lake whitefish, Chevalier (1977) and Anthony
and Jorgensen (1977) for walleye, and Eshenroder (1977) for yellow perch strongly
suggested that recruitment overfishing was associated with a decline in catch and
yield in these freshwater fisheries. Rieman and Beamesderfer (1990) found the
recruit–spawner relation exerted the greatest influence on the dynamics of a white
sturgeon population, which indicated these long-lived, slow-growing fish were
vulnerable to recruitment overfishing. Secor and Waldman (1999) found that
high exploitation caused the Atlantic sturgeon population in Delaware Bay to
collapse in the early 1900s due to recruitment overfishing. Slipke et al. (2002)
predicted the reduction in young channel catfish was associated with overharvest
of adults in the upper Mississippi River.

In the 1980s, marine fisheries scientists attempted to address the problem of
recruitment overfishing quantitatively and developed a simple index termed the
spawning potential ratio (SPR; Goodyear 1993). Typically, attempts to use Ricker or
Beverton–Holt equations of recruit–spawner relations to define a critical abundance
of spawning adults (Hilborn and Walters 1992) have been wrought with high vari-
ability, confounding effects of environmental factors that affect recruitment, and
the lack of long-term data collection (Goodyear 1993; Hansen et al. 1998).
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The SPR is the number of mature eggs produced at a certain level of exploita-
tion for a given population divided by total number of eggs produced in the popu-
lation if no fish were exploited. Goodyear (1993) defined potential recruit fecun-
dity (P) as the number of mature eggs that could be produced by an average
recruit in a population where density-dependent growth and survival did not oc-
cur. This represents the actual average lifetime production of mature eggs per
recruit at equilibrium population densities in the absence of any density-dependent

Table 4.3 Recruit (age-0) and spawner (age-5 and older) walleye data for Escanaba Lake,
Wisconsin (from Hansen et al. 1998). Abundances of recruits and spawners were determined
from mark–recapture population estimates, and May temp CV is the coefficient of variation in
May air temperature, which is when walleye were spawning.

Number

Year-class Age-0 Age-5 and older May temp CV

1958 4,532 775 0.24125
1959 22,996 2,310 0.16319
1960 628 2,990 0.46056
1961 879 1,400 0.33028
1962 14,747 1,130 0.22618
1963 13,205 790 0.20596
1964 31,793 1,195 0.19229
1965 10,621 981 0.20363
1966 22,271 870 0.3452
1967 8,736 1,104 0.27511
1968 8,761 883 0.10884
1969 18,885 1,421 0.17799
1970 10,098 1,198 0.2106
1971 3,394 760 0.22098
1972 1,697 1,354 0.39461
1973 25,159 1,308 0.19696
1974 14,093 2,016 0.20992
1975 1,932 962 0.33459
1976 2,292 976 0.24803
1977 17,386 1,062 0.19815
1978 5,334 1,945 0.32837
1979 6,957 2,073 0.4162
1980 1,036 1,458 0.26409
1981 16,345 946 0.25728
1982 6,149 1,952 0.27111
1983 10,366 1,280 0.18882
1984 16,795 851 0.28661
1985 14,599 394 0.12269
1986 15,299 2,121 0.18605
1987 13,882 452 0.14723
1988 4,351 369 0.18968
1989 4,262 603 0.34298
1990 35,607 735 0.19356
1991 4,876 1,261 0.32032
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suppression of maturation or fecundity at age. Potential recruit fecundity (P ) is
determined (Goodyear 1993) from

P = �Ei �Sij    
i = 1

n

j = 0

i = 1

(4.10)

where
n = number of ages in the population;
Ei = mean fecundity of females of age i in the absence of density-dependent
growth;
Sij = e(–[Fij + Mij]), the density-independent annual survival probabilities of females
of age i when age j;
Fij = the fishing mortality rate of females of age i when age j; and
Mij = the natural mortality rate of females of age i when age j.

Exponential functions for fishing mortality (F ) and natural mortality (M ) are
incorporated into this integral equation similar to predicting cohort abundance.

The SPR is defined as

SPR = Pfished/Punfished . (4.11)

The SPR has a maximum value of 1.00 (unity) and declines toward 0 as fishing
mortality increases. The software developed by Slipke and Maceina (2000) can
compute SPR values for fish displaying a wide variety of different life history traits
and different rates of fishing and natural mortality.

Goodyear (1993) recommends SPR targets of no less than 20–30% based on
observations of pelagic marine species. Slipke et al. (2002) estimated the critical
SPR to maintain adequate recruitment of channel catfish in the upper Mississippi
River was 10% based on the response of C/f of age-0 fish and subsequent harvest
of adult fish. Quist et al. (2002) recommended a maximum conservative SPR tar-
get of 40–50% to protect overexploitation of shovelnose sturgeon in the Missouri
River. Other than the work of Slipke et al. (2002), critical values for SPR have not
been defined nor used to evaluate freshwater sport or commercial fisheries, but
exploring the utility of SPR for these fisheries warrants investigation. Target SPRs
are achieved by protecting mature females by means of harvest regulations. The
SPR is used as a management criterion to maintain adequate females in the popu-
lation to prevent recruitment overfishing. Typically, mature ova production in-
creases exponentially with fish length or linearly with weight. In some instances,
larger females can produce one to two orders of magnitude more eggs than can
smaller sexually mature fish. For example, management strategies to maintain
white sturgeon in the Columbia River include protecting older mature females
that can be caught and released using hook-and-line gear but allowing harvest of
a slot length (92–183 cm TL) of smaller fish (Rieman and Beamesderfer 1990).
The use of SPR critical values should be analyzed with caution as a direct relation-
ship between fecundity and subsequent recruits may not occur, and from year to
year environmental variables can also influence reproductive success.
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■ 4.6 SUMMARY

A wide variety of parametric statistical procedures can be used by fisheries scien-
tists to examine spatial and temporal fluctuations in recruit abundance. These
tools can also be used to examine the effects of manipulations or biotic and abi-
otic impacts on recruitment success. The relation between recruits and spawners
can be investigated, but typically these relations require long-term data collec-
tion, accurate estimates of spawner abundance are difficult to obtain, and recruit-
ment variation is likely to be more influenced by environmental conditions. For
most freshwater fishes, fluctuations in recruitment exert a very strong influence
on population dynamics, and obtaining information on recruitment variation is
paramount to understanding and managing fisheries. Typically, most recreational
and commercial fisheries display wide variation in recruits, and this variation should
be considered when sampling designs are considered, planned, and executed.
Although recruit variation can be high, adequate replicates can be taken to pro-
vide the fisheries scientist with enough statistical power to examine and test hy-
potheses related to fish recruitment.
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■ 5.1 INTRODUCTION

The ability to determine ages of fishes without bias is critical to effective manage-
ment and research. Accurate age information can provide valuable insights into
critical life history events. Often, migrations related to spawning or ontogenetic
changes in environmental requirements are also age dependent. Age data can be
coupled with numbers of individuals to produce an age-frequency distribution,
from which patterns in mortality can be determined. Similarly, deviations in ex-
pected numbers at age can provide insights into year-class strength variability and
the effects of environment on survival.

When age and size information are combined, we can evaluate growth. Growth
provides us with some indication of resource utilization and the effectiveness of
our management strategies. Our ability to model growth and to understand vari-
ables that affect growth both within and among populations is critical to our abil-
ity to manage fisheries effectively. When we evaluate age, growth, and mortality
(see Chapter 6) in combination, we begin to understand the complex relation-
ship between population size and biomass (see Chapter 8). This understanding is
the basis of modern fisheries resource allocation and management.

■ 5.2 AGE DETERMINATION AND VALIDATION

Primary methods employed by fisheries scientists to estimate ages of fishes are
recovery of known-age fish, evaluation of length-frequency distributions, and in-
terpretation of calcified structures. Under unique circumstances, additional meth-
ods employed by researchers include evaluations of isotope decay rates and chemi-
cal microanalysis.

5.2.1 Use of Known-Age Fish

The most direct method of determining age is by the recovery of known-age fish.
Although costly and time consuming, the method is most useful to validate ages
determined by other methods. In this method, fish of known age are reared under
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natural conditions or marked and released into the wild to be recaptured at a
later time. Dyes and stains that are incorporated in hard parts, such as oxytetracy-
cline or alizarin complexone, have been used to validate annual and daily growth-
increment formation (Brothers 1990). Individuals are either immersed into a bath
containing a dye or injected with a chemical that is incorporated into the aging
structure. After a minimum of one annual growth cycle (or several daily growth
cycles), the fish is recaptured and the structure is examined. Although the rela-
tionship between the number of annuli between the mark and the margin of the
structure is used to validate the annual deposition of increments, the technique
validates annual increment formation during only the time period of the study. It
is then inferred that all rings are similarly formed. It is important to examine a
variety of sizes and ages when employing this technique (Campana 2001).

5.2.2 Length-Frequency Method

Because fishes in temperate climates generally spawn over a relatively short pe-
riod each year, but grow over a relatively long period each year, there are natural
discontinuities in the length-frequency distribution between age-classes within a
population (Macdonald and Pitcher 1979; Macdonald 1987). At any given time,
the length-frequency distribution of a population is composed of a variety of age-
classes. In theory, each year-class forms a unique length distribution resulting in a
separate mode in the cumulative distribution. The method of estimating age by
separating overlapping length distributions has been used since the late 1800s.

Although this method works well to separate early age-classes, the decrease in
annual growth in length as individuals age, combined with natural variability in
growth among individuals, results in increasing overlap in age-specific length dis-
tributions with older cohorts (Figure 5.1). In most species, only the youngest two
or three cohorts are readily distinguished using this method. The method also
has several other disadvantages. Environmental conditions often result in disjunct
spawning or survival within a single spawning season, resulting in multi-modal
length-frequency distributions within year-classes. Geographic differences in en-
vironmental quality, density dependency, or other factors may also result in differ-
ential growth between groups spawned within the same time period. Differences
in year-class strength may result in an underrepresentation of one or more year-
classes that are masked by a more dominant cohort. Schooling species often asso-
ciate by size, resulting in little within-school variability in size across age-classes.
Most sampling and fishing gear are size selective and collect samples that are
biased by size or growth rates of individuals. As a result, most samples represent a
subset of the population length distribution that contains only the fastest-growing
younger fish and slowest-growing older fish along with normally growing fish of
intermediate age. The success of the length-frequency method of age estimation
requires a large sample drawn at random from the population. Although it is
useful in fast-growing, short-lived species, the technique is most useful to corrobo-
rate age distributions derived from some other method. Separating the overlap in
length-frequency distributions requires an iterative statistical procedure. Fournier
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Figure 5.1 Illustration of the effect of changes in the mean, standard deviation, and relative
sizes of cohorts upon a length-frequency distribution. The dashed lines represent the frequency
distribution of a hypothetical population and solid lines indicate cohorts. The contribution to
the population by each cohort is constant. Reprinted from Macdonald and Pitcher (1979) with
permission.

Means 5 cm apart
SD = 2.5 cm

Means 7 cm apart
SD = 2.5 cm

Means 10 cm apart
SD = 2.5 cm

Means 10 cm apart
SD = 3.5 cm

Means 10 cm apart
SD = 4.0 cm

Means 10 cm apart
SD = 4.5 cm

Length (cm)Length (cm)

Fr
eq

u
en

cy
Fr

eq
u

en
cy

Fr
eq

u
en

cy
A B

C D

E F

60

40

20

0

60

40

20

0

60

40

20

0

0 20 40 60 80 0 20 40 60 80



190 Chapter 5

et al. (1998) developed a length-based, age-structured model, MULTIFAN–CL,
which provides an integrated method of estimating age composition and other
parameters from length-frequency data. The method incorporates Bayesian pa-
rameter estimation and procedures for hypothesis testing to assist model develop-
ment. The reader is referred to Macdonald and Pitcher (1979) and Macdonald
(1987) for further information on the use of length-frequency distributions to
assign individuals to age-groups.

5.2.3 Interpretation of Calcified Structures

Intra-annual variability in environmental variables such as temperature, salinity,
dissolved oxygen, and productivity often produce a seasonal cycle in fish growth.
This seasonal cycle is recorded as discernible increments in calcified structures in
fishes because of the differential deposition of calcium and protein in relation to
growth. Structures commonly used to age fish include scales, otoliths, spines, fin
rays, vertebrae, and other bony structures (DeVries and Frie 1996). The success-
ful interpretation of calcified structures to age individuals relies on the ability to
recognize patterns in the layered deposition of material. As annual growth incre-
ments decrease with age, the spacing and distinctness of growth increments in
calcified structures also decreases, often resulting in a negative bias in age esti-
mates of older fishes.

5.2.3.1 Scales

Historically, scales were the most popular structure used to estimate age. Despite
their limitations, they remain an important and commonly employed tool for as-
sessing age and growth in many species. Scales were first recognized to contain
age information as early as 1890. The technique was commonly used in assess-
ments of European marine fisheries at the turn of the century but was not applied
widely in North America until the 1920s (Carlander 1987). A review by Van Oosten
(1929) described the methods and established guidelines for scale interpretation
that led to widespread employment of the method beginning in the 1930s. With a
few modifications, the techniques described by Van Oosten (1929) are still used
today. Although it is relatively easy and inexpensive to collect and prepare scales,
the identification of annuli requires skill and experience. The identification of
false annuli can be a critical component of age and growth studies utilizing scales.
Additionally, scales do not develop at hatching and may not appear until the fish
is at a relatively advanced stage of development (Ward and Leonard 1954; Sire
and Arnulf 1990; Sire et al. 1997).

The major advantage of the use of scales for aging is that the fish need not be
sacrificed for data collection. This is of particular importance in studies focusing
on endangered or threatened species as well as in situations where the removal of
fish from the study area would bias study results. However, the potential bias to-
ward underestimation of age is a major disadvantage.
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5.2.3.2 Otoliths

Otoliths, or ear stones, are acellular structures formed by the crystallization of
calcium carbonate in a protein matrix. This process is growth dependent and
occurs throughout the life of the fish (Popper and Lu 2000). Material is perma-
nently deposited and is not resorbed as in scales. Consequently, otoliths consti-
tute a permanent record of growth for a fish to the extent that fossil otoliths can
be used to reconstruct the life histories of ancient fishes (Woydack and Morales-
Nin 2001). Otoliths were first used to determine fish age in the late 1800s (see
review by Van Oosten 1929). However, the discovery in the 1970s that otoliths
form daily increments has become an important advancement in fisheries science
(Pannella 1971). Daily ages determined from age-0 fish have led to the incorpora-
tion of early life history information, such as cohort-specific growth and mortality,
into stock assessments and the evaluation of the effects of environmental condi-
tions on growth and mortality over short temporal scales. The analysis of daily
otolith increments in fisheries research has been reviewed by Campana and Neilson
(1985). Although otolith increments are usually easier to interpret than are scale
increments, the recognition of otolith annuli and daily growth increments still
requires skill and experience. There are two disadvantages to the use of otoliths
in age determination: sacrifice of the fish is necessary for otolith removal and a
large investment of time is required to prepare them for reading. These factors
should be considered when designing an age and growth study.

5.2.3.3 Spines and Fin Rays

In cases in which sacrifice is impractical and scales are inadequate or nonexistent,
spines or fin rays may be used to determine age. This method is most commonly
employed to age catfishes and sturgeons but can be applied to a wide range of
species (Beamish 1981). The reader is referred to Boyko (1946) and Sneed (1951)
for details regarding preparation and reading. A major disadvantage of this tech-
nique is that spines contain a central lumen, which expands as the fish grows. The
expanding lumen erodes early annuli and can cause age and growth estimates to
be biased (Nash and Irwin 1999; Buckmeier et al. 2002). Annuli can be somewhat
more irregular than those in scales and otoliths, potentially rendering them use-
less for back-calculating growth. However, the use of spines or rays in conjunction
with other structures or in cases where other structures fail to produce reliable
results warrants consideration (Beamish 1981).

5.2.3.4 Vertebrae and Other Bony Structures

Historically, other structures such as opercular bones (Bardach 1955) and cleithra
have been used to determine the ages of fishes. Studies utilizing these structures
are not common, despite yielding age estimates that are comparable to those
from scales and otoliths (Baker and Timmons 1991; Baker and McComish 1998).
The usual methods of age determination for bony fish do not work for cartilagi-
nous fish. However, some structures such as vertebrae contain mineralized calcium
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phosphate, which is deposited in proportion to size and has proven useful in
determining age (Stevens 1975; Clement 1992; Natanson et al. 2001). Other struc-
tures such as the thorns of skates and rays (Gallagher and Nolan 1999) and the
spines of dogfishes (McFarlane and Beamish 1987a) also have been employed for
determining age and growth in elasmobranchs.

5.2.4 Validation of Age Estimates from Calcified Structures

Common assumptions of estimating age from hard parts is that increments are
formed annually or daily and that all marks are readily identifiable. Although
generally correct, these assumptions are not always valid (Beamish and McFarlane
1983; Campana 2001). Variability in growth resulting from environmental extremes,
spawning, disease, or injury may result in marks that appear similar in structure to
annual increments (Mugiya and Uchimura 1989; Morales-Nin 2000). Allometric
growth and the slowing of growth with increasing age may render annual or daily
marks difficult to distinguish. In recent years, the potentially large effects of un-
derestimates in age on management decisions related to harvest and growth have
re-emphasized the importance of validating age estimation procedures (Beamish
and McFarlane 1983; Campana 2001).

5.2.4.1 Natural Marks

In some cases natural marks have been used as a method of age validation. Occa-
sionally a natural or anthropogenic event will create a reference mark on calcified
structures. For example, the eruption of Mount Pinatubo in 1992 resulted in re-
duced productivity in lakes throughout the northeastern United States and Canada.
This reduced productivity has manifested in slow growth of fishes during that
year, which can be seen across age-classes (King et al. 1999a; 1999b). This natural
mark has been used to validate the ages of fishes that were living in 1992. Another
widespread mark that has been used to validate ages in long-lived fishes is the
incorporation of radioactive carbon (14C) from nuclear bomb tests in the 1950s
into tissues (Kalish 1993; Kalish et al. 1997; Campana et al. 2002). Typically, the
nucleus of the otolith is used to determine the year of birth of the individual. The
technique can be used broadly to separate fish into individuals born prior to and
after nuclear weapons testing or to validate specific ages when used in conjunc-
tion with a reference chronology of atmospheric 14C levels. Other events such as
El Niño–La Niña events (Woodbury 1999) and oil spills (Gallego et al. 1995) that
are associated with a specific date have the potential to be used as marks for inde-
pendent validation of age estimates. However, to date, this method has not been
widely investigated.

5.2.4.2 Radiochemical Dating

The ages of fishes determined from otoliths can also be validated using radio-
chemical dating. This process takes advantage of the decay of radioactive trace
elements deposited in the otoliths during their formation. The ratio of parent to
daughter isotopes in the nucleus of the otolith can be used to estimate the time of
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its formation. This technique is dependent upon removal of the nucleus and can
be extremely sensitive to the removal of excess material. Additionally, the resolv-
ing power of the technique renders it suitable only for long-lived species (Francis
2003). The reader is referred to Bennett et al. (1982) and Andrews et al. (1999)
for detailed descriptions of this technique.

5.2.4.3 Marginal Increment Analysis

Marginal increment analysis (MIA) is a commonly used method for evaluating
both annulus and daily increment formation to validate age estimates. It tests the
assumption that a growth increment formed on an annual or daily cycle will fit a
saw-toothed pattern when the average state of completion of that increment in
the population is plotted against time (Figure 5.2). Marginal increment analysis is
popular because it is easy and cost effective relative to other validation techniques.
It uses repeated sampling at regular intervals through time to determine when an
annulus or increment is deposited. The application of the technique has come
under question, as reviewed by Beckman and Wilson (1995) and Campana (2001).
There are severe technological limitations in measuring a growth increment along
the increasingly thin and curved edge of an otolith. These limitations often lead
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Figure 5.2 Plot of marginal increment, the amount of translucent material between the last
increment and the otolith margin, for largemouth bass sampled monthly in a southeastern
reservoir. Increment width increases until another annulus is deposited, in this case, between
March and May.
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to subjective interpretation of results. There are also problems with applying the
results of MIA from a younger, faster-growing age-class to older cohorts within the
same population (Campana 2001). This tends to result in bias toward underesti-
mating age in older individuals. There also have been unexplained instances where
inconsistencies in the timing of increment formation among years and locations
have been observed (Beckman and Wilson 1995).

Campana (2001) outlined several aspects of a well-designed validation study
using MIA. The most important point is to interpret the results objectively by
means of an appropriate statistical analysis. It is essential that only a limited num-
ber of age-classes are used in a MIA and that samples from these age-classes be
randomized before reading to avoid subjectivity. Finally, at least two complete
annual or daily growth cycles should be examined during the course of MIA.

5.2.4.4 Date-Specific Marking

Validation of both annual and in some cases daily growth increments can be ac-
complished through the recapture of physically or chemically marked fish. The
use of chemical marks is perhaps the most powerful of the validation tools, but it
also carries the same drawbacks as any mark–recapture study (see DeVries and
Frie 1996 for details). Otoliths and other hard parts will incorporate chemicals
such as oxytetracycline, alizarin complexone, calcein, and strontium. These chemi-
cals bind to calcium, resulting in a mark on the growth increment forming at the
time that will fluoresce under ultraviolet light (Weber and Ridgway 1962, 1967;
Rahn and Perrin 1970; Hettler 1984; Wilson et al. 1987). For a review of the use of
these chemicals the reader is referred to McFarlane and Beamish (1987b) and
Brothers (1990). The marks have a high retention rate on internal structures
(Reinert et al. 1998) but may degrade on external structures, such as scales and
fin rays, which are exposed to sunlight.

Traditional marks such as externally visible marks or electronic tags such as
passive integrated transponder (PIT) tags have been used. With this technique,
known-age fish are released and recaptured some time later. By comparing a ref-
erence sample collected at the time of release with samples collected from recap-
tured marked fish, annual deposition can be validated.

5.2.4.5 Captive Rearing

Individuals held and reared in captivity can be used to validate daily growth incre-
ment formation. This technique generally is not considered suitable to validate
annulus formation because laboratory conditions cannot fully recreate the natu-
ral environment. Even daily increments differ in appearance in captive-reared
individuals. However, their frequency of formation is rarely influenced because of
the endogenous control of the process (Geffen 1987; Morales-Nin 2000).

5.2.5 Applications of Age Data

In addition to its use in estimating growth (see section 5.3), age data can be used
in several other applications. Data collected from otoliths and other hard parts
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are utilized to construct age- or cohort-specific models of mortality and survivor-
ship. Otoliths are increasingly being used as biological data recorders of tempera-
ture and salinity regimes (Campana 2005). However despite these advances, age–
length keys and hatch date analysis remain important tools frequently used to
evaluate population structure and events that are not easily observed, such as
spawning and migration.

5.2.5.1 Age–Length Keys

The relationship between age and length is relatively stable within a population.
Consequently, age can account for a large amount of the variability in length.
Given a sample of fish that has been aged, we can produce a probability matrix of
the proportion of individuals within a certain length-class having a certain age
(Fridriksson 1934; Ketchen 1949; Isermann and Knight 2005). This table is often
referred to as an age–length key (Box 5.1). The age–length key can then be used
to estimate the age of fish of a given length so that length frequency from a much
larger sample can be converted to age frequency (Isermann and Knight 2005).
The use of ages estimated from age–length keys can significantly reduce the time
or cost associated with aging large numbers of fish. The method is particularly
valuable when applied to rare or endangered species, for which the collection of
tissues used in aging may be problematic. When applied to early life stages, age-
frequency information can provide insight into spawning and migration not avail-
able from length information alone. It is important to note that the usefulness of
age–length keys is generally restricted in time and space. Variability in growth
among years and geographic locations (Westrheim and Ricker 1978; Terceiro and
Ross 1993; Bettoli and Miranda 2001) may bias the results obtained from using
age–length keys developed from other times or places.

5.2.5.2 Hatch Date Analysis

By using information obtained from otolith daily growth increments, it is possible
to determine the hatch date of larval and juvenile fishes. In early life stages, hatch
date distributions can be used to glean information on the importance of density
dependent and independent factors on spawning, growth, and survival. This tech-
nique has numerous applications including identifying the periodicity of spawn-
ing events, locating spawning habitats, and examining cohort-specific patterns of
mortality. Although similar to age-frequency analysis, hatch date analysis uses age
to back-calculate hatch date; then adjustments are made for the effects of cumu-
lative mortality on the numbers produced at each date. By incorporating mortal-
ity information, scientists are better able to estimate egg production and other
variables important in assessing stocks.

■ 5.3 GROWTH

Growth is the addition of biomass to either a population or an individual. In fish-
eries management, we attempt to optimize the efficiency of harvest by balancing
individual growth, population biomass, and mortality. If we harvest young fish, we
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Box 5.1 Creating an Age–Length Key

Fisheries scientists often collect length data on large samples, but age data, because of the large
amount of effort involved, are generally collected on smaller samples (i.e., subsamples). In some
cases, we wish to convert our length data to age data. We do this through the use of an age–length
key. We start with a data set containing individual length and age data. By dividing length data into
a series of discrete intervals, we can determine the frequency of ages within each interval. These
frequencies are transformed into probabilities, which are later used to convert numbers at length
to numbers at age. In this example, we have age and length (tl) data for adult spotted sucker. We
create a series of length intervals and create a new variable (tlint) that is a discrete representation
of the length data. In this case, we develop 2 cm (20 mm) length-groups and name each group by
the low end of the interval. We then determine cell frequencies and calculate cell probabilities
using Proc Freq in SAS (SAS 2004). By adding some options to the tables statement, we can
suppress the printing of the frequencies and percentages we don’t need.

Program

data spotted;

input tl age;

if 90<= tl < 100 then tlint = 90;

else if 100<= tl < 120 then tlint = 100;

else if 120<= tl < 140 then tlint = 120;

else if 140<= tl < 160 then tlint = 140;

else if 160<= tl < 180 then tlint = 160;

else if 180<= tl < 200 then tlint = 180;

else if 200<= tl < 220 then tlint = 200;

else if 220<= tl < 240 then tlint = 220;

else if 240<= tl < 260 then tlint = 240;

else if 260<= tl < 280 then tlint = 260;

else if 280<= tl < 300 then tlint = 280;

else if 300<= tl < 320 then tlint = 300;

else if 320<= tl < 340 then tlint = 320;

else if 340<= tl < 360 then tlint = 340;

else if 360<= tl < 380 then tlint = 360;

else if 380<= tl < 400 then tlint = 380;

else if 400<= tl < 420 then tlint = 400;

else if 420<= tl < 440 then tlint = 420;

else if 440<= tl < 460 then tlint = 440;

else if 460<= tl < 480 then tlint = 460;

else if 480<= tl < 500 then tlint = 480;

else if 500<= tl < 520 then tlint = 500;

else if 520<= tl < 540 then tlint = 520;

datalines;

100 1

111 1

114 1

384 4

(input remaining data)

;

proc freq;

tables tlint*age / nocol nofreq nocum nopercent;

run;
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Program Output
The output consists of a table containing the row percent, which is equal to the probability that a
fish within a certain size interval is a certain age.

Table Output from the frequency procedure. Given is the probability that a fish within a given
length interval (tlint) is a certain age.

tlint
and total
number Total
fish 1 2 3 4 5 6 7 8 9 10 number

90 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100 66.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
120 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
240 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
300 0.00 0.00 9.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00
320 0.00 0.00 18.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
340 0.00 0.00 27.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
360 0.00 0.00 27.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
380 0.00 0.00 18.18 30.77 0.00 0.00 0.00 0.00 0.00 0.00
400 0.00 0.00 0.00 46.15 0.00 0.00 0.00 0.00 0.00 0.00
420 0.00 0.00 0.00 23.08 60.00 0.00 0.00 0.00 0.00 0.00
440 0.00 0.00 0.00 0.00 40.00 100.00 0.00 100.00 40.00 0.00
460 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 40.00 0.00
480 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 100.00

Total
number 6 4 11 13 10 5 2 3 5 2 61

Program

Once an age–length key is generated, the length-frequency distribution from the larger sample is
put into the same interval format as the aged sample. The cell frequencies are then multiplied by
the frequencies from the age–length key to estimate the age distribution of the sample.

data spotall;
input tl;

if 90<= tl < 100 then tlint = 90;
else if 100<= tl < 120 then tlint = 100;
else if 120<= tl < 140 then tlint = 120;
else if 140<= tl < 160 then tlint = 140;
else if 160<= tl < 180 then tlint = 160;
else if 180<= tl < 200 then tlint = 180;
else if 200<= tl < 220 then tlint = 200;
else if 220<= tl < 240 then tlint = 220;
else if 240<= tl < 260 then tlint = 240;
else if 260<= tl < 280 then tlint = 260;
else if 280<= tl < 300 then tlint = 280;
else if 300<= tl < 320 then tlint = 300;
else if 320<= tl < 340 then tlint = 320;
else if 340<= tl < 360 then tlint = 340;

(Box continues)

Age
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else if 360<= tl < 380 then tlint = 360;
else if 380<= tl < 400 then tlint = 380;
else if 400<= tl < 420 then tlint = 400;
else if 420<= tl < 440 then tlint = 420;
else if 440<= tl < 460 then tlint = 440;
else if 460<= tl < 480 then tlint = 460;
else if 480<= tl < 500 then tlint = 480;
else if 500<= tl < 520 then tlint = 500;
else if 520<= tl < 540 then tlint = 520;

datalines;
336
336
336
395
395
395
395
386
386
386
386
416
416
416
416
452
452
(input remaining data)
;

proc means mean;
class tlint;
run;

Program Output

The above program will produce a summary table of the number of fish per length interval.

Table Output from the means procedure. Summary statistics for the variable length (tl) for each
length intervals (tlint).

tlint  N Mean SD Minimum Maximum

300     3 318.0000000 0 318.0000000 318.0000000
320     6 335.5000000 0.5477226 335.0000000 336.0000000
340    12 350.7500000 6.3263518 344.0000000 359.0000000
360 12 372.2500000 7.8985039 360.0000000 379.0000000
380    30 392.3333333 6.1941760 382.0000000 399.0000000
400  28 413.0000000 4.4886689 405.0000000 418.0000000
420    48 432.5625000 5.5039879 420.0000000 438.0000000
440    51 449.7450980 4.5380310 443.0000000 459.0000000
460    61 466.9836066 4.1412229 462.0000000 474.0000000
480    83 492.4216867 6.2627830 480.0000000 499.0000000
500    29 512.2068966 2.0244807 510.0000000 514.0000000
520    36 528.4444444 1.6978044 526.0000000 530.0000000

Box 5.1 (continued)
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Program

By using the information from this table as a summary data set, we create a data set for each age-
group and then merge the data sets to create an aged sample.

data spotfreq;

input tlint num;

datalines;

300 3

350 6

340 12

360 12

380 30

400 28

420 48

440 51

460 61

480 83

500 29

520 36;

run;

data spotage1;

set spotfreq;

if tlint = 90 then age = 1;

else if tlint = 100 then age = 1;

else if tlint = 120 then age = 1;

if tlint = 90 then nage = (num* 100)/100;

else if tlint = 100 then nage = (num* 100)/100;

else if tlint = 120 then nage = (num* 100)/100;

if nage = . then delete;

run;

data spotage2;

set spotfreq;

if 240 then age = 2;

if 240 then nage = (num* 100)/100;

if nage = . then delete;

run;

data spotage3;

set spotfreq;

if tlint = 300 then age = 3;

else if tlint = 320 then age = 3;

else if tlint = 340 then age = 3;

else if tlint = 360 then age = 3;

else if tlint = 380 then age = 1;

if tlint = 300 then nage = (num* 100)/100;

else if tlint = 320 then nage = (num* 100)/100;

else if tlint = 340 then nage = (num* 100)/100;

else if tlint = 360 then nage = (num* 100)/100;

else if tlint = 380 then nage = (num* 33.33)/100;

if nage = . then delete;

run;

(Box continues)
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data spotage4;
set spotfreq;
if tlint = 380 then age = 4;
else if tlint = 400 then age = 4;
else if tlint = 420 then age = 4;
if tlint = 380 then nage = (num* 66.67)/100;
else if tlint = 400 then nage = (num* 100)/100;
else if tlint = 420 then nage = (num* 33.33)/100;
if nage = . then delete;
run;

data spotage5;
set spotfreq;
if tlint = 420 then age = 5;
else if tlint = 440 then age = 5;
if tlint = 420 then nage = (num* 66.67)/100;
else if tlint = 440 then nage = (num* 28.57)/100;
if nage = . then delete;
run;

data spotage6;
set spotfreq;
if tlint = 440 then age = 6;
if tlint = 440 then nage = (num* 35.71)/100;
if nage = . then delete;
run;

data spotage7;
set spotfreq;
if tlint = 460 then age = 7;
if tlint = 460 then nage = (num* 50.00)/100;
if nage = . then delete;
run;

data spotage8;
set spotfreq;
if tlint = 440 then age = 8;
else if tlint = 480 then age = 8;
if tlint = 440 then nage = (num* 21.43)/100;
else if tlint = 480 then nage = (num* 33.33)/100;
if nage = . then delete;
run;

data spotage9;
set spotfreq;
if tlint = 440 then age = 9;
else if tlint = 460 then age = 9;
else if tlint = 480 then age = 9;
if tlint = 440 then nage = (num* 14.29)/100;
else if tlint = 460 then nage = (num* 50.00)/100;
else if tlint = 480 then nage = (num* 66.67)/100;
if nage = . then delete;
run;

data spotage;
set spotage1 spotage2 spotage3 spotage4 spotage5 spotage6 spotage7 spotage8

spotage9;
run;

proc print;
run;

Box 5.1 (continued)
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Program Output

The resulting data set contains the number of fish in each age-group (nage) by length category.

Table Number of fish in each age-group (nage) by length category (tlint) for the larger sample.

tlint Number Age nage

300 3 2 3.0000
350 6 2 6.0000
340 12 2 12.0000
360 12 2 12.0000
380 30 2 30.0000
400 28 2 28.0000
420 48 2  48.0000
440 51 2 51.0000
460 61 2 61.0000
480 83 2 83.0000
500 29 2 29.0000
520 36 2 36.0000
300 3 3 3.0000
340 12 3 12.0000
360 12 3 12.0000
380 30 1 9.9990
380 30 4 20.0010
400 28 4 28.0000
420 48 4 15.9984
420 48 5 32.0016
440 51 5 14.5707
440 51 6 18.2121
460 61 7 30.5000
440 51 8 10.9293
480 83 8 27.6639
440 51 9  7.2879
460 61 9 30.5000
480 83 9 55.3361
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may optimize numbers but lose biomass because we have not allowed individuals
to reproduce. Alternatively, if we harvest older fish, individual biomass may be
maximized, but a large portion of the population will be lost to natural mortality.
The interplay between growth and mortality is, therefore, critical in determining
management strategies. Growth is also an important component in understand-
ing the ecology of a species at both the individual and population level, as it is a
convenient method for assessing the quality of a habitat and tracing life histories.

On an individual basis, change in length is proportional to change in weight.
We can relate length and weight using the equation

W = aLb, (5.1)

where W  is weight, L is length, and a and b are constants. This relationship can be
expressed in linear form with the equation

logeW = a + b logeL . (5.2)

When change in all three dimensions is similar across all sizes, we consider
growth to be isometric. This results in the special case in which the exponent b =
3. In most species, body shape does not change with age; therefore, most species
grow isometrically. In species for which individuals change shape with age either
through metamorphosis, development of secondary sex characteristics, or senes-
cence, growth is said to be allometric, and b � 3.

For a variety of reasons including ease, we often measure length rather than
weight. One representation of growth can be obtained by simply comparing the
change in modal lengths through time within a population when the modes are
considered to represent distinct age-classes. Similarly, the progression of modes
through time can be used to estimate growth (Figure 5.3). This method of growth
determination assumes that the sample is drawn at random with respect to size
and that growth across age-classes is similar through time. Variation in growth
within and among years may result in biased estimates when different year-classes
are compared.

There are several different methods to express growth numerically (Ricker
1975; Busacker et al. 1990). If growth is reported as the change in length or weight
over a given time interval, then it is termed absolute growth and expressed as

�Labsolute = L2 –  L1 , (5.3)

where �Labsolute is absolute growth, L1 is initial length, and L2 is final length. How-
ever, growth can also be expressed as a percent increase in length or weight rela-
tive to an initial value. This is referred to as relative growth and is generally ex-
pressed as

�Lrelative =
L2 – L1

L1
100 , (5.4)
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Figure 5.3 Length-frequency distributions of molly miller from August through November
2000 showing an increase in total length (TL) through time of age-0 fish represented in the
samples.
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where �Lrelative is relative growth. Both absolute and relative growth also can be
expressed as a rate in terms of growth per unit time:

Gabsolute =
L2 – L1

t2 – t1
, and (5.5)

Grelative =
L2 – L1

L1(t2 – t1)
, (5.6)

where G is growth rate either absolute or relative, t1 is initial time, t2 is final time,
and L1 and L2 are the corresponding lengths for those times. In the case that
growth is exponential over a short period of time (<1 year) it is best reported as
an instantaneous rate:

G = loge L2 – loge L1

t2 – t1
. (5.7)

These calculations of growth rates yield an estimate of growth that is appropri-
ate over short time scales (days to months). Growth over longer time periods
tends to deviate from these simple, linear, or exponential estimates and requires
more complex models that will be discussed later.

5.3.1 Back-Calculation of Length from Calcified Structures

If we assume that the growth of calcified structures is proportional to overall fish
growth, a simple ratio or direct proportion method can be used to back-calculate
size at annulus formation (Box 5.2). If we know the length of the fish, the radius
of the calcified structure, and the radius to each annulus, we can use the equation

=Li

Lc
, or Li  = Si

Sc

Si Lc

Sc

, (5.8)

where Si is the radius at annulus formation, Sc is the overall radius, Li is the length
at annulus formation, and Lc is the fish length at capture (Box 5.2). Although this
relationship generally holds true, fisheries scientists have noticed that it often
results in an underestimation of length when scales are used. A tacit assumption
of proportionality is that scales are formed early in development. For many spe-
cies, this is not true. Scales may not form in some species until the individual
reaches lengths of 5 cm or greater. Work done by Fraser (1916) and Lee (1920)
suggested that a correction factor (a) be added to the equation to account for the
delay in scale formation. The resulting equation,
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Box 5.2 Determining Mean Back-Calculated Length at Age

In addition to providing estimates of age, hard parts are often used to back-calculate length at
younger ages. To demonstrate how this is accomplished, we will be using a data set determined
from scales and describing the age and growth of spotted sucker from the Savannah River. For each
fish, our data set contains an identification number (ID), sex, total length at capture (Lc ), year of
capture (date), age, radius of ageing structure (scale) at capture (Sc ), annulus i (inc), and scale radius
at each annulus i (Si ) for each individual annulus.

Dahl–Lea Method
We start with the simple case in which the growth of the structure used for ageing is directly
proportional to the growth of the fish. This method is generally referred to as the Dahl–Lea
method (Dahl 1907; Lea 1910) and allows one to back-calculate length at age for individual fish.
The formula is

Li = Lc (Si / Sc ) ,

where Li is back-calculated length at annulus i, Lc is length at capture, Si is ageing-structure radius at
annulus i, and Sc is ageing-structure radius at capture. Using the SAS code below, we can generate
back-calculated total lengths (Li ) and calculate mean length at age for the spotted sucker population.

Program

data sucker;

input ID$ sex$ Lc date age Sc inc Si;

Li = LC * (Si/Sc);

cards;

07447 M 336 2004 3 16.3 1 5

07447 M 336 2004 3 16.3 2 12.9

07447 M 336 2004 3 16.3 3 16.3

35334 F 395 2004 4 18.4 1 4.8

35334 F 395 2004 4 18.4 2 9.9

35334 F 395 2004 4 18.4 3 16.5

35334 F 395 2004 4 18.4 4 18.4

44736 F 386 2004 4 18.6 1 4.9

44736 F 386 2004 4 18.6 2 8.5

44736 F 386 2004 4 18.6 3 13.6

44736 F 386 2004 4 18.6 4 18.6

(input remaining data)

;

run; quit;

proc means data=sucker mean stderr std;

title ‘Mean back-calculated TL at age for spotted sucker’;

class inc;

var Li;

run; quit;

(Box continues)
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Program Output

The above SAS program will yield the following output for our spotted sucker data set.

Table Mean back-calculated total length (Li) at age for spotted sucker generated the means
procedure.

Number of
Annulus i observations Mean SE SD

1 65 93.2168665 2.3905126 19.2729288
2 65 217.2709364 5.0262681 40.5230692
3 65 328.9349467 5.6120787 45.2460251
4 52 373.7611035 6.1277514 44.1878437
5 35 388.8813533 7.3027812 43.2038363
6 27 404.2197909 7.3382603 38.1307192
7 21 413.5260280 6.5852539 30.1774246
8 18 430.0907986 6.5060450 27.6028112
9 18 452.1169315 6.6510322 28.2179397
10 14 464.0779850 7.4847926 28.0055297
11 11 478.1245135 9.1952021 30.4970351
12 9 488.7881206 8.7617199 26.2851596
13 6 498.4247331 10.1487390 24.8592322
14 4 501.2899579 10.1750810 20.3501620
15 3 516.9213162 17.0469489 29.5261816
16 2 540.9583333 26.9583333 38.1248406
17 1 580.0000000

Fraser–Lee Model
In some cases, structures such as scales may take some time to form after hatch or metamorphosis.
Consequently, early length estimates are biased. The Fraser–Lee model (Fraser 1916; Lee 1920)
accounts for this bias by including a biological intercept in the model. The model is

Li = a + (Lc – a)( Si / Sc ).

The variable a is the intercept determined from the ageing-structure radius and fish length
relationship and the other variables are previously defined.

Because we are using scales to back-calculate length at age, we will likely require a correction
factor. Because we did not collect empirical data or find information in the literature regarding the
length of scale formation in spotted sucker, then we must estimate this parameter by modeling the
known relationship between ageing-structure radius and fish-length at capture from our spotted
sucker data set. Even had we found this information in the literature, performing the below
calculations is another good way to check one’s data.

Box 5.2 (continued)

Back-calculated total length
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Program

proc glm data=sucker;

title ‘Estimate of biological intercept’;

model Li = Si;

run; quit;

We use regression analysis to determine the relationship between scale radius at age and back-
calculated total length at age. In a larger data set, it may be possible to use Lc and Sc directly to
estimate the Fraser–Lee correction factor. However, our spotted sucker data set does not have any
individuals younger than age 3. Using Lc and Sc provides us with unrealistically large estimates.

Another important consideration is that units of measurement for Li and Si are the same for this
calculation. Whereas this is not a concern during calculations of length at age because the units
cancel, it will yield inaccurate estimates for the correction factor. In our spotted sucker data set,
scales were magnified 24× and measured in centimeters. A conversion will be necessary as total
length was measured in millimeters. Therefore, we will create a new variable containing the
converted scale radii with the following statement.

data sucker_Si2;

set sucker;

Li = Lc * (Si/Sc);

Si2 = (Si*10)/24;

run; quit;

proc glm data=sucker_Si2;

title ‘Estimate of biological intercept’;

model Li = Si2;

run; quit;

This will convert scale radius from centimeters to millimeters and account for making the measure-
ments under magnification. The program will now yield the following output.

Program Output

Table Estimate of biological intercept for the dependent variable mean back-calculated total
length (Li ) based on the general linear model (GLM) procedure. The number of observations used
and read was 416. Abbreviations are given for coefficient of variation (CV), mean square error (MSE),
and sum of squares (SS).

General linear model

Source df Sum of squares Mean square F-value P > F

Model 1 6486640.962 6486640.962 3672.42 <0.0001
Error 414 731253.767 1766.313
Corrected total 415 7217894.729

R2 0.898689 Root MSE 42.02753
CV 13.00363 Li mean 323.1985

(Box continues)
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Source df Type I SS Mean square F-value P > F

Si2 1 6486640.962 6486640.962 3672.42 <0.0001

Source df Type III SS Mean square F-value P > F

Si2 1 6486640.962 6486640.962 3672.42 <0.0001

Variable Estimate SE t-value P > |t |

Intercept 35.49138299 5.17548973 6.86 <0.0001
Si2 50.88336354 0.83965286 60.60 <0.0001

The intercept of this linear model will be an estimate of the Fraser–Lee correction factor. Therefore,
we must be able to reject the null hypothesis that the intercept is not different from 0. If we cannot
reject this null hypothesis, then a correction factor is not likely to be necessary. In the case of our
spotted sucker data, a correction factor is necessary. Now, the correction factor a can be used to
calculate mean back-calculated total length (Li) at age with the Fraser–Lee correction.

Program

data sucker_a;

set sucker;

Li = Lc * (Si/Sc);

Si2 = (Si*10)/24;

a = 35.5;

Li_corrected = a + (Lc - a) * (Si/Sc);

run; quit;

proc means data=sucker_a mean stderr std;

title ‘Corrected mean back-calculated TL at age for spotted sucker’;

class inc;

var Li_corrected;

run; quit;

Box 5.2 (continued)

Lc  – a
Sc

Si  + a ,Li  = (5.9)

where a is the size of the individual at the time of scale formation, provides an
unbiased estimate in length when scales are used and is referred to as the Fraser–
Lee or intercept-corrected direct proportion model. While this formula is widely
used, it may not be the most precise estimate of length at age. There can also be
differences in the precision of back-calculation depending upon the structure,
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Program Output

The above program produces the following output.

Table Corrected mean back-calculated total length (Li) at age for spotted sucker generated by the
means procedure.

Number of
Annulus i observations Mean SE SD

1 65 120.8801223 2.1454817 17.2974263
2 65 234.5165149 4.4996539 36.2773695
3 65 336.8015953 4.9458073 39.8743735
4 52 379.4639509 5.3958210 38.9098182
5 35 394.8724181 6.4986305 38.4464168
6 27 409.7792454 6.5739649 34.1593235
7 21 419.0105377 5.9427822 27.2332491
8 18 434.8327817 5.9630989 25.2992861
9 18 455.2899399 6.1182144 25.9573855
10 14 466.9561266 7.0110838 26.2330736
11 11 480.5614840 8.7472611 29.0113831
12 9 490.6474731 8.3865848 25.1597543
13 6 499.9279199 9.9833260 24.4540545
14 4 502.6128845 10.6974006 21.3948012
15 3 517.8177039 17.4957374 30.3035062
16 2 541.3281250 27.3281250 38.6478050
17 1 580.0000000

This method is very useful when sample sizes are small and additional growth information is
needed. It can also be used to develop data to test for size-selective mortality (or Lee’s phenom-
enon), a common occurrence in commercial fisheries. Growth histories from specific year-classes
can be compared or data can be converted to year-specific growth to compare inter-annual
variations.

Back-calculated total length

necessitating careful selection of the model used (Campana 1990; Klumb et al.
2001). The reader is referred to Francis (1990) for a review of alternative meth-
ods. Once calculated, size-at-age information between sexes and populations can
be compared (Box 5.3).

Often times, back-calculated lengths fall below the mean of observed lengths
from the same population. This apparent change in growth over time was first
described by Lee in 1920 and is discussed by Ricker (1975) and others to a greater
extent. Interestingly, Lee’s phenomenon can be related to (1) failure to use the
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Box 5.3 Assessing Differences in Length at Age between Groups

Now that we have corrected back-calculated length at age, we can test for differences between
groups. For example, we commonly want to test for a sex effect on length at age.  We can use our
previous example to evaluate differences between sexes by means of an analysis of covariance
(ANCOVA) approach. We start with our spotted sucker data set containing fish identification
number (ID), sex, total length at capture (Lc ), year of capture (date), age, radius of aging structure
(scale) at capture (Sc ), annulus increment number (inc), and radius of aging structure at inc (Si ). We
calculate the length at each increment using a direct proportion method and incorporate the
Fraser–Lee correction factor calculated in Box 5.2. Given that growth has a curvilinear component,
we create a dummy variable (incsq) to be incorporated into the model.

Program

data sucker;

input ID$ sex$ Lc date age Sc inc Si;

a = 35.5;

Li_corrected = a + (Lc - a) * (Si/Sc);

incsq = inc*inc;

cards;

07447 M 336 2004 3 16.3 1 5

07447 M 336 2004 3 16.3 2 12.9

07447 M 336 2004 3 16.3 3 16.3

35334 F 395 2004 4 18.4 1 4.8

35334 F 395 2004 4 18.4 2 9.9

35334 F 395 2004 4 18.4 3 16.5

35334 F 395 2004 4 18.4 4 18.4

44736 F 386 2004 4 18.6 1 4.9

44736 F 386 2004 4 18.6 2 8.5

44736 F 386 2004 4 18.6 3 13.6

44736 F 386 2004 4 18.6 4 18.6

(input remaining data)

;

run; quit;

Once the data are entered we can run the GLM procedure to test the null hypothesis that there is
no difference between males and females in the slope of the length at age regressions.

proc glm data=sucker;

title ‘Testing for equal slopes between males and females’;

class sex;

model Li_corrected= sex inc incsq sex*inc sex*incsq;

run; quit;

This program will yield the following output.
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Program Output

Table Test of the assumption of equal slopes for male and female spotted suckers (ANCOVA) by
means of the GLM procedure with Li-corrected (back-calculated total length, Li , with the Fraser–Lee
correction factor) as the dependent variable.

General linear model

Source df Sum of squares Mean square F-value P > F

Model 5 5486250.292 1097250.058 589.40 <0.0001
Error 410 763266.344 1861.625
Corrected total 415 6249516.636

R2 0.877868 Root MSE 43.14656
CV 12.92255 Li-corrected mean 333.8859

Source df Type I SS Mean square F-value P > F

Sex 1 116871.182 116871.182 62.78 <0.0001
Inc 1 4286871.155 4286871.155 2302.76 <0.0001
Incsq 1 937786.528 937786.528 503.75 <0.0001
Inc*sex 1 9742.781 9742.781 5.23 0.0227
Incsq*sex 1 134978.646 134978.646 72.51 <0.0001

Source df Type III SS Mean square F-value P > F

Sex 1 49896.978 49896.978 26.80 <0.0001
Inc 1 1974734.921 1974734.921 1060.76 <0.0001
Incsq 1 688068.591 688068.591 369.61 <0.0001
Inc*sex 1 143885.275 143885.275 77.29 <0.0001
Incsq*sex 1 134978.646 134978.646 72.51 <0.0001

The value of interest here is the P-value for the interaction terms inc*sex and incsq*sex. This tests
the null hypothesis that the slopes are equal between males and females. In this case, it appears
that males and females have different slopes and thus grow at different rates. We would use this
information to justify modeling the growth of the two sexes separately.

Similarly, differences in growth rates between populations or other treatment variables can be
evaluated by placing a population or treatment identifier in the data set and substituting it for sex
in the analysis.
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corrected body–scale relationship, (2) a bias resulting from size-selective sampling
or harvest, or (3) variation in mortality rates as a function of growth. Size selectiv-
ity may be the most common bias, as fish tend to be sampled or harvested by size-
selective gear rather than by age-selective gear, so the fastest-growing individuals
are sampled or harvested first. Consequently, individuals that live the longest tend
to be the slowest-growing individuals in the population, resulting in smaller back-
calculated sizes at younger ages.

5.3.2 Growth in Weight

Theoretically, in an unlimited environment growth is exponential and can be
modeled using the equation

wt = w0e gt, (5.10)

where wt is weight at time t, w 0 is initial weight, e is the base of the natural loga-
rithm, and g is a growth coefficient. Although this equation could be used to
estimate population growth as well as individual growth, it is seldom applicable
for either over long periods. This model assumes no limitations on growth, and
this is rarely the case. The model is useful, however, to estimate production of
growth within a single growing season or early in development. As previously
mentioned, growth in weight is not used as commonly as growth in length. How-
ever, weight can be substituted for length in the growth models presented below
and will maintain the same form. Coefficients estimated for the resulting equa-
tions, obviously, will be different.

5.3.3 Growth in Length

The weight model presented above is not useful to represent growth in length.
Early in life, length and weight both increase very rapidly. However, as fish age,
small changes in length can result in large changes in weight (equation [5.1]).
Although fish are thought to exhibit indeterminate growth, length often ap-
proaches an asymptote. A number of models have been used to model length, but
the model developed by von Bertalanffy (1938) generally fits fish length data well.
It has become a standard among fisheries scientists. The model is represented as

lt = L �(1 – e –K(t – t0)), (5.11)

where lt is length at time t, L � is the asymptotic length, K is a growth coefficient,
and t0 is a time coefficient at which length would theoretically be 0.

Unlike the simple exponential model, obtaining estimates of L�, t0, and K re-
quires an iterative solution. Most statistical and graphics software packages now
contain programs that calculate maximum likelihood estimates (see Chapter 8
for explanation of maximum likelihood) of nonlinear regression parameters such
as those in the von Bertalanffy growth equation. Historically, these parameters
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were estimated using a graphical solution. Walford (1946) observed that when
length at age t + 1 was plotted against length at age t, the slope of the line was
equal to e–K, where K is the same growth coefficient as in the von Bertalanffy model
(Figure 5.4). If a line with a slope of 1 (i.e., a 45° line) is drawn through the

Figure 5.4 (a) Walford plot (solid line) of spotted sucker  and the resulting von Bertalanffy
growth curve  parameters (L� = asymptotic length and K = growth coefficient) estimated from
the Walford plot. Dashed line with a slope of 1 is drawn through the origin to provide an
estimate of L� at its intersection with the Walford plot. (b) The von Bertalanffy growth curve
generated from a Walford plot (solid line) is compared with one generated using iterative
procedures illustrated in Box 5.4 (dotted line).
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origin, the intersection of the two lines indicates the size at which change in length
is theoretically 0 and provides an estimate of L� . The parameter t0 may be esti-
mated by substituting known values for length and age, and the estimates of K
and L � derived from the Walford plot may be placed into the von Bertalanffy
equation. Although this method produces reasonable estimates, mathematical
solutions are more precise (Box 5.4).

The von Bertalanffy model often works well across the entire life history of a
fish, meaning it can be applied to a single sample integrated across year-classes or
can be developed for individual year-classes. Data also may be stratified by sex or
geographic area, modeled independently, and compared using analysis of covari-
ance (ANCOVA) (Box 5.5).

In some mark–recapture studies, we may know size at capture and recapture
and time at large, but we may not know age. Fabens (1965) proposed a modifica-
tion of the von Bertalanffy equation to model growth under this unique circum-
stance. This model is useful for work on relatively rare or endangered species for
which collection of materials on which to base age is impractical or on marine
reptiles and other organisms for which a method to determine age has not been
identified. The Fabens model is

Rî = Mi + (L� – Mi)(1 – e –K�ti) (5.12)

where Rî is the length at recapture of the ith individual, Mi is the length at mark-
ing (or first capture) of the ith individual, L � and K are parameters of the von
Bertalanffy growth equation, and �ti is the time at large. Model parameters can be
estimated using a maximum likelihood estimator, or nonlinear fit program, as
with the von Bertalanffy model (Box 5.6). Note that this method does not provide
and estimate for the time at zero length, t0, which must be estimated through
some other method, by using empirical early growth data, or by substituting known
age and length values and parameter estimates into the equation as above.

Although the von Bertalanffy model has become the method of choice for
modeling growth in length, other growth models may be more appropriate de-
pending upon the species of interest and the specific circumstances (Ricker 1975).
Other commonly applied growth models are included below.

Richards (1959):

lt = D + (L � – D)(1 + He –k(t – t0))–1/H ; (5.13)

Gompertz (1825):

lt = L�e –ke –gt (5.14)

and the logistic (Verhulst 1838, 1845):

L�A
A + (L� – A)e –ktlt  = . (5.15)
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Box 5.4 Fitting a von Bertalanffy Growth Curve

The length-at-age data on spotted sucker illustrated in Figure 5.4 and Box 5.2 will be used here. For
each individual in the data set, we have entered total length (tl) and age. Therefore, each fish
represents a single degree of freedom in the analysis. To minimize bias, similar numbers of fish from
each year-class should be included in the model. If older or younger age-classes are not well
represented in the analysis, confidence limits at the extremes of the curve may expand dramatically
or the model will fail to converge. Parameters for the growth curve can now be estimated iteratively
using a nonlinear regression approach with the following SAS program.

Program

data spotage;
input tl age;
cards;
388 4
418 4
438 4
428 5
539 10
432 4
444 7
421 4
438 4
(input remaining data)
;
run;

proc nlin data = spotage;
model tl = linf*(1-EXP(-k*(age–t0)));
parameters linf = 1000 k = 0.1 t0 = 0.1;
output out = explen p = extl;
run;

The model statement expresses the von Bertalanffy model in SAS format. Other models may be
substituted. Here are some examples of common growth models expressed in SAS format.

Richards:

model Lt = D+(Lmax–D)*(1+ He**(–k*(t–t0)))**( –1/H) ;

Gompertz:

model Lt = Lmax*exp(–k*exp(–g*t)) ; and

logistic:

model Lt = (Lmax*A)/(A+(Lmax –A)*exp(–k*t) .

The parameters statement provides initial parameter estimates. These values can be estimated
from traditional methods such as the Walford plot or by using reasonable values obtained from the
literature or from similar species. For example, the asymptotic length, L� (linf ), can be estimated as
the average length of the oldest age-group. The output statement creates a data set with expected
(predicted) values for length at each age, which can then be plotted or analyzed further.

(Box continues)
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Program Output
The output consists of the results of the iterations, the associated sums of squares, a regression
analysis containing the statistical significance of the model, the parameter estimates and associ-
ated confidence limits, and a correlation matrix for the parameter estimates.

Table Nonlinear regression analysis (NLIN procedure) of the total length (tl) of spotted sucker and
estimates of the von Bertalanffy growth model parameters: asymptotic length (linf ), growth
coefficient (k), and time coefficient (t0) where length would theoretically be 0. Iterations based on
the based on the Gauss-Newton method; convergence criterion was met. The acronyms PPC
(prospective parameter change measure) and RPC (retrospective parameter change measure) refer
to how well the model met its convergence criteria; the reader is advised to see SAS for details of
definitions and procedures.

Iterative phase

Iteration linf k t0 SS

0 1000.0 0.1000 0.1000 469817
1 776.8 0.1027 –1.5355 326499
2 579.8 0.1096 –4.5622 302753
3 549.8 0.1226 –6.6931 44520.3
4 542.7 0.1382 –6.3290 30574.0
5 535.5 0.1505 –5.8205 30269.8
6 530.3 0.1599 –5.4872 30190.3
7 526.6 0.1670 –5.2450 30171.2
8 523.9 0.1725 –5.0682 30165.6
9 522.0 0.1766 –4.9377 30163.7
10 520.5 0.1798 –4.8406 30163.0
11 519.5 0.1822 –4.7680 30162.6
12 518.7 0.1841 –4.7134 30162.5
13 518.1 0.1855 –4.6723 30162.4
14 517.6 0.1865 –4.6412 30162.3
15 517.3 0.1874 –4.6177 30162.3
16 517.1 0.1880 –4.5999 30162.3
17 516.9 0.1885 –4.5864 30162.3
18 516.7 0.1888 –4.5761 30162.3
19 516.6 0.1891 –4.5683 30162.3
20 516.5 0.1893 –4.5624 30162.3
21 516.5 0.1894 –4.5579 30162.3
22 516.4 0.1896 –4.5544 30162.3
23 516.4 0.1897 –4.5518 30162.3
24 516.3 0.1897 –4.5498 30162.3
25 516.3 0.1898 –4.5483 30162.3
26 516.3 0.1898 –4.5472 30162.3
27 516.3 0.1899 –4.5463 30162.3
28 516.3 0.1899 –4.5457 30162.3
29 516.3 0.1899 –4.5451 30162.3
30 516.3 0.1899 –4.5448 30162.3

Box 5.4 (continued)
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Estimation summary

Method Gauss-Newton
Iterations 30
Subiterations 1
Average subiterations 0.033333
R 9.028 × 10–6

PPC(t0) 0.000065
RPC(t0) 0.000085
Object 2.48 × 10–10

Objective 30162.26
Observations read 95
Observations used 95
Observations missing 0

Regression analysis

Approximate
Source df SS Mean square F-value P > F

Model 2 38328.9 19164.4 58.45 <0.0001
Error 92 30162.3 327.9
Corrected total 94 68491.2

Parameter estimates

Approximate Approximate 95%
Parameter Estimate SE confidence limits

linf 516.3 48.8409 419.3 613.3
k 0.1899 0.1194 –0.0473 0.4271
t0 –4.5448 3.4102 –11.3178 2.2283

Approximate correlation matrix

linf k t0

linf 1.0000000 –0.9872305 –0.9616729
k –0.9872305 1.0000000 0.9927332
t0 –0.9616729 0.9927332 1.0000000

The model indicates that growth of spotted sucker can be estimated using the equation

lt = L�[1 – e–K (t – t0)],

where

lt = 516.3[1 – e–0.1899(t + 4.5448)].
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Box 5.5 Identifying Environmental Effects on Growth

Often, fisheries scientists are interested in evaluating the effects of some management strategy on
growth. Length limits, fertilization, and water level manipulations, for example, may all produce time-
specific effects. We cannot simply compare pre-treatment length with post-treatment length. Weisburg
and Frie (1987) demonstrated a method of isolating annular growth effects by calculating growth
increment and assigning this not only to a specific age but to a specific year. We will use data collected
from a population of spotted sucker to test the effects of an extended drought on growth. The drought
occurred from 2000 through 2003. Rather than test for the effect of a specific individual year, we group
years together by rainfall. Although it would have improved the statistical performance of the model,
note that it is not necessary to sample pre-treatment fish length as long as the post-treatment sample
contains a representative sample of fish that were alive during the pre-treatment period. In this case,
year-classes from normal and drought (dry) years were present in the sample.

Program

data spotted_weather;
input id $ sex $ tl w year age bcyear bcage bctl growth;
if bcyear < 2000 then group = “normal”;
else if bcyear >1999 then group = “dry”;
cards;
04111 F 486 710 2004 9 1995 1 76 76
04111 F 486 710 2004 9 1996 2 181 104
04111 F 486 710 2004 9 1997 3 275 94
(input remaining data)
;
run;

proc glm;
class bcage group;
model growth = bcage group bcage*group;
run;

The model statement evaluates annual length increment (growth) as a function of weather
conditions (group), age (bcage), and the interaction between age and weather (bcage*group). In
cases in which the interaction is significant, results can be interpreted that the treatment affected
age-classes differently. For example, we could conclude that during a drought, younger fish might
grow slower because of poor habitat but that older fish would grow faster due to a concentration
of prey caused by decreased water levels.

Program Output
The output consists of a standard F table including model degrees of freedom, the associated
model and partial sums of squares, model and partial F-values, and significance levels.

Table Evaluation of annual length increment (growth) as a function of weather conditions (group)
and age (bcage).

General linear model

Source df SS Mean square F-value P > F

Model 13 341678.9817 26282.9986 60.18 <0.0001
Error 230 100453.0305 436.7523
Corrected total 243 442132.0123

R2 0.772799 Root MSE 20.89862
CV 23.71861 Growth mean 88.11066
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Source df Type I SS Mean square F-value P > F

bcage 8 333756.1313 41719.5164 95.52 <0.0001
group 1 6500.5460 6500.5460 14.88 0.0001
bcage*group 4 1422.3044 355.5761 0.81 0.5173

Source df Type III SS Mean square F-value P > F

bcage 8 210629.6102 26328.7013 60.28 <0.0001
group 1 3025.6062 3025.6062 6.93 0.0091
bcage*group 4 1422.3044 355.5761 0.81 0.5173

The model indicates that both age (bcage) and weather (group) accounted for significant propor-
tions of variation in growth, but that no significant interaction between age and weather was
detected. Therefore, we can reduce the model and further evaluate the effects of age and year on
growth. Using the same data, we now run the following model.

Program

proc glm;

class bcage group;

model growth = bcage group;

means group;

lsmeans group / adjust=dunnett pdiff=control(‘dry’);

run;

The reduced model drops the interaction term. We then calculate mean growth for each category
of rainfall. The lsmeans statement calculates least-squares means for normal and drought levels and
then compares mean values using a t-test. The following output is produced.

Program Output

Table Comparison of growth of spotted suckers in dry and normal years. The number of observa-
tions read and used was 244. The least-squares means (lsmeans) comparisons are made with the
Dunnett–Hsu adjustment for multiple comparisons. The null hypothesis being tested LSMean1 =
LSMean2 compares mean growth in dry and normal conditions.

Class level information

 Class Levels Values

bcage 9 1 2 3 4 5 6 7 8 9
group 2 dry normal

(Box continues)
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The GLM procedures

Source df SS Mean square F-value P > F

Model 9 340256.6774 37806.2975 86.84 <0.0001
Error 234 101875.3349 435.3647
Corrected total 243 442132.0123

R2 0.769582 Root MSE 20.86539
CV 23.68090 Growth mean 88.11066

Source df Type I SS Mean square F-value P > F

bcage 8 333756.1313 41719.5164 95.83 <0.0001
group 1 6500.5460 6500.5460 14.93 0.0001

Source df Type III SS Mean square F-value P > F

bcage 8 340056.3180 42507.0398 97.64 <0.0001
group 1 6500.5460 6500.5460 14.93 0.0001

Group statistics

Level of group N Growth mean Growth SD

Dry 195 87.6564103 45.5918683
Normal 49 89.9183673 28.3870839

Least-squares means

Growth Group lsmean P > |t|

Dry 60.7771191 0.0001
Normal 47.1788748

The model indicates that growth of spotted suckers was higher during drought conditions than
during normal conditions. In this case, there were only two groups and the results of the pairwise
t-test are the same as for the general model. However, the same procedure could be used when
more than two groups are present.

Box 5.5 (continued)
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Box 5.6 Estimating Growth from Mark and Recapture Data

In this example, data on the carapace length of loggerhead turtles at mark and at recapture will be
used to fit a von Bertalanffy growth curve by means of the Fabens (1965) method. For each
individual in the data set, time at large (days) has been calculated from the mark and recapture
dates. Carapace length at mark (clmark) and at recapture (clrecap) and time at large (timeoutd) has
been entered for each individual. To calculate the von Bertalanffy growth parameters in a standard
form, time at large has been converted from days to years (timeouty). Each individual, therefore,
represents a single degree of freedom in the analysis. If older and younger age-classes are not well
represented in the analysis, or if time at large is long with respect to the expected age of the
animal, convergence criteria for parameter estimation may not be met. Parameters for the growth
curve can now be estimated iteratively using a nonlinear regression approach with the following
SAS program.

Program

data turlen;

input markd $ clmark recapd $ clrecap timeoutd;

timeouty = timeoutd/365;

cards;

6/28/00 70.3 6/24/03 76.0 1091

7/20/00 60.5 7/15/03 64.7 1090

8/3/00 65.6 7/18/02 67.9 714

8/3/00 61.2 6/25/03 65.2 1056

7/9/01 76.9 6/24/03 79.1 715

7/12/01 64.4 6/9/03 67.5 697

7/18/01 97.4 6/17/02 97.9 335

3/30/98 60.9 6/21/02 67.7 1544

6/27/00 62.5 6/19/03 69.1 1087

5/12/99 67.0 7/12/00 69.5 427

6/18/89 41.0 9/21/91 52.0 1187

8/28/91 60.412/24/94 70.5 1945

7/14/86 19.3 8/28/91 42.0 1869

6/29/90 40.5 2/6/93 49.8 890

5/10/92 28.0 6/23/96 48.0 1503

6/30/92 26.011/15/95 42.0 1230

8/8/96 64.0 6/19/98 69.6 680

;

run;

proc nlin data = turlen;

model clrecap = clmark + (linf - clmark)*(1 - exp(-K*timeouty));

parms linf = 100 k = 0.1;

output out = pturlen p = pclrecap;

run;

The model statement expresses the von Bertalanffy model in SAS format without the usual t0

parameter. The parameter t0 can be estimated independently or by using a known-age individual to
“anchor” the growth curve once L� (linf ) and K (k) have been estimated. As with our initial nonlinear
fit exercise, the Fabens (1965) approach can be used to estimate parameters of other growth
models.

(Box continues)
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In these models,  lt is the size at time t, L� is the asymptotic length, t0 is the time
at size 0, k  and g  are generalized growth parameters that vary slightly in definition
between models, and A, D, and H are position parameters used to constrain the
inflection point. The logistic model differs from the von Bertalanffy, Richards,
and Gompertz models in that it is symmetrical in relation to the inflection point.
These models are not commonly employed in fisheries but are frequently used
for other organisms.

Again, the parameters statement provides initial parameter estimates, and the output statement
creates a data set with expected (predicted) values for carapace length at recapture, which can
then be plotted or analyzed further.

Program Output
The output consists of the results of the iterations and the associated sums of squares, a regression
analysis containing the statistical significance of the model, parameter estimates and associated
confidence limits, and a correlation matrix for the parameter estimates.

Table Nonlinear regression analysis (NLIN) of loggerhead turtle carapace length at recapture
(clrecap). Estimates of growth model parameters L� (linf ) and K (k) are produced; convergence
criterion was met. An intercept was not specified for the regression model.

Iterative phase

Iteration linf k SS

0 100.0 0.1000 375.4
1 89.5614 0.0839 30.3416
2 87.4962 0.0857 28.9656
3 88.0507 0.0847 28.9197
4 88.0477 0.0845 28.9169
5 88.0490 0.0845 28.9169
6 88.0481 0.0845 28.9169

Estimation summary

Method DUD
Iterations 6
Object 4.114 × 10–9

Objective 28.91686
Observations read 17
Observations used 17
Observations missing 0

Box 5.6 (continued)
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Regression model

Approximate
Source df SS Mean square F-value P > F

Regression 2 74210.9 37105.4 19247.7 <0.0001
Residual 15 28.9169 1.9278
Uncorrected total 17 74239.8
Corrected total 16 3257.3

Parameter estimates

Approximate Approximate 95%
Parameter Estimate SE confidence limits

linf 88.0481 3.5192 80.5471 95.5491
k 0.0845 0.00820 0.0671 0.1020

Approximate correlation matrix

linf k

linf 1.0000000 –0.9079249
k –0.9079249 1.0000000

The model indicates that growth (as carapace length, Cl) of loggerhead turtle can be estimated
using the equation

Clt = L�(1 – eKt ),

where

Clt = 88.0481(1 – e–0.0845t ).

The model assumes t0 = 0.  If t0 can be estimated independently, then the model can be adjusted
accordingly.

■ 5.4 SUMMARY

In this chapter, we learned about the unique properties of fish calcified structures
to record growth history and the importance of validating the interpretation of
these structures. We learned that unbiased age determination is the backbone of
modern stock assessment. Because of the close relationship between age and length,
ages determined from a subsample can be used to estimate the age distribution of
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the population. If we know age and size, we can determine growth and compare
growth attributes between populations. If our age data are frequent relative to the
age of the fish, we can model the change in size through time using nonlinear
models such as the model proposed by von Bertalanffy (1938). We can also com-
pare current growth with historic or back-calculated growth to evaluate size-selec-
tive processes in fisheries. Age and growth data are a critical component in the
effective management of fisheries resources. While age and growth analyses are
generally straightforward, collection and interpretation requires skill and experi-
ence. The application of age and growth data to recruitment, mortality, and other
population models can be expensive and time consuming but are critical to the
conclusions drawn from these studies. All attempts should be made to incorporate
them whenever possible. One of the most important recent advances in the field of
age and growth has been the detection of daily increments in otoliths. This discov-
ery has allowed fisheries scientists to apply analytical techniques to age-0 fish that
were previously reserved for adult fish. Consequently, we now have a better ability to
evaluate factors affecting recruitment and year-class strength formation.
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Mortality
Leandro E. Miranda and Phillip W. Bettoli

■ 6.1 INTRODUCTION

Mortality is a concept that describes the rate at which individuals are lost from a
population. This concept is central to understanding the ecology of popula-
tions, particularly their dynamics, and is essential to managing fish stocks. Each
species has developed mortality patterns, with specific distribution over life stages
and age-groups. High mortality is common at the egg or larval stages, largely
due to abiotic conditions, but the lethal effects of abiotic conditions usually
become minor when the larvae become mobile. In the early stages of external
feeding, limited food may directly influence mortality. If the fish survives, lim-
ited food becomes only an indirect source of mortality by retarding growth and
lengthening the time spent searching for food, which makes the fish more vul-
nerable to predation. Later in life, fishing may be an important source of mor-
tality. Knowledge about the patterns and causes of mortality helps fisheries sci-
entists understand inter- and intraspecific interactions and interactions between
the population and its abiotic environment.

When studying fish populations from a consumptive outlook, mortality has tra-
ditionally been separated into natural and fishing sources. Natural mortality com-
bines death by disease, starvation, predation, inadequate environmental condi-
tions, and old age; most of these causes are interdependent, so the distinctions
are arbitrary. Fishing mortality combines harvest and any effect directly linked to
the fishing process (e.g., bycatch in commercial fishing gear or death after catch
and release). Describing and estimating total, natural, and fishing mortalities is
often a challenge in natural populations given sampling limitations and inability
to meet fully the assumptions of most estimation procedures.

■ 6.2 BASIC CONCEPTS

Mortality represents the number of individuals that die during a certain time
interval. If, for instance, Nt individuals are present in a population at the start of an
interval of length Ît, and Nt + 1 survive to the end of the interval, then (Nt – Nt + 1)/Ît

equals interval absolute mortality. When comparing populations over time or space,
interval absolute mortality can be uninformative because population sizes may
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differ. A more useful expression is obtained by representing (Nt – Nt + 1)/Ît as a
fraction of Nt, and as such, interval absolute mortality becomes interval mortality
rate (A; [{Nt – Nt + 1}/Ît]/Nt) and comparable over populations. The interval mor-
tality rate represents the fraction of individuals present at the start of an interval
that actually dies during the interval. Traditionally, A has been taken to represent
a 1-year Ît, but may be defined to represent any Ît time interval.

Theory and empirical observations suggest that the number of fish in a cohort
does not decline linearly through a time interval. Instead, it declines approxi-
mately exponentially at a rate proportional to the number alive at any point in
time (Figure 6.1). This pattern of decrease indicates that A = ([Nt – Nt + 1]/Ît)/Nt is
not constant over time because it is affected by a changing Nt . An alternative
method for expressing mortality is the instantaneous mortality rate (Z; Table 6.1),
which linearizes the exponential pattern of A through a logarithmic transforma-
tion; thus, (logeNt – logeNt + 1)/Ît = Z for any Ît. We note that as Ît approaches zero, Z
and A converge because Z represents the death rate at an instant, whereas A rep-
resents the death rate at the end of an interval; as the interval becomes small and
its width approaches zero, an instant and an interval become indistinguishable.

For example, if by the end of a 1-year interval Aannual = 0.80 and, thus, Zannual =
–loge(1 – 0.80) = 1.61, then the instantaneous monthly mortality rate Zmonth = 1.61/
12 = 0.134 and interval monthly mortality rate Amonth = 1 – e–Zmonth = 0.125. Similarly,

Figure 6.1 Catch curves are based on the assumption that a cohort will decline in frequency
at a rate that is proportional to the abundance of the cohort at each instant in time. A loge

transformation of frequency (Nt) changes an exponential curve into a straight line, which can be
described using least-squares regression. The slope of the regression line, Z, represents the
instantaneous mortality rate; the intercept (N0) represents the estimated density at time zero.
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Zweek = 1.61/52 = 0.0310 and Aweek = 0.0305; Zday = 1.61/365 = 0.00441 and Aday =
0.00442. Note that A and Z become alike as interval width decreased from a year
to a day. Also, note that the additive property of instantaneous rates allows flex-
ibility to interpolate or predict mortality for intervals other than the ones esti-
mated and to estimate the number of individuals surviving to any point in time
(Box 6.1).

Box 6.1 Basic Mortality Computations

Take for example a hypothetical fish population consisting of a single age-group. At the start of a
12-month interval, the age-group consists of 1,000 individuals, and at the end it has been reduced
by mortality to 700. For this example,

interval absolute mortality = N0 – N12 = 1,000 – 700 = 300;
interval mortality rate = (N0 – N12)/N0 = (1,000 – 700)/1,000 = 0.300; and
instantaneous mortality rate = Z12 = –loge(1 – [N0 – N12] /N0) = –loge(1 – [1,000 – 700]/1,000) = 0.357.

Now, suppose we wish to know the fraction of the population remaining, the number of individuals,
and the number of deaths at the end of 4 and 8 months intervals. For this, Z12 must be partitioned
into 4-month (Z4) and 8-month (Z8) estimates as

Z4 = 4(Z12/12) = 0.119, and
Z8 = 8(Z12/12) = 0.238.

Interval mortality rates during the 4-month (A4) and 8-month (A8) intervals are then calculated as

A4 = 1 – e–Z4 = 1 – e–0.119 = 0.112, and
A8 = 1 – e–Z8  = 1 – e–0.238 = 0.212.

Numbers of individuals remaining (survival) after 4 months (N4) and 8 months (N8) are represented
by

N4 = N0 – (N0A4) = 1,000 – (1,000 � 0.112) = 888, and
N8 = N0 – (N0A8) = 1,000 – (1,000 � 0.212) = 788.

The number of deaths during each interval is therefore 112 in the first 4-months, 100 between
month 4 and month 8, and 88 between month 8 and month 12.

Table 6.1 Parameters descriptive of mortality rates and relations among parameters. Symbols
are as follows: interval mortality rate (A); instantaneous mortality rate (Z); interval fishing
mortality (�); interval natural mortality (v); instantaneous natural mortality (M); instantaneous
fishing mortality (F); conditional natural mortality (n); and conditional fishing mortality (m).

Mortality rates Total Fishing Natural

Interval A = � + � = 1 – e–Z � = FA/Z = �F/M � = MA/Z = �M/F
Instantaneous Z = F + M = –loge(1 – A) F = �Z/A = �M/� M = �Z/A = �F/�
Conditional interval A = m + n – mn m = 1 – e–F n = 1 – e–M
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Interval and instantaneous mortality rates are also defined for fishing and natural
mortalities. The sum of interval natural (�) and fishing (�) mortalities adds up to
A, whereas the sum of instantaneous natural (M) and fishing (F) mortalities adds
up to Z (Table 6.1). Interval mortality A and instantaneous mortality Z are associ-
ated as A = 1 – e –Z (Table 6.1); however, � = 1 – e –M and � = 1 – e –F only when natural
and fishing mortalities occur in separate intervals, which is infrequent in freshwa-
ter fisheries. When they occur in the same interval, 1 – e –M and 1 – e –F are also
defined as n and m, respectively, and referred to as conditional interval mortality
because they estimate potential deaths during the interval had it been the only
acting mortality. When n and m occur simultaneously, they compete for the same
fish and do not add up to A; instead, A = m + n – mn (Table 6.1).

The effect of harvest on the total mortality of a population can be either
additive or compensatory (Nichols et al. 1984). Additive mortality implies that an
increment in fishing mortality leads to an equal increment in total mortality. Com-
pensatory mortality implies that an increment in fishing mortality leads to a smaller
or no increment in total mortality because natural mortality adjusts downwards to
compensate for reduced density. Populations near carrying capacity are more likely
to be regulated by density-dependent processes and display compensatory mortal-
ity. Hence, a population may exhibit additive mortality at low density and com-
pensatory mortality at high density (section 6.8).

■ 6.3 CATCH-CURVE MODELS

Catch curves and their use in estimating mortality rates of fish populations have a
history dating back to C. G. J. Petersen in the late nineteenth century. Most fisher-
ies scientists are familiar with classic catch curves that graphically depict the de-
cline in the number of older fish in a sample; however, the term catch curve
applies to any analysis where the change in number of fish over age-classes is
considered. This section will discuss common and historical approaches to using
catch-at-age data to estimate mortality rates. Catch-curve techniques require sev-
eral assumptions, including constant recruitment and mortality over years and
equal catchability for all ages under consideration. If recruitment is constant, and
the analysis is restricted only to ages fully recruited to the gear, then observed
declines in abundance of successive age-classes would be due solely to mortality.
We will discuss these assumptions and how to deal with situations in which one or
more assumptions are not met.

6.3.1 Relative Abundance of Consecutive Age-Classes

In this approach, a single random sample comprising several age-groups is exam-
ined. The relative abundance of fish in consecutive age-classes is used to estimate
mortality rates. These methods should not be used with catch data from a single
sampling season (i.e., a standing age-frequency distribution) unless annual mor-
tality and recruitment are thought to be reasonably constant and all age-groups
considered are nearly equally vulnerable to the sampling gear.
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6.3.1.1 Heincke’s Method

In the early twentieth century, fisheries biologists readily took advantage of new
techniques for aging marine fishes to examine mortality rates of exploited stocks.
If it was assumed that equal numbers of fish were produced each year (i.e., re-
cruitment was constant), then the ratio of the number of fish collected from two
consecutive year-classes served as an estimate of interval mortality rate,

A = 1 – 
Nt + 1

Nt

. (6.1)

Heincke (1913; cited in Ricker 1975) noted that old fish were less common in
a random sample of a population than were young fish, and therefore more weight
should be placed on the numbers of young fish when estimating mortality rates.
Heincke’s method calculated A and its standard error, SEA, as

A = n0/N, and (6.2)

SEA =  
A(1 – A)

N
, (6.3)

where n0 was the number of fish in the youngest age considered and N the sum of
all fish considered (Box 6.2). Note that it is not important to have accurate ages of
fish older than the age-group that serves to start the age series (Ricker 1975).
Although this method is used infrequently, it is appropriate when old fish cannot
be accurately aged, or when the circumstances prevent the sacrifice of large (likely
old) fish to obtain hard bony structures for aging.

6.3.1.2 Robson and Chapman’s Method

When the age of every fish in a large random sample is known with reasonable
certainty, then a simple approach presented by Robson and Chapman (1961),
and discussed by Ricker (1975) and Van Den Avyle and Hayward (1999), can be
used to estimate survival rate (S) and its standard error (SES) as

S = 
T

N + T – 1
,  and  (6.4)

SES =  
T – 1

N + T – 2 ) ,S (S –  (6.5)

where N is the total number of fish fully recruited to the gear and T is derived
from the distribution of vulnerable ages in the sample as shown in Box 6.3. Robson
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and Chapman’s method is a discrete-time model (Jensen 1985) that estimates inter-
val survival using maximum-likelihood estimation. The assumptions regarding
constant survival, constant recruitment, and equal vulnerability also apply to this
method. In fact, Robson and Chapman (1961) stated that the age-frequency dis-
tribution from a single sample provides no insight whatsoever into the force of
mortality acting on the population unless it can be stated that recruitment and
mortality do not vary among years and among ages. Robson and Chapman (1961)

Box 6.2 Heincke’s Method of Estimating Annual Mortality

From a reservoir, a large random sample of spotted bass was collected with electrofishing gear, and
fish age was determined by inspecting otoliths. The number of fish in each age-class is given below.

Age (years) 1 2 3 4 5 6 7+
Number 257 407 147 32 17 5 4

There was some disagreement over the ages of the four largest and oldest fish, but they were all at
least 7 years of age, so the data were coded accordingly. The low catch of age-1 fish relative to age-2
fish suggested that age-1 fish were not fully recruited to the electrofishing gear. When the calcula-
tions were limited to age-2 and older fish, annual mortality calculated with equation (6.2) was

A  = 
N

n0 = 407
407 + 147 + 32 + 17 + 5 + 4

= 
612
407

= 67% , 

and its standard error was

SEA =  
A(1 – A)

N

0.67(1 – 0.67)

612
= = 1.9%

Using the same equation, the estimated annual mortality rate for age-3 and older fish was 72%.
Alternatively, mortality rates between consecutive years could have been calculated using equation
(6.1). For instance, annual mortality between age 2 and age 3 is

A2 – 3 = 1 – 
N 3

N 2

= 1 –
147
407

= 64%,

and between age 3 and age 4 is

A3 – 4 = 1 – 
N 4

N 3

= 1 –
32

147
= 78%.

Both of these approaches are very sensitive to violations of the assumption of constant recruit-
ment. If recruitment is known to vary widely, other mortality estimation techniques should be
considered.
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provided two useful alternatives to equations (6.4) and (6.5). First, they modified
equations (6.4) and (6.5) to allow for estimation when only some of the youngest
age-groups are aged and the remaining age-groups are pooled; this procedure
sacrifices potential information available from the sample but may enhance accu-
racy and precision of predictions. Second, they provided a modified equation to
apply to catch curves derived using age-length keys: when age-length keys (see
Chapter 5) are applied (i.e., the fish that are aged represent subsamples from

Box 6.3 Robson and Chapman’s Maximum-Likelihood Estimate of Survival

Assume that all the fish in a large sample were aged and the numbers of fish in each age-class were
tallied, as below. Along with constant (or near constant) recruitment and survival rates, the
assumption of equal vulnerability to capture must be met. A cursory examination of the catch-at-
age data suggests that the two youngest age-groups were not fully vulnerable, or recruited, to the
gear (i.e., the curve does not truly begin to descend until age 3); therefore, the analysis will apply to
only age-3 and older fish. The first step is to code each age, starting with zero for the youngest age
considered fully recruited.

Age (years) 1 2 3 4 5 6 7 8 9 10
Catch (NX) 90 164 162 110 55 41 20 14 7 5
Coded age (x) – – 0 1 2 3 4 5 6 7

An unbiased estimator of the annual survival rate (S) is

S = 
T

N + T – 1
, 

where N is the total number of fish fully recruited to the gear (N = 162 + 110 + 55 + 41 + 20 + 14 +
7 + 5 = 414), and T is derived from the distribution of vulnerable ages in the sample, T = � (xNX) =
0(162) + 1(110) + . . .  + 7(5) = 570. Therefore,

S = 
570

414 + 570 – 1
= 0.580.

The precision of this survival rate estimate is assessed by calculating its standard error, SEs, as

570 – 1

414 + 570 – 2 )0.580 ( 0.580 –SES =  
T – 1

N + T – 2 ) =S ( S – = 0.018.

Note that the precision of this survival estimate is a function of the number of fish examined.
Approximate 95% confidence intervals (CI) on the survival rate estimate are

CI0.95 = S ± 1.96(SES) = S ± 1.96(0.018) = 0.58 ± 0.035.

Annual mortality rate (A) is 1 – S, or 0.42 ± 0.035.
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fixed length-groups), additional variation is introduced into the survival estimate,
and equation (6.5) must be modified to calculate the variance.

6.3.2 Linearized Catch Curves

If fish density declines at a rate proportional to the number of fish present at each
point in time, density will decline exponentially (Figure 6.1). Most fish popula-
tions exhibit this decline, and this characteristic allows estimation of instanta-
neous and interval mortality rates. If the loge of frequency is plotted in relation to
time, the slope of a line fit to those observations will be the instantaneous mortal-
ity rate (Z). The instantaneous mortality rate can assume values varying from 0 to
slightly over 4, which correspond to interval mortality rates between zero and
nearly 100%.

If all fish in a large random sample are aged, and natural logarithms of the
catch at each age are taken, the slope of a regression line fit to the descending
right limb of the catch curve should represent Z (Figure 6.2). Such plots are widely
used by fisheries scientists to estimate mortality rates. Although the mathematics
involved in estimating the slope of the catch curve are clear-cut (Box 6.4), there
are a number of concerns or assumptions that need to be addressed when using

Figure 6.2 Hypothetical catch curve for a freshwater fish population sampled with
electrofishing gear. The dashed line represents the expected catch of fish at age 1 and age 2.
Catch-curve analysis would be limited to the descending right-hand portion of the curve
between ages 3 and 10. See Box 6.4 for further explanation.
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catch curves. Partial recruitment of the youngest age-classes to the gear is com-
mon, and estimates of mortality must be restricted to those ages considered “fully
recruited” to the gear. In Figure 6.2, the catch curve has an ascending left-limb
corresponding to lower than expected catches of age-1 and age-2 fish. The low
catches of young fish could be due to the bias of electrofishing gear toward larger
fish (i.e., only the largest age-1 and age-2 fish were vulnerable to capture). Per-
haps young fish were less likely to occupy the shoreline habitat sampled with
electrofishing gear. Similar vulnerability issues are also possible when using other
gears, such as gill nets, trap nets, and trawls. Alternatively, the ascending left limb
of the catch curve could have been caused by the production of weak year-classes
in the 2 years preceding the sample. Without repeated sampling in subsequent
years, it is impossible to determine which explanation (gear bias or poor recruit-
ment) is most feasible.

Constant recruitment is the exception rather than the rule in many fish popu-
lations; however, moderate and random variations in recruitment will not change
the general form of a catch curve, and mortality rates can still be estimated (Ricker
1975). In practice, reasonable estimates of annual mortality can usually be de-
rived from catch curves for species such as crappies that often exhibit erratic
recruitment (Allen 1999). A common scenario is that depicted by the catch curve
in Figure 6.3A, which shows recruitment of largemouth bass varying erratically
among years. In these situations, successive years of data can be pooled (Figure
6.3B), and the influence of erratic recruitment can be dampened. Data are com-
bined if it can be assumed that the population is in a state of equilibrium except
for random variations in recruitment (Ricker 1975). Pooling several years of data
may also resolve the problem of small sample size, particularly for the oldest age-
classes. Extreme variation in catch-curve mortality estimates is possible when the
few representatives of the oldest age groups are included (Van Den Avyle and
Hayward 1999), and it is customary to truncate the analysis at the oldest age-
group with at least five representatives. In Figure 6.3A, only 102 fish were col-
lected in the 1992 sample, and the frequency of fish in the oldest age-class (age 7)
was less than 5. Pooling data from two consecutive years (Figure 6.3B) reduced
the scatter of points around the catch curve and allowed estimation of annual
mortality out to age 7. Alternatively, the information provided by each age-group
may be weighted according to their representation in the sample (section 6.3.4).

Modest fluctuations in recruitment are acceptable when constructing catch
curves, if the fluctuations are random in nature and not serially correlated over
time. However, steadily decreasing or increasing recruitment can confound catch-
curve analyses. For instance, the introduction of a forage fish to boost prey abun-
dance for piscivores may have the unintended consequence of reducing recruit-
ment of those same piscivores (Johnson and Goettl 1999). Similarly, the
phenomenon of reservoir aging may cause long-term shifts in community compo-
sition and thereby recruitment (Agostinho et al. 1999). In a population experi-
encing steadily declining recruitment, a catch curve constructed from a single
random sample will underestimate annual mortality. Conversely, steadily increas-
ing recruitment would cause overestimation of annual mortality. Systematic changes
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Box 6.4 Mortality Rates from the Slope of Regression Line

The catch-at-age data shown in Box 6.3 and Figure 6.2 are repeated here, along with the natural
logarithms of the number at each age.

Age (years) 1 2 3 4 5 6 7 8 9 10
Number 90 164 162 110 55 41 20 14 7 5
Logenumber 4.50 5.10 5.09 4.70 4.01 3.71 3.00 2.64 1.95 1.61

The catch-curve analysis is limited to those ages considered fully recruited to the gear (age 3 and older).
At least five fish in the oldest age-class are present, so the mortality rate will apply to ages
3–10. Using least-squares regression, the slope of the line describing the relation between loge of number
(y-variable) and age (x-variable) can be calculated longhand, by means of a spreadsheet, or with the
following SAS program:

Data A;

Input Age Catch @@;

If Age < 3 then delete;

LogN = Log (catch);

Cards;

1 90 2 164 3 162 4 110 5 55 6 41 7 20 8 14 9 7 10 5;

Proc Reg Data = A; Model LogN = Age;

Run;

The SAS output consists of an analysis of variance (ANOVA) table and estimates of the slope, as follows.

Table Regression procedure (loge unweighted data) for catch-at-age data. Abbreviations are as
follows: mean square error (MSE) and coefficient of variation

Analysis of Variance

Source df Sum of squares Mean square F-value P > F

Model 1 10.97660 10.97660 1072.55 < 0.0001
Error 6 0.06140 0.01023
Corrected total 7 11.03801

R2 0.9944 Root MSE 0.10116
Adjusted R2 0.9935 Dependent mean 3.33739
CV 3.03123

Parameter Estimates

Parameter
Variable df estimate SE t-value P > | t |

Intercept 1 6.66033 0.10758 61.91 <0.0001
Age 1 –0.51122 0.01561 –32.75 <0.0001

The slope of the line (–0.51122) is listed under the heading “Parameter Estimates” for the variable “age.”
The slope of the line represents the instantaneous annual mortality rate, Z. The antilog (e–Z) of the
instantaneous mortality rate is the annual survival rate (S) or 60%, and mortality (A) is 1 – S, or 40%. The
standard error of the slope (SEz), obtained from the SAS program or equation (6.6), was 0.01561. Thus, the
95% CIs for Z are

CI0.95 of Z = Z ± t (0.05, n – 2)SEz .

CV = 100  
MSE

X ) ,( where     MSE = Root MSE in SAS output.
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Eight ages were used in the catch curve; therefore, there are 8 – 2 df. Thus,

CI0.95 of Z = 0.511 ± 2.447(0.0156) = 0.473 and 0.549, and
CI0.95 of A = 1 – e–0.473 = 0.377 and 1 – e–0.549 = 0.422.

These results suggest that one would be 95% confident that the true mortality rate was between 38%
and 42%, and the best estimate would be 40%. Note that the precision of this estimate is a function of
the number of age-groups present. When these data were analyzed using the Chapman–Robson method
(Box 6.3), the estimated annual mortality rate was slightly higher (42%).

The following SAS program performs weighted regression analysis on the above data, deflating the
importance of older, rare fish in the sample. In this example, each observation is weighted by the
predicted number of fish in each age-class as suggested by Maceina and Bettoli (1998). The first regres-
sion procedure calculates predicted values of loge(catch) for each age and outputs them to a second data
set, where they are used as weights in the second regression procedure.

Data A;

Input Age Catch @@;

If Age < 3 then delete;

LogN = Log (catch);

Cards;

1 90 2 164 3 162 4 110 5 55 6 41 7 20 8 14 9 7 10 5

;

Proc Reg Data = A;  Model LogN = Age; Output out = B   Predicted = W;

Proc Reg Data = B;  Model  LogN  =  Age; Weight W;

Run;

The SAS output for the first regression procedure is the same as above; the ANOVA results and slope
estimate for the weighted regression procedure are as follows:

Table Regression procedure (loge weighted data) for catch-at-age data.

Analysis of Variance

Source df Sum of squares Mean square F-value P > F

Model 1 32.14136 32.14136 968.34 <0.0001
Error 6 0.19915 0.03319
Corrected total 7 32.34051

R2 0.9938 Root MSE 0.18219
Adjusted R2 0.9928 Dependent Mean 3.74851
CV 4.86026

Parameter Estimates

Parameter
Variable df estimate SE t-value P > | t |

Intercept 1 6.66128 0.10002 66.60 <0.0001
Age 1 –0.51139 0.01643 –31.12 <0.0001

In this example, the slope of the weighted regression (–0.51139) is almost identical to the slope for the
unweighted regression line (–0.51122), although that is not always the case. It is usually desirable to
estimate mortality rates over the greatest number of age-classes, but the oldest ages are often repre-
sented by fewer than five individuals. Use of weighted regression may allow relaxing the “requirement”
that the oldest age-class should always be represented by at least five individuals because the influence
of the oldest age-classes on the regression line will be reduced.
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(or lack thereof) in recruitment could be identified by examining historical trends
in abundance of age-0 fish. For instance, many agencies rely on annual fall trap-
netting to index the abundance of age-0 and age-1 crappies, and long-term data-
bases may be readily available (Chapter 4). If trends in recruitment are detected,
mortality rates could be estimated after adjusting for variable recruitment (Box
6.5) or by analysis of cohort catch curves (section 6.3.5).

Figure 6.3 Catch curves for largemouth bass collected in (A) one year and (B) two consecu-
tive years in Normandy Reservoir, Tennessee. Numbers in parentheses are the catch at each age.
Pooling catch-at-age data over two consecutive years did not appreciably change the estimate
of annual mortality; however, the influence of erratic recruitment was dampened and age-7 fish
could now be included in the analysis, both of which contributed to an increased r2. The esti-
mate of interval mortality rate is given as A.
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Many freshwater sport fish populations are maintained or augmented by stock-
ing age-0 fish, which can confound catch-curve analysis. In situations where con-
sistent numbers and sizes of fish are stocked annually, and no natural reproduc-
tion occurs, the assumption of constant recruitment might be easily met. Conversely,
estimating mortality rates using catch curves is confounded when rates, sizes, and
frequency of stockings vary, as depicted in Figure 6.4; in such instances, other
estimation approaches should be investigated (Box 6.5 and section 6.3.5).

It should be apparent from the comments above that catch curves require fairly
large samples of at least several hundred individuals, particularly for long-lived
species. Accurate aging in most locales requires the use of otoliths, and if it is
important to limit the number of individuals sacrificed, age-length keys can be
used to estimate the number of fish at each age from subsampled data (Bettoli
and Miranda 2001).

Biases in catch-curve mortality estimates due to unequal recruitment can often
be identified and sometimes rectified (e.g., by pooling several years of data).
However, variation in mortality rates among age-classes may be difficult to detect
and hard to remedy. Ricker (1975) described different shapes, or functional forms,

Box 6.5 Adjusting Catch-at-Age Data for Unequal Recruitment

Trap-netting of white crappies in a midwestern reservoir in the spring of 2001 provided informa-
tion on the standing age structure for the 281 fish collected representing six age-classes. Previous
studies indicated that all ages were recruited to the trap nets, so the goal was to calculate instanta-
neous mortality between ages 1 and 6. The catch-at-age data clearly indicated that recruitment
varied widely among years, and therefore one of the assumptions of catch-curve analysis was
violated. It was assumed that the trap-net catches accurately indexed recruitment variability, and
these data were used to create an index of year-class strength (Ii ) for each i year as Ii = ri /rL , where
ri = number of age-0 fish collected with trap nets in year i, and rL = lowest number of age-0 fish
collected during the time series. The index was used to adjust the representation of each year-class
Ni in spring 2001 to a constant recruitment as Ni /Ii.

Table Adjusting for non-constant recruitment.

Year-class

Metric 2000 1999 1998 1997 1996 1995

Unadjusted standing age distribution
estimated by trap-netting in 2001 (Ni ) 150 28 5 69 12 17

Number of age-0 fish collected annually
with trap nets (ri ) between 1995 and 2000 1,665 556 111 2,330 445 1,220

Index of year-class strength (Ii = ri /rL ) 15 5 1 21 4 11
Adjusted catch (Ni /Ii ) 10 5.6 5.0 3.3 3.0 1.5

Plots of the adjusted and unadjusted data relative to age would show that the adjusted data have
less scatter around the regression line. In this example, the slope of the adjusted catch-curve line
was Z = –0.34, translating into A = 29%.
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of catch curves derived from empirical data and how forces of natural mortality
and fishing mortality may shape the curves. In situations where larger (older) fish
are exploited at higher rates than are small fish, the possibility exists that higher
rates of fishing mortality are compensated by falling rates of natural mortality
(Allen et al. 1998), resulting in no substantial change in total mortality rates over
all ages fully recruited to the gear.

When natural mortality is constant, a catch curve for a heavily exploited popula-
tion with a minimum-length-limit harvest regulation in effect might increase in slope
beyond some age due to intense exploitation past the length limit (Figure 6.5).
Such biases, caused by violation of the constant-mortality assumption, can be reduced
if the catch curve is split into the unexploited and exploited segments and analysis
applied to each segment independently. For instance, if a walleye population is
being fished under a 40-cm length limit, the catch-curve analysis could be applied
separately to those age-classes smaller than 40 cm (Z would represent M if catch–
release mortality and illegal harvest were low), and those larger than 40 cm (Z
would represent M + F if it was assumed that all legal-sized fish were exploited equally).

6.3.3 Precision of Catch-Curve Mortality Estimates

The precision of the instantaneous mortality rate Z derived from regression of
abundance as a function of age is assessed by calculating its variance (Sz

2), which is
the variance of the slope of the regression line (Neter et al. 1990):
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Figure 6.4 Frequency-at-age data for a standing age distribution of walleyes in Dale Hollow
Reservoir, Tennessee–Kentucky, December 1999 (Vandergoot and Bettoli 2001). Asterisks
denote years when no walleyes were stocked. In years when walleyes were stocked the number
of fish stocked varied, which confounds the use of catch curves to estimate annual mortality.



Mortality 243

Sz  = 
�Xi

,2

2 – ([�Xi ] /n)2
MSE

(6.6)

where MSE is the mean square error term from the regression model, Xi are the
ages used in constructing the catch curve, and n the number of i ages included in
regression. The square root of Sz

2 represents the standard error of the slope (Sz),
and 95% confidence limits would be

CI0.95 of Z = Z ± t(0.05, n – 2) Sz. (6.7)

The proper t-value is that for a two-tailed test. The statistical software package
SAS (SAS Institute 1998), as well as others, provides estimates of the standard
errors of the slopes when performing regression analysis. Note that the precision
of Z increases with the number of ages i included in the analysis and decreases as
the scatter of points along the regression line increases. In only rare instances will
the slope not be declared different from zero; such outcomes should not pre-
clude calculation and reporting of mortality rates (Maceina and Bettoli 1998).

Testing whether two instantaneous mortality rates differ is equivalent to testing
for inequality of slopes. Although the mathematics are cumbersome, the null hy-
pothesis that the slopes are equal can be tested using an F -test generated by a SAS
program (Box 6.6).

Figure 6.5 Catch curve for a hypothetical population that experiences constant recruitment
and constant natural mortality but an increase in fishing mortality past age 8. Separate esti-
mates of Z should be calculated for fish age 2 through age 8 (line A-B) and for fish age 8
through age 15 (line B-C).
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Box 6.6 Comparing Instantaneous Mortality Rates from Catch Curves

Comparing instantaneous mortality rates (Z) for two or more populations is equivalent to compar-
ing the slopes of the catch-curve regression lines. Below are catch-at-age data for two populations
that fully recruited to the gear at age 2.

Age (years) 1 2 3 4 5 6 7 8 9
Lake 1 433 818 243 67 48 5 30 42 22
Lake 2 305 491 155 100 30 49 16 6

The SAS program to calculate and compare the slopes of the catch-curve regression lines is given
below.

Data  A;

Input  Lake  Age  Catch  @@;

LnCatch  =  log(catch);

If  Age <  2  then delete;

Cards;

1 1 433 1 2 818 1 3 243 1 4 67 1 5 48 1 6 5 1 7 30 1 8 42 1 9 22

2 1 305 2 2 491 2 3 155 2 4 100 2 5 30 2 6 49 2 7 16 2 8 6

;

Proc SORT;  By Lake;

Proc  REG;  Model  LnCatch = Age; By Lake;

Proc  GLM;  Class Lake;  Model  LnCatch  =  Age Lake Age*Lake;   Run;

The output is given as follows:

Table Catch-curve regression (loge catch) for Lake 1.

Analysis of Variance

Source df Sum of squares Mean square F-value P > F

Model 1 8.94246 8.94246 7.02 0.0380
Error 6 7.63908 1.27318
Corrected total 7 16.58154

R2 0.5393 Root MSE 1.12835
Adjusted R2 0.4625 Dependent mean 4.01440
CV 28.10766

Parameter Estimates

Parameter
Variable df estimate SE t-value P > | t |

Intercept 1 6.55225 1.03737  6.32 0.0007
Age 1 –0.46143 0.17411 –2.65 0.0380
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Table Catch-curve regression (loge catch) for Lake 2.

Analysis of Variance

Source df Sum of squares Mean square F-value P > F

Model 1 12.18239 12.18239 72.74 0.0004
Error 5 0.83743 0.16749
Corrected total 6 13.01981

R2 0.9357 Root MSE 0.40925
Adjusted R2 0.9228 Dependent mean 3.95749
CV 10.34116

Parameter Estimates

Parameter
Variable df estimate SE t-value P > | t |

Intercept 1 7.25554 0.41649 17.42 <0.0001
Age 1 –0.65961 0.07734 –8.53  0.0004

Table The general linear model (GLM) procedure for comparison of regressions (loge catch) of
lakes 1 and 2 (n = 15). Sum of squares abbreviated as SS.

Source df SS Mean square F-value P > F

Model 3 21.13693771 7.04564590 9.14 0.0025
Error 11 8.47650657 0.77059151
Corrected total 14 29.61344429

R2 0.713762 Root MSE 0.877833
CV 22.01277 Logecatch mean 3.987838

Source df Type I SS Mean square F-value P > F

Age 1  20.08252514 20.08252514 26.06 0.0003
Lake 1 0.39457442 0.39457442 0.51 0.4892
Age*Lake 1 0.65983816 0.65983816 0.86 0.3746

Source df Type III SS Mean square F-value P > F

Age 1 21.11299343 21.11299343 27.40 0.0003
Lake 1 0.26295830 0.26295830 0.34 0.5709
Age*Lake 1 0.65983816 0.65983816 0.86 0.3746

The instantaneous mortality rates (i.e., slopes of the catch-curve regression lines) for lakes 1 and 2
were –0.46143 and –0.65961, respectively; thus, annual mortality rates were 37% and 48%. Direct your
attention to the Type III sum of squares (SS). The null hypothesis that the two slopes were similar is
tested with the F-value associated with the Age*Lake interaction term (F = 0.86). At 1 and 11 df, the
significance of the test is P = 0.3746. Thus, we fail to reject the hypothesis that the slopes were similar.
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6.3.4 Weighted Catch-Curve Analysis

Regression lines fit for catch curves give equal weight to each observation. For
example, in the sample of largemouth bass in Figure 6.3B, a frequency of five age-
7 fish carried as much weight when fitting the line as a frequency of 62 age-2 fish.
However, it is sometimes desirable to weight each observation according to the
amount of information it contains (Steel and Torrie 1980). Weighted linear re-
gression will deflate the influence of older and rarer fish (Maceina 1997). A SAS
program to perform weighted catch-curve regression is given in Box 6.4. In our
largemouth bass example with the 2 years of data (Figure 6.3B), the weighted
regression using the predicted loge(catch) at each age as the weighting factor
yielded a slope Z of –0.479, which translates to an A of 38%, in this case similar to
the unweighted estimate of 37%.

6.3.5 Cohort Catch Curves

When ancillary data suggest that recruitment, mortality rates, or both are varying
enough to render standard catch-curve analysis unreliable, mortality rates can be
estimated by following a year-class, or cohort, over time. Although this approach
avoids the need for assuming constant recruitment, the assumption of constant
mortality is still required if mortality is estimated by regressing catch at age over
more than two ages or years.

All of the preceding catch-curve examples have discussed estimating annual
mortality rates based on a single, large random sample that represents a standing
age structure or a pooling of several annual samples that represents an average
standing age structure. However, catch curves can also be constructed to estimate
cohort mortality over short time frames by use of multiple samples. For instance,
if a cohort of hatchery fish is marked before stocking, subsequent sampling of
marked fish should reveal a decline in its abundance over time. If the catch data
are loge transformed and plotted against days poststocking, the slope of the line
will represent the instantaneous daily mortality rate, which can then be expanded
to estimate mortality on a weekly, monthly, or annual basis, as in the example of
brown trout in Figure 6.6. Similarly, in a study of age-0 largemouth bass mortality,
Timmons et al. (1980) collected fish in shoreline rotenone samples weekly through
the summer and fall and fit a catch curve to the declining catch per unit effort.
Weekly instantaneous mortality rate was –0.226, which translated into a weekly
interval mortality rate of 20%.

Correspondingly, annual mortality for individual year-classes can be estimated
by examining declining abundance in annual samples (Box 6.7). In many situa-
tions in which routine monitoring efforts provide samples of fish that are subse-
quently aged, long-term databases are available to perform these analyses.

■ 6.4 LENGTH-BASED MODELS

Length-based models do not use estimates of age directly; instead they use growth
parameters such as the L� (asymptotic length) and K (rate at which L� is ap-
proached) parameters from the von Bertalanffy or other growth models (Chapter
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5) to convert length to age. Like catch-curve models, assumptions of length-based
models include (1) recruitment is constant within the period covered by the length
distribution, or at least recruitment has varied in a random fashion, (2) mortality
is constant over ages, (3) only lengths fully recruited to the gear are included
(equivalent to the descending portion of a catch curve), (4) growth is constant
and adequately described by the growth model, and (5) the sampling gear ad-
equately represents the standing length distribution. Another assumption made
by length-based models is that recruitment into the smallest length considered
for analysis is constant through time each year, so that the shape of the length
distribution and mean length does not vary seasonally. This last assumption is
violated in populations that exhibit seasonal instead of continuous recruitment
but may be avoided by taking multiple samples within the year and pooling them
before analysis (Ralston 1989) or by limiting analysis to longer (i.e., older) fish for
which length at age is generally more variable and recruitment spread out over a
year. Given these stringent assumptions, length-based estimates should be used
when only a rough approximation will do or there is no better option.

Figure 6.6 Catch curve for microtagged brown trout (N = 17,322) stocked into the Watauga
River, Tennessee, March 1998, and subsequently sampled using electrofishing gear on eight
dates (Bettoli 1999). Note that the daily instantaneous mortality rate (Z) and the daily interval
mortality rate (A) are similar because the size of the interval is small. During a 32-week (224 d)
creel survey that began when the fish were stocked, it was estimated that 4,612 of these brown
trout were harvested during the survey period; thus, the interval exploitation rate (�) was 4,612/
17,322, or 27%. The total mortality rate (A) over that same interval was 1 – e–(Z�224 d) = 68%. Thus,
the interval natural mortality rate (v) was A – � = 41%.
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6.4.1. Estimates from Average Length

The rationale behind these methods is that as mortality increases, the average
length of fish in a population is expected to decrease. Various models have been
developed to convey this relation (reviewed by Hoenig et al. 1983), but the most
common is that attributed to Beverton and Holt (1956):

Z  = K 
Lmean– Lx

,L� – Lmean
(6.8)

where K and L� are von Bertalanffy growth parameters, Lx the length above which
all fish are equally vulnerable to capture by the collection gear, and Lmean the
mean length of fish larger than Lx.

A similar method but based on median length instead of mean length was
developed by Hoenig et al. (1983):

Z  = 
Ymedian– Yx

,0.693K
(6.9)

Box 6.7 Cohort Catch Curves

Spring electrofishing samples at 40 sites in Normandy Reservoir indicated that recruitment by
spotted bass varied more than twofold among years (Sammons and Bettoli 1998); therefore,
analysis of cohort catch curves was employed. The catch from the 1992 cohort in annual samples
taken between 1993 and 1998 was as follows.

Sample year 1993 1994 1995 1996 1997 1998
Age (years) 1 2 3 4 5  6
Number 65 66 27 6 4 1

These and other data suggested that fish were not fully recruited to the gear until age 2. The
Chapman–Robson estimator (Box 6.3) was used to estimate annual survival, S, and ages 2 through 6
were assigned coded ages of 0 to 4. Thus, N = 104;  T = 55;

S  = 
T

N + T – 1
 =  0.35 ,

SES  = 0.046, and
CI0.95 = 0.35 ± 1.96(SES ) = 0.35 ± 0.090.

Alternatively, the slope of the catch curve could be calculated to estimate Z. The low catch of age-6
fish restricted the analysis to ages 2 through 5. Natural logarithms were taken of the catch data, and
a regression line was fit to the points, yielding a slope of –0.99 and a SE of 0.14. Thus, annual survival
for ages 2 through 5 was S = e–0.99 = 0.37. Although this estimate was similar to the 35% Chapman–
Robson estimate, the CIs (calculated with equation [6.7]) were broad (20–68%) because of the small
number of age-classes in the regression model. In this example, the Chapman–Robson estimate
and variance are clearly superior to the regression estimate.
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where Ymedian = –loge(1 – Lmedian/L�); Yx = –loge(1 – Lx/L�); and Lmedian is the median
length of fish above Lx. Hoenig et al. (1983) indicated that estimates based on the
median length were more robust because median length is less sensitive to vari-
ability in growth and year-class strength than is mean length. Box 6.8 shows how
equations (6.8) and (6.9) are applied to estimate mortality.

Approximate variances for Z  in equations (6.8) and (6.9) were derived by
Hoenig et al. (1983) but are not reproduced here because of their length. Alter-
natively, variances may be derived by bootstrapping from the expected distribu-
tions of K, L�, Lx, Lmean, and Lmedian. Bootstrapping (Efron and Tibshirami 1998;
Haddon 2001) is a method for estimating variance based on resampling from the
statistical distribution of each variable included in the computation of Z.

6.4.2 Estimates from Length-Frequency Distributions

When a length-frequency distribution is available a catch curve may be constructed
through conversion of lengths to age relative to L�. Pauly (1984) developed a
length-converted catch-curve procedure that consists of regressing the logarithm
of the number of fish in the ith length interval (Ni , dependent variable) against
the relative age ti' of fish in the interval:

loge(Ni) = a – bti', (6.10)

where ti' = –loge(1 – [Lmid/L�]), and Lmid is the midpoint of the ith length interval.
The slope of this regression (b) represents 1 – (Z/K), and thus Z = K(1 – b). An
example is given in Box 6.8. A variance equation for Z has not been derived;
however, the variance may be estimated by bootstrapping from the distributions
of K and b.

When estimates of L� and K are not available, several methods may be used to
derive approximations. First, dividing the mean length of the three largest fish
known from the population stock by 0.95 may adequately approximate L� when
the population is not too heavily exploited (Pauly 1984). Second, L� may be esti-
mated from the maximum length of fish observed (Lmax) with an empirical equa-
tion derived by Froese and Binohlan (2000; loge L� = 0.044 + 0.984loge Lmax; length
in centimeters). Note that L� is smaller than Lmax because L� represents a popula-
tion mean, whereas Lmax represents the largest fish. Third, L� may be approxi-
mated through regression of Lx (Lx = lower limit of each length interval in the
length-frequency distribution) on Lmean – Lx (Lmean = mean length of fish larger
than Lx in the length-frequency distribution) as suggested by Wetherall et al. (1987):

(Lmean – Lx) = a – bLx , (6.11)

where L� = –a/b. Once an estimate of L� is obtained by one or more of these
methods, K may be estimated by rearranging the growth equation, and if an esti-
mate of length at time t (Lt) is available and t 0 is assumed equal to zero,

K  = 
t

.–loge (1 – [Lt /L�])
(6.12)
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Box 6.8 Mortality Estimation with Length-Based Models

We use a largemouth bass data set from Columbus Lake, Mississippi, to illustrate mortality compu-
tations from length-based models. The von Bertalanffy model parameters (K and L�) were available
from a parallel study in Columbus Lake and were K = 0.226 and L� = 636 mm (see Chapter 5 for
calculations). All largemouth bass 150 mm or longer were considered equally vulnerable to the
collection gear (electrofishing); thus, Lx = 150. The mean and median length of fish 150 mm or
longer in the data set were Lmean = 260 and Lmedian = 255. Therefore, based on equation (6.8),

 Z = K(L� – Lmean)/(Lmean – Lx)
= 0.226(636 – 260)/(260 – 150) = 0.773.

Based on equation (6.9),

Z = 0.693K/([–loge{1 – Lmedian/L� }] – [–loge{1 – Lx /L� }])
= 0.693(0.226)/[–loge(1 – 255/636) – (–loge(1 – 150/636)] = 0.644.

Mortality can also be estimated using a length-converted catch curve (Pauly 1984). The length-
groups in the length–frequency distribution of the largemouth bass population in Columbus Lake
(see figure in this box) are converted to relative age ti' and regressed on loge of the number of fish
in the ith length interval as in equation (6.10):

loge(Ni ) = a – bti'
= 4.97 – 2.27ti'.

Then, Z = K(1 – b) = 0.226[1 – (–2.27)] = 0.739. Regression was limited to length-groups 15 cm and
greater.

Figure Length–frequency distribution of the largemouth bass population in Columbus
Lake. The number of fish in each length-group is represented by N, and ti' is as defined in
equation (6.10).
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■ 6.5 MARK–RECAPTURE MODELS

Mortality can be measured directly by marking individual fish. Historically, mark–
recapture models have been developed to estimate abundance, which naturally
leads to methods for estimating mortality (i.e., reductions in abundance); how-
ever, more recently, the focus of mark–recapture models has shifted towards esti-
mation of mortality (Lebreton et al. 1992). Although an extensive literature on
mark–recapture models exists (see reviews by Ricker 1975; Seber 1982; Lebreton
et al. 1992; Schwarz and Seber 1999), we describe only three approaches for esti-
mating Z. Additional details about the use of mark–recapture models to estimate
abundance are given in Chapter 8.

Our presentation is brief because tagging is not extensively used to assess mor-
tality of fish populations, mostly due to the cost and the practical difficulties re-
lated to tagging a representative sample of a population and obtaining unbiased
recovery data. Major commercially or recreationally exploited fish stocks are usu-
ally large and distributed over a wide area. Thus, mark–recapture estimates de-
pend on tagging large numbers of fish and often cooperation from fishers to find
and report marked fish. In the past, mark–recapture estimation has sometimes
failed because too few fish have been tagged or because fishers and other mem-
bers of the industry have been reluctant to report recoveries (Hilborn and Walters
1992; Miranda et al. 2002).

Mark–recapture models make many assumptions about the tagged sample and
untagged population. Assumptions include (1) the tagged sample is representa-
tive of the entire population; (2) there is no tag loss or it can be accounted for
(e.g., Seber 1982; Fabrizio et al. 1996); (3) mortality rates are not influenced by
tagging; (4) all tagged fish within a tagged cohort have constant mortality and
recovery probabilities in a given period; (5) mortality and recovery probabilities
do not depend on age and are the same for the tagged sample and untagged
population; (6) F and M are additive and independent; (7) M is constant within
and between periods; (8) fishing mortality imposed by a user group is constant
for the period of the year that the fishery is operating; and (9) tagging takes place
over a short period (although there are models that account for continuous tag-
ging; see Ricker 1975 and Seber 1982). These assumptions are not made by all
models, and not all models make the same assumptions.

6.5.1 Single Tagging Event

If fish are tagged only once, mortality may be estimated from the decline of tagged
individuals. Estimates of losses may be obtained by recapturing tagged fish at vari-
ous time intervals or by relying on the fishery to catch and report tagged fish. The
former approach is applicable if it is possible to tag a large proportion of the
population, so that the expectation of collecting tagged fish in subsequent samples
is reasonably high. The latter approach is applicable when there is a high likeli-
hood that tags will be recognized and reported by commercial or recreational
fishers. Both approaches assume that effort is constant, or at least known, so that
catch in a given period can be standardized per unit of effort. Whichever method
is used, declines in number of tagged fish can be equated to declines in number
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of fish in a cohort and analyzed with the various catch-curve techniques described
earlier. For example, the fraction of fish bearing a tag for any two successive peri-
ods of recaptures will indicate interval mortality rate:

Ai = 1 – 
ri + 1

ri

, (6.13)

where ri = number of fish recaptured during period ti , and ri + 1 = number of fish
recaptured during period ti + 1 (Box 6.9). When recaptures are available from a
series of periods, a regression of either (1) loge of the fraction of fish caught
bearing a tag or (2) loge of the number caught per unit of effort, as a function of
time, would produce a decreasing slope equivalent to Z:

loge(ri /ni) = a – bti , or (6.14)

loge(ri /fi) = a – bti , (6.15)

where ni = number of fish caught in ti , fi = fishing effort in ti , a = regression
parameter, and b = slope parameter representing Z. Which approach is used will
depend on the data available and the assumptions that are appropriate. The as-
sumption of constant recruitment is no longer relevant because the user is deal-
ing with a single group of fish of known initial abundance.

6.5.2 Multiple Tagging Events

Whereas a single tagging event assumes constant survival to estimate mortality,
multiple tagging events allow relaxation of this assumption. Studies based upon
two tagging events followed by one recapture event (Ricker’s method, Ricker 1975;
Seber 1982) can account for variable mortality if recruitment is assumed constant.
A triple-catch study is based upon two tagging events with recaptures collected
during the second tagging event and during a third sampling event (Bailey 1951;
Ricker 1975). A triple-catch study can account for variable recruitment (which
includes immigration) and variable mortality (which includes emigration). Mul-
tiple mark–recapture data are best handled by a model proposed independently
by both Jolly (1965) and Seber (1965) that accounts for variable recruitment and
mortality. The Jolly–Seber model is more general and powerful than any of the
other methods and can estimate population size and recruitment in addition to
mortality using four or more mark–recapture periods; estimates are limited to
sizes of fish that were tagged. Example applications for Ricker’s method are given
by Ricker (1975), triple-catch method by Fairfield and Mizroch (1990) and Evans
and Lockwood (1994), and Jolly–Seber method by Hightower and Gilbert (1984),
Law (1994), and Fabrizio et al. (1997). Below, we describe the Ricker and Jolly–
Seber methods for estimating mortality.

Ricker (1975) and Seber (1982) describe similar methods for determining mor-
tality from tagging in two successive years. With both methods, tagging occurs at the
start of two periods (e.g., seasons or years) using tags that distinguish between the
two tag groups. With Ricker’s method, recaptures are taken during both years from
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fishers. If mortality is assumed constant over years, then mortality is estimated by
equation (6.13). Thus, only one marking followed by two recapture periods are
needed. If mortality cannot be assumed constant over years, Ricker’s method esti-
mates mortality in period 1 as

A1 = 1 – 
r12m 2

r22m 1

, (6.16)

with variance

V(A1) = A1 
1
r12

,2( 1
r22

+
1

m 1
+

1
m 2

+ ) (6.17)

where m1 = fish marked at the start of time 1, m2 = fish marked at start of time 2, r22

= fish marked and recaptured in time 2, and r12 = fish marked in time 1 and
recaptured in time 2. Seber’s method also uses equation (6.16), but r12 and r22 are
measured through samples taken soon after the second release. Both of these
methods assume that natural mortality is constant over ages. The equations for
both methods are the same because the expectation of the ratio r12/r22 is unchanged
through time 2. For Ricker’s method, it is not essential that all recaptured fish be
reported, only that reporting rate is constant over years. Both Seber and Ricker
provide equations modified to compensate for small number of recaptures. An
example application of Ricker’s method is given in Box 6.9.

The Jolly–Seber method estimates mortality by evaluating changes in popula-
tion size, including increases (recruitment and immigration) and decreases (deaths
and emigration), from multiple mark–recapture samplings on an open popula-
tion. Thus, estimates of mortality represent death only when emigration is zero.
Fish are captured and marked during brief collection periods (e.g., days), and in
between are longer periods (e.g., months) in which recapturing is not attempted
and no tags are released. During the first collection period, fish are marked with
numbered tags that distinguish individuals, and during the last period, fish are
checked for marks. During intermediate periods, fish are checked for marks, un-
marked individuals are tagged, and marked individuals are noted and released.
Categories of marked and recaptured are tallied by collection period as shown in
Table 6.2. Then, the interval mortality rate between collection period i and collec-
tion period i + 1 is estimated as

Ai = 1 – 
�i + 1

�i – r·i + mi 
, (6.18)

where the number of marked fish in the population at the time of the ith sample,
�i , equals r.i + miki /ri., and r.i , mi , ki , and ri . are as defined in Table 6.2. Seber
(1965) proposed a modified estimator of �i , �i

* = r.i + 1 + (mi + 1)ki /(ri . + 1) for a
small number of recaptures. Variance equations are given by Seber (1982) and by
programs listed in Table 6.3. We illustrate application of the Jolly–Seber method
in Box 6.9.
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6.5.3 Other Mark–Recapture Methods

Many Jolly–Seber-type models have been developed in recent years (Buckland
1982; White 1983; Burnham et al. 1987; Cormack 1989; Lebreton et al. 1992;
Pradel et al. 1997; Schwarz and Seber 1999). In particular, Pollock and Mann
(1983) extended the Jolly–Seber model to enhance application to fisheries by
accounting for differential mortality over age-groups. Advances in computer tech-
nology have facilitated development of these models and allowed a number of
extensions such as constraining of the model parameters (e.g., fixing mortality

Box 6.9 Total Mortality Estimation from Marked Recaptures

Single tagging event
In late winter 1995, before intense fishing began, 1,596 crappies were tagged in Sardis Reservoir,
Mississippi. Of these, 655 were recaptured and reported by anglers during the first year after
tagging, 225 in year 2, 89 in year 3, and 34 in year 4 (in this example, recaptures have been
preadjusted for tag loss and nonreporting; Miranda et al. 2002). Following equation (6.13), where

ri = number of fish recaptured during period ti ,
Ai = 1 – (ri + 1/ri ),
A1 = 1 – (225/655) = 0.66,
A2 = 1 – (89/225) = 0.60, and
A3 = 1 – (34/89) = 0.62.

Alternatively, regression of loge(ri /fi ) as a function of ti (equation [6.15] assuming constant fi = 1,
where fi = fishing effort in ti ,) yields

loge(ri /fi ) = a – bti

= 7.4 – 0.98ti ,

which indicates Z = 0.98 and thus A = 0.62.

Multiple tagging events
Crappies were tagged at the beginning of two consecutive years in Lake Sham. In all, 1,700 crappies
were marked in year 1 (m1) and 1,500 in year 2 (m2 ). In year 1, 430 crappies were recaptured (r11); in
year 2, 360 of the crappies tagged earlier that same year were recaptured (r22), and 249 tagged the
previous year (r12). If annual mortality can be assumed constant, then A for year 1 (and year 2) may
be estimated with equation (6.13) as A1 = 1 – (249/430) = 0.42. However, if mortality is suspected to
vary over years, then A1 and V(A1) may be estimated with Ricker’s method (equations [6.16] and
[6.17]) as

A1 = 1 – 
r12 m2

r22 m1
= 1 –

249 x 1,500
360 x 1,700

= 0.39 ,

and V(A1) = A1
2 1

r12( 1
r22

+
1

m1
+

1
m2

+ ) = 0.39 2
1

249( 1
360

+
1

1,700
+

1
1,500

+ )= 0.0012 . 

Estimation of mortality for year 2 would require a third year of marking and recaptures.
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between 0 and 1) and setting selected parameters constant (e.g., mortality over
time). Parameters can also be modeled as functions of ordinary variables, with a
regression equation built into the recapture model; thus, mortality can be made
dependent on environmental conditions or capture rates dependent on measures
of effort. Maximum likelihood estimation of model parameters and associated
probabilities is facilitated by computer power, superseding traditional determinis-
tic estimates. Treatment of these computer models is beyond the scope of this
chapter; however, we list many in Table 6.3.

A 5-year tagging program was completed to monitor mortality (as well as population size and
recruitment, which are not shown in this example) of largemouth bass in Lake Travesty. Fish were
marked and recaptured annually during a 2-week collection period in spring each year, and results
were analyzed with the Jolly–Seber method.

Table Five-year history of marking and recaptures (recaptures were preadjusted for tag loss) in a
largemouth bass fishery. See Table 6.2 for explanation of symbols.

rii

ti mi t1i t2i t3i t4i r·i ki

1 643
2 489 43 43 43
3 712 28 31 59 40
4 630 12 16 48 76 31
5 3 9 19 37 68

ri. 86 56 67 37

Computations of annual interval mortalities are made with equation (6.18) as shown below. As an
example,

Ai = 1 – 
�2 + 1

�2 – r.2 + m2 
= 1 –

484
418 – 43 + 489

= 0.44 .

Table Computations of annual interval mortalities. The number of marked fish in the population
at the time of the ith sample is given by �i .

ti mi ri. r.i ki �i Ai

1 643 86 0 0 0 0.35
2 489 56 43 43 418 0.44
3 712 67 59 40 484 0.47
4 630 37 76 31 604
5 68
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■ 6.6 SEPARATION OF FISHING FROM NATURAL MORTALITY

Fisheries scientists may need to know the proportionate effects of several compo-
nents of mortality. Most commonly, we wish to isolate the effect of fishing from
the effect of all other influences on mortality, a group often lumped together as
natural mortality. It is possible to obtain estimates of fishing and natural mortality
independently. Most commonly, and given Z = F + M (Table 6.1), Z and F are
measured and M estimated as the difference. However, this approach results in
estimates of M that are not independent of F. At least six different approaches
may be used to estimate M, F, or both, including (1) regression of Z as a function
of fishing effort to estimate M, (2) catch-curve analysis to estimate M, (3) mark–
recapture to estimate F, (4) direct census to estimate F, (5) production modeling
to estimate M, and (6) meta-analysis to estimate M, F, and Z.

6.6.1 Regression of Z as a Function of Fishing Effort to Estimate M

Natural mortality (M) is commonly estimated as the difference between Z and F.
For unfished populations or segments of populations, M equals Z and may be
estimated using methods described earlier. As unfished populations are rare, other
approaches must be used. Changes in fishing effort can lead to changes in Z, and
the relation between fishing effort and Z can be used to achieve the separation of
F and M (Paloheimo 1958). Thus, with Z as the dependent variable and fishing
effort as the independent variable, the slope of the line becomes a catchability
coefficient and the intercept (i.e., when effort is zero) becomes M (Figure 6.7).
This method requires a minimum of two x–y pairs, but more is better.

There are at least three drawbacks for this method. First, because the indepen-
dent variable (i.e., fishing effort) is estimated with considerable error, a basic

Table 6.2 Classification of marked and recaptured fish in a Jolly–Seber-type model with five
mark–recapture periods. Only marking takes place in the first period, mark and recapture in
periods two through four, and only recaptures in the last period. Time period is ti; mi represents
the number of fish marked in ti; rii the recaptures in time period ti of fish marked at an earlier ti ;
ri. the total number of recaptures that were originally tagged in ti ;  r· i the total number of
recaptures in ti regardless of when they were tagged; and ki the total number of recaptures
made after ti of fish marked before ti. Application is illustrated in Box 6.9.

rii

ti mi t1i t2i t3i t4i r·i ki

1 m1

2 m2 r12 r·2 r13 + r14 + r15

3 m3 r13 r23 r·3 r14 + r15 + r24 + r25

4 m4 r14 r24 r34 r·4 r15 + r25 + r35

5 r15 r25 r35 r45 r·5

ri. r1· r2· r3· r4·
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Table 6.3 Selected computer programs for analyzing mark–recapture data from multiple
tagging events in open populations. Many of these programs include the ability to fit
customized log-linear and constrained maximum log-likelihood models and impose arbitrary
temporal, group, and covariate constraints to select the best model.

Program Description References

BAND2 Estimates number of animals that must be marked to achieve Wilson et al. (1989)
a specified level of precision for mortality estimates.

BROWNIE Estimates mortality and recovery rates for two age-classes Brownie et al.
(e.g., juvenile and adult) in open populations. (1985)

CAPQUOTA Estimates expected coefficients of variation of mortality Pollock (1981)
and capture probability.

CONTRAST Compares estimates of mortality when variances and covariances Hines and Sauer
are available (analogous to means comparisons in ANOVA). (1989)

ESTIMATE Estimates mortality and recovery rates for one-age-class Brownie et al.
(e.g., juvenile or adult) open populations. More flexible than (1985)
BROWNIE but not as flexible as MARK.

JOLLY Estimates mortality and capture probability for one-age-class Pollock et al. (1990)
open populations. Widely used but not as flexible as MARK.

JOLLYAGE Similar to program JOLLY, it estimates mortality and capture Pollock et al. (1990)
probability for two-age-class open populations.

MARK Estimates mortality and capture probability for open White and
populations. Allows a wider class of encounter histories and Burnham (1999)
constraints than do other programs and was developed
primarily for mortality estimation. It will handle various mark–
recapture models, the joint live-recapture and dead-recovery
models, robust-design models, and multi-strata models. It is the
newest and potentially most complete package.

MULT Estimates mortality and recovery rates with additional models Conroy et al. (1989)
for estimating reporting rate.

POPAN Estimates mortality and capture probability for open populations. Arnason and
Schwarz (1999)

RELEASE Estimates mortality and goodness-of-fit tests for a large class of Burnham
mortality models for open populations. Originally developed to et al. (1987)
estimate survival for a large suite of fish mark–release experiments.

SURGE Estimates mortality and allows easy implementation of linear Pradel and
models. Lebreton (1993);

Cooch et al. (1996)

SURPH Estimates mortality using mark–recapture data as a function of Smith et al. (1994)
environmental and experimental effects. These effects may apply
to a population (such as ambient temperature) or an individual
(such as body length).

SURVIV Estimates mortality with multinomially distributed data. SURVIV is White (1992)
very flexible and used heavily as a research tool. However, one needs
a FORTRAN compiler to run program and a healthy appetite for
programming to get things to work. Not recommended for novices.

TMSURVIV Estimates mortality and capture probability and the proportion Pradel et al. (1997)
of “transients” in open populations.
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assumption of regression analysis is violated. The effect is to flatten the slope
because, as the measurement error in the independent variable increases, any
relationship between the dependent and independent variables becomes indis-
tinguishable, driving the slope toward zero. Flattening of the slope can produce
an overestimate of the intercept and thus M. Second, this method is applicable
only when the relation between effort and Z is linear (i.e., catchability is con-
stant). Conceivably, the same fishing effort may not encounter the same catchability
in different years because of changes in population density or gear efficiency.
Third, an unreliable estimate of the y-intercept (i.e., M) will result if the fishing
effort does not vary greatly; ideally, estimates of Z would be available over a wide
range of fishing effort, including very low levels.

6.6.2 Catch-Curve Analysis to Estimate M

Under limited conditions, the linearized catch-curve analysis described in section
6.3.2 may be used to estimate M. Conceivably, some of the age-groups available
for analysis may not be available to the fishery. The slope of a line fitted through
these points may be interpreted as M. For instance, in situations where a length-
limit regulation exists and catch-and-release mortality and illegal harvest are vir-
tually zero, fishing mortality for protected fish is in effect zero. Hence, any esti-
mates of Z will constitute estimates of M for fish in those protected lengths.

Figure 6.7 Separation of fishing (F) and natural (M) mortality by regression of Z as a function
of fishing effort. The intercept of regression represents M.
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6.6.3 Mark–Recapture to Estimate F and M

Estimates of F can be derived from tagged fish recaptured by fishers if concurrent
estimates of Z are available. Estimation procedures depend on whether one or
multiple release periods are employed. Various methods are available (reviewed
by Seber 1982), but we limit our presentation to methods counterpart to those
identified for estimating Z in section 6.5. An additional assumption is that fishers
report tagged fish; violation results in an underestimate of F. Various methods
have been designed to adjust for underreporting (Zale and Bain 1994; Hearn et
al. 1999), but none of the underreporting adjustments are fully satisfactory
(Miranda et al. 2002).

If fish are tagged in only one marking period, fishing mortality may be esti-
mated from the proportion of tagged individuals captured in the fishery. This
approach is applicable when there is a high likelihood that tags will be recognized
and reported by commercial or recreational fishers. Equation (6.13) estimated A
as the fraction of fish bearing a tag in two successive periods of recaptures. If the
number of fish bearing tags in the first period (m1) and the number of tagged fish
captured by fishers in this period (f1) are known, the interval fishing mortality, �,
can be estimated as

�1 = 
f 1

m 1

, (6.19)

and F = �Z/A. A variance equation for (6.19) was given by Ricker (1975) and
Jagielo (1991). If � is assumed constant over several recapture periods, a weighted
estimate of mean exploitation is obtained as

� = 
f 1 + f 2 + . . . + f n – 1

m 1(1 + S 1 + S 2 + . . . + Sn – 1 )
,

n – 121 (6.20)

where Si is the survival in each period. These computations are illustrated in Box
6.10.

If fishing mortality cannot be assumed constant, and mark–recapture is con-
ducted over two or more periods, estimates of �i for each period i can be obtained
by making successive estimates with equation (6.19). If mark–recapture is contin-
ued for three or more periods, estimates of �i for each period i can be estimated
as (Ricker 1975)

�i = 
f i .  f . i

m i k i

, (6.21)

where mi is the number of fish marked at the start of period i, fi · is the number of
fish marked in year i caught by fishers over all years, f· i is the number of marked
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fish caught each year i, regardless of when they were marked, and ki is the number
of marked fish caught after year i of fish marked before year i. When mark–recap-
ture occurs over three or more periods, equation (6.21) is preferred over succes-
sive estimates with equation (6.19) because equation (6.21) incorporates more
recapture information.

Some relatively new approaches integrate changes in fishing effort with tradi-
tional multiperiod mark–recapture data to estimate F and M, and possibly tag-
reporting rate, from a data matrix like the one illustrated at the bottom of Box
6.10. Hoenig et al. (1998) describe two approaches, one that estimates F and M
from the pattern of effort over the course of a year or other period and another
that estimates them from the pattern of effort over years. Brooks et al. (1998)
develop a method to separate F  from M  in situations where two user groups (e.g.,
commercial and recreational fisheries) are exploiting a fish population. Separa-
tion of M and F  is made possible by differences in recapture rates and seasonal

Box 6.10 Fishing Mortality Estimation from Marked Recaptures

Single tagging event
Consider the 1,596 crappies tagged in Sardis Reservoir and used in Box 6.9 to illustrate computa-
tion of total mortality. Recall that 655 were recaptured and reported by anglers during the first year
after tagging, 225 in year 2, 89 in year 3, and 34 in year 4 (in this example, recaptures have been
preadjusted for tag loss and nonreporting; Miranda et al. 2002). Following equation (6.19),

�1 = 
f 1

m 1
=

655
1,596

 =  41% ,

where m1 = number of fish bearing tags in the first period and f1 = number of tagged fish captured
by fishers in this period. If � can be assumed constant over the 4 years of tag returns, a weighted
estimate of mean exploitation can be obtained with equation (6.20) as

� = 
f 1 + f 2 + . . . + f n – 1

m1(1 + S1 + S2 + . . . + Sn – 1)n – 121
=

655 + 225 + 89 + 34
1,596 (1 + 0.34 + 0.402 + 0.383)

=
1,003
2,482

=  40%.

Multiple tagging events
The 5-year tagging program for largemouth bass in Lake Travesty described in Box 6.9 provided
data to estimate exploitation. Fish were marked and recaptured annually during a 2-week collec-
tion period in spring each year, and anglers were asked to report tagged fish they harvested. The
4-year history of tag reports is summarized below (recaptures were preadjusted for tag loss and
nonreporting).
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Table Tag reports for the largemouth bass fishery in Lake Travesty. The symbol mi represents the
number of fish tagged in year i ; fi · is the number of fish marked in year i caught by fishers over all
years; f· i is the number of marked fish caught each year i, regardless of when they were marked; ki

the total number of tagged fish caught after year i of fish tagged before year i.

Recaptures by anglers of fish marked in yeari

Year and fi . mi 1 2 3 4 f.i ki

1 643 89 89 173
2 489 60 63 123 202
3 712 19 35 92 146 212
4 630 5 20 41 75 141 141

fi . 173 118 133 75

Computations of annual exploitation estimated with equation (6.21) are as follows.

�1 = 
f 1.  f.1
m1k 1

=
173(89)

643(173)
= 14% ,

�2 = 
118(123)
489(202)

= 15% ,

�3 = 
133(146)
712(212)

= 13% , and

�4 = 
75(141)

630(141)
= 12% .

effort between users. Hearn et al. (1998) present a method for estimating F and
M from twice-a-period tagging (e.g., twice per year over several years). Tagging
takes place before a heavy fishing episode and once again at the end of this epi-
sode; M and F are sorted out by comparing rates of returns from the two mark-
ings, over years.

Radio tags may also be used to estimate Z, M, and F in large-bodied species. For
instance, Hightower et al. (2000) applied telemetry to estimate natural mortality
of striped bass. The general approach was to locate repeatedly live and dead ra-
dio-tagged fish at fixed time intervals. The rate of decline in the number of live
fish located over time provided information to estimate Z, whereas locations of
dead fish provided information to estimate M. Fishing mortality may be estimated
indirectly by subtraction or directly if the circumstances allow for inventorying
harvest of radio-tagged fish. A key advantage of this approach is the information
gained about the timing and causes of mortality. Telemetry studies are labor
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intensive but may be pertinent to estimating mortality in closed populations, par-
ticularly where the effort can fulfill other information requirements (e.g., move-
ment pattern or habitat use).

6.6.4 Direct Census to Estimate F

Fishing mortality can be derived from estimates of � and Z (Table 6.1). Values of
� may be obtained through mark–recapture (section 6.6.3) or through direct
census of harvest and population size. Direct census of harvest (H) involves esti-
mating the total number of fish taken by the fishery during a time period (re-
viewed by Malvestuto 1996; and Fabrizio and Richards 1996), and direct census of
the population (N) involves estimating the average population size during the
same period (reviewed by Seber 1982; and Schwarz and Seber 1999). These two
censuses estimate exploitation as � = H/N. Instantaneous fishing mortality is then
estimated as F = �Z/A.

The phenomenon of catch-and-release mortality in recreational fisheries has
received much attention in recent decades. When catch-and-release mortality is
low or negligible, conventional estimates of F and M will not be grossly affected.
For instance, catch-and-release mortality was 3% for cutthroat trout in the
Yellowstone River (Schill et al. 1986) and 2% for common snook in southern
Florida waters (Taylor et al. 2001). However, high levels of catch-and-release mor-
tality will confound what otherwise might be a straightforward measurement of F
and M. For instance, 67% of striped bass died after being caught and released in
a Tennessee reservoir during summer (Bettoli and Osborne 1998), and reef fishes
such as red snapper often experience high (>30%) catch-and-release mortality
(Gitschlag and Renaud 1994). Catch-and-release mortality represents unaccounted
fishing mortality, and high levels of catch-and-release mortality will inflate esti-
mates of natural mortality. When M is high, the success of harvest regulations
depends on the level of catch-and-release mortality (Waters and Huntsman 1986).

If estimates of release rates (Pr ) and catch-and-release mortality (Pm ) are avail-
able, these can be used to adjust exploitation rate (�') as

�� = � + Pr Pm
�

1 – Pr

. (6.22)

For example, suppose that a reward-tag study estimated � = 40%. If a concur-
rent creel survey indicated that 50% of fish caught are released, and an indepen-
dent study indicated that 10% of the fish released do not survive, the adjusted
exploitation rate would be 44%.

6.6.5 Production Modeling to Estimate M

Csirke and Caddy (1983) estimated M from the relation between yield and Z. This
method assumes a parabolic relation between Z and yield, and represents an ex-
tension of the traditional Graham-Schaefer production model (Ricker 1975). If
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total catch (yield) and Z are known for a series of years (at least three, more is
better), yield (Yi) can be modeled in terms of Zi with a quadratic equation as

Yi = b0 + b1Zi – b2Zi
2.  (6.23)

This equation corresponds to a parabola with a convex-downward curvature. When
F = 0, yield becomes zero and Z becomes M, so that equation (6.23) becomes

Y = b0 + b1M – b2M 2 = 0 (when F = 0). (6.24)

Solving for M,

M = (–b1 + [b1
2 – 4b0b2]0.5)/2b2 . (6.25)

Figure 6.8 provides an example application. A limitation of this method is the
assumption of a parabolic relation between Y and Z. The model may be made
more realistic by using new formulations of the basic parabola model (several
models are reviewed by Quinn and Deriso 1999). Another limitation is that to
produce reliable regression coefficients there must be enough contrast in the
values of Z.

0 0.5 1 1.5 2

Yi
el

d

150

120

90

60

30

0

Y = –57 + 415Z – 228Z2

M = 0.15

Instantaneous mortality (Z)

Figure 6.8 Estimating M from the relation between Z and yield (Y), assuming a traditional
Graham–Schaefer-type curve. When F = 0, yield becomes zero and Z becomes M.
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6.6.6 Meta-Analyses to Estimate M, F, or Z

Meta-analysis is a method for objectively synthesizing information from the litera-
ture and subjecting that information to statistical analysis (Wolf 1986). Unlike
traditional literature reviews, the methodology of meta-analyses is clearly presented
so that others can see how decisions were made. Meta-analysis has clearly defined
procedural steps to translate the findings of different research to a common pa-
rameter defined statistically.

Meta-analyses can be used to develop empirical regression equations predic-
tive of mortality. Natural mortality is consistently related to factors such as growth
rate, ultimate body size, fecundity, age at sexual maturity, and temperature. For
example, fish populations with slow growth tend to have low M values; a slow-
growing species or population simply cannot bear high natural mortality with-
out becoming extirpated. Likewise, fishing mortality is related to factors such as
fishing effort and diversity of target species. Meta-analyses make use of these
natural associations between mortality and allied variables to develop regional
or wide-ranging, single or multispecies, predictive models. Selected examples
are listed in Table 6.4.

Given that sources of mortality are difficult to sort out, empirical models de-
rived through meta-analyses are sometimes used to estimate mortality compo-
nents. For example, Campana (1987) used Pauly’s meta-analysis (Table 6.4) to

Table 6.4 Selected meta-analyses that use associations between mortality and allied variables
to develop regional or wide-ranging predictive models.

Meta-analysis Reference

In high-latitude stocks, there was a close association between M (annual) and the Rikhter and Efanov
age (years) when 50% of the population was sexually matured (Tm50). The equation (1976)
was M = 1.52Tm50

–0.72 – 0.155.

With data on 10 species the relation between M (annual) and gonadosomatic Gunderson (1980)
index (GSI = gonad weight/total weight) was estimated as M = 4.64GSI – 0.37.

Annual natural mortality (M) was analyzed for 175 stocks, including 84 freshwater Pauly (1980)
and marine species of tropical to polar distribution. A predictive equation was
derived for M based on the von Bertalanffy growth parameters K (annual),
L� (cm), and T (mean annual surface temperature, oC). The equation was
M = –e0.0152 + 0.654log

e
K – 0.279log

e
L

�
 + 0.463log

e
T.

Instantaneous total mortality (Z) was modeled relative to longevity Hoenig (1983)
(Ymax = mean age of “the oldest specimens” in a sample). Unfortunately,
longevity can be as difficult to estimate as mortality; thus, the value of such
relations is limited. The equation was Z = e–1.01log

e
Y

max
 + 1.46.

For 40 largemouth bass populations in North America, M (annual) was related Beamesderfer and
to the average number of degree-days (DD) above 10oC in a year as North (1995)
M = 0.000159DD + 0.197.

Wilde determined that the fraction of fishing mortality due to tournaments Wilde (1998)
(TM; %) was related to water temperature (T; oC) in 45 events: TM = 0.1042T1.683.
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estimate M for haddock, and Ebbers (1987) used the model to estimate M for
largemouth bass. The user of models derived through meta-analyses should rec-
ognize the limitations of the models. Because mortalities and their predictors are
often difficult to estimate, and come from a variety of studies using different tech-
niques, quality of the models derived through meta-analyses may be questionable.
Moreover, the models predict only average mortality for a given population char-
acteristic, or a set of characteristics in the case of multivariate models, whereas the
study population may fall above or below the mean. Pascual and Iribarne (1993)
evaluated the predictive power of several empirical models and found that error
around mortality predictions was high. Thus, estimates from models derived
through meta-analysis can be unreliable and should be used only as rough ap-
proximations in preliminary analyses or exploratory modeling that seek only rela-
tive solutions.

■ 6.7 REFERENCE POINTS

Managing a fishery requires adjusting input and outputs to obtain a desired out-
come. Reference points are targets or limits that help guide such adjustments.
Target reference points represent a desirable condition toward which a popula-
tion may be guided to obtain a desired outcome; limit reference points represent
a danger zone to be avoided.

6.7.1 Reference Points Based on F

The relationship between yield-per-recruit (y-variable) and F (x-variable) is gener-
ally depicted as a dome-shaped curve. The peak of the curve has a slope of zero
and identifies the F that produces the maximum yield-per-recruit (Fmax; Quinn
and Deriso 1999). This target reference point is often difficult to estimate be-
cause of the flat-topped shape of the yield-per-recruit curve. An easier target ref-
erence point to estimate is F0.1, which estimates the fishing mortality at which the
slope of the dome-shaped yield-per-recruit curve is 10% of its value at the origin.
This value is always less than Fmax and therefore more conservative.

6.7.2 Reference Points Based on M

In unfished or lightly fished populations, mortality limit reference points may be
established based on M. For surplus-production models, Gulland and Boerema
(1973) proposed a simple empirical formula (i.e., MSY = 0.5MB0) to establish
maximum sustainable yield (MSY) in terms of the unfished standing stock (B0)
and the natural mortality at which the slope of a dome-shaped yield curve is zero.
Their assumption relies on the symmetrical Schaefer yield model to assume that
MSY will occur at 0.5 the unfished standing stock and that FMSY = M. Because there
is little evidence that FMSY = M, this equation has been generalized to MSY = pMB0,
with p equal to 0.5 or other fraction. In general, p should be higher for long-lived
species (low M) than for short-lived ones (high M). Patterson (1992) suggested
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that for small pelagic species, a p near 0.5 (i.e., FMSY = 0.5M) should be sustainable.
Caddy (1998) suggested that p should decrease as M increases, so that p = 0.8 – 0.9
for long-lived (M = 0.1 – 0.2) terminal predators and p = 0.4–0.5 for short-lived (M
= 1.1 – 1.4) small prey species.

6.7.3 Reference Points Based on Z

Because partitioning mortality into F and M is often difficult, there are advan-
tages in expressing mortality limit reference points in terms of Z. For surplus-
production models, Caddy and Defeo (1996) used time series of paired annual Z
and catch to approximate the Z values that resulted in MSY. For age-structured
models applied to recreational fisheries management, Miranda (2002) derived
limits on Z based on size objectives for the fishery stated in terms of mean length
or a size structure index. The relation between Z and mean length of fish is de-
scribed by a decaying exponential curve. Thus, to preserve fisheries with large
fish requires maintaining a low Z, although exact levels depended on growth rate.
The relation between Z and proportional stock density (PSD; Anderson and
Neumann 1996) was described with the model (Miranda 2002)

Z  = – 
tQ  – tS

,loge (PSD/100)
(6.26)

where tS = number of years it takes fish to grow to stock size and tQ = number of
years to quality size (size is defined according to species by Anderson and Neumann
1996). Thus, fast-growing populations can withstand higher mortality to maintain
a target PSD. Equations (6.8) and (6.26) can be used to establish reference points
based on threshold size objectives for the fishery (Box 6.11).

■ 6.8 COMPENSATORY AND ADDITIVE MORTALITY

Additive mortality assumes that an increment in F or M results in an equal incre-
ment in Z. When increments in F or M lead to disproportionate or no increment
in Z, mortality is compensatory (Figure 6.9). Populations near carrying capacity
are more likely regulated by compensatory processes and populations at low den-
sity by additive processes (Bartmann et al. 1992). Hence, a population may ex-
hibit additive mortality at low density and compensatory mortality at high density,
but a continuum of escalating partial compensation between completely additive
and completely compensatory mortality is possible (Nichols et al. 1984; Conroy
and Krementz 1990).

Adult fishes probably experience lower levels of compensatory mortality than
do higher vertebrates because fish are better able to adjust their growth rate to
food availability, lengthening the period they can survive with limited food
(Weatherley and Gill 1987; Shuter 1990). Nevertheless, compensatory mortality
may result from cumulative effects. During periods of reduced growth through
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intra- or interspecific competition for resources, other stressors (e.g., disease, para-
sitism, or predation) may act synergistically to cause density-dependent mortality.
Cushing (1981) suggested that predation acts in a density-dependent manner in
some pelagic marine fish stocks. Allen et al. (1998) found that mortality was addi-
tive in largemouth bass populations but could be compensatory in crappies and
northern pike. For crappies, empirical data showed no relation between � and A
at low levels of � but a positive slope at mid- to high levels of �; for northern pike,
there was no relation between � and A.

The existence of compensatory mortality can be examined by plotting inde-
pendent estimates of A and � to identify potential trends like those shown in
Figure 6.9. Such estimates may be obtained from existing data or by experimen-
tally manipulating � through harvest restrictions. A plot of F on Z would be prob-
lematic because computation of F involves Z (i.e., F = �Z/A), and thus Z would be
included in both axes. The relation between A and � is expected to be direct and
linear if mortalities were completely additive. Conversely, the plot is expected to
be slopeless or nearly so if mortalities were completely compensatory. Burnham

Box 6.11 Establishing Target Mortality Caps in Length-Based Fisheries Management

Consider, for instance, that in the Columbus Lake example (Box 6.8) a fishery management objec-
tive is for largemouth bass in the population (and thus perhaps the angler’s creel) to average 275 mm
total length or better (average length estimate includes only fish fully vulnerable to the collection
method). If Z is excessive, whether due to F or M, few fish will live to old age (= large size), and thus
the management objective cannot be met. Given the existing growth conditions described by the
von Bertalanffy growth model (K = 0.226 and L� = 636 mm), the length above which all largemouth
bass are considered equally vulnerable to electrofishing (Lx = 150 mm), and the target mean length
(Lmean = 275 mm), the limit Z may be estimated with equation (6.8) as

Z = 0.226
636 – 275

275 – 150
 = 0.65 .

Alternatively, if the management objective for the largemouth bass population is expressed in
terms of PSD instead of mean length, a limit on Z can be estimated with equation (6.26). Assume
that the target PSD is 50 and that it takes 1.1 year for the average largemouth bass in the popula-
tion to grow from stock to quality size (i.e., tQ – tS = 1.1); then

Z =  –
loge(50/100)

1.1
 = 0.63.

These Z values represent limit reference points above which the management objective cannot be
achieved. The limit is intended to prevent overfishing that renders the size distribution of a
population undesirable from a fishery perspective. The limit is not a target for management, but
instead it helps managers define the upper cap of mortality. If the cap is approached, additional
emphasis must be placed on monitoring the fishery. If the cap is exceeded, Z must be immediately
reduced through cuts in F that are equal to or larger than the excess Z.
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and Anderson (1984) present statistical models to test whether mortality con-
forms to either of these extremes or some intermediary level of compensation.

■ 6.9 PERSPECTIVES ON BIASED AND IMPRECISE MORTALITY ESTIMATES

It should be apparent from the preceding sections that estimating mortality with
sufficient accuracy and precision is not easy. Even the simplest estimation models
require data that are difficult and expensive to collect, apart from having to rely
on collection methods that have numerous biases. The models make various as-
sumptions, which are often disregarded by the environment and ignored by fisher-
ies scientists. The saving attribute is that mortality has well-defined lower and
upper limits, 0 and 100%, that conveniently bound the estimates. Given these
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Figure 6.9 Conceptual models of the relation between � and A under (A) additive, and (B)
compensatory mortality. The flat portion of the curve in (B) implies natural mortality is changing
and compensating for increased fishing mortality.
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difficulties, it is appropriate to end this chapter with our views on how to deal with
the uncertainties associated with mortality estimates.

Uncertainties result from inaccurate and imprecise estimates (i.e., estimates
that have error). Accuracy refers to how close an estimate of mortality matches
the true value, whereas precision refers to how close repeated estimates of mortal-
ity would agree with each other. Error encompasses both the imprecision and
inaccuracies of estimates. Uncertainty about accuracy of mortality estimates is cre-
ated by error in estimating variables that affect the computation of mortality, such
as fish age, size structure, growth rate, harvest rate, tag retention, and tag report-
ing. Error arises from imperfect representation of the population by the sampling
process, inability to meet the assumptions of the estimating model, and lack of
complete knowledge about the functioning of populations (e.g., additive versus
compensatory mortality). Uncertainty due to poor precision results from the high
variability associated with population variables that include sampling and natural
components. Sampling error is introduced by the sampling gear, timing, and pro-
cedures; this error can be reduced through improved collection methods, proper
sampling design, and increased sample sizes. Natural variability results from nor-
mal population fluctuations; although this variability does not constitute error,
measures of error normally include natural variability. Francis and Shotton (1997)
and Charles (1998) provide good reviews with more refined classifications of
uncertainties.

Uncertainty in mortality estimates can be reduced by confronting the ques-
tions of accuracy and precision. Accuracy of estimates may be verified by compar-
ing multiple estimates made with different methods (e.g., mark–recapture, length-
based, and catch-curve models) or by evaluating estimates relative to covarying
population or environmental parameters to examine if they follow expected trends
(e.g., high Z values are unlikely when fishing effort is low, unless habitat is of poor
quality). If two estimates are similar, the fisheries scientist may become increas-
ingly confident about the quality of the estimates and use the average of the two
values. Commonly, the estimates are not so similar, and the fisheries scientists
ignores the least certain one, takes the average of the two, or develops two recom-
mendations based on each of the estimates. If the estimates were highly different,
averaging should be avoided because there is a good possibility that one of them
is wrong and averaging would lead to an undesirable estimate (Schnute and Hilborn
1993). When only a single estimate is available and its accuracy is not confirmed
by covarying variables, a second estimate should be sought.

Collecting ample, good data with proven protocols under acceptable sam-
pling designs can increase precision. For example, to perform catch-curve analy-
ses a reasonable sample size of aged fish could be about 200 for a heavily ex-
ploited, short-lived freshwater species with few age-classes or 500 or more for a
species with 10 or more age-classes in the population (Sampson and Yin 1998;
Ciepielewski 1999). However, except in cases where every death can be counted,
estimates will still contain error. The variability inherent in every estimate should
not be ignored by working exclusively with a point estimate. Instead, confidence
intervals should be estimated and further application of the mortality esti-
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mate must involve the range of values within the confidence band. Confidence
limits mix estimation error and natural variability, which is pertinent given
that management will be applied to naturally stochastic populations occupying
unpredictable environments.

Further analysis may involve appraisal of the effect of uncertainty on possible
outcomes and decision making. This step may take the form of an informal quali-
tative evaluation or a quantitative assessment using simple or complex models.
Qualitative evaluations often involve making conservative allowances for uncer-
tainties through arbitrary safety factors. Much attention has been given in the
literature to establishment of precautionary reference points for F (e.g., F0.1 and
other F limits; Caddy 1998). Brown and Patil (1986) provide an example of a
qualitative evaluation of uncertainty to establish levels of F. Quantitative evalua-
tions may evaluate the outcome of models relative to the statistical distribution of
mortality and other (if any) variables in the model (i.e., sensitivity analysis; Saltelli
et al. 2000). These evaluations help identify the range of possible outcomes given
the uncertainty of the variables included in the model; however, models can in-
troduce additional uncertainty because they are unlikely to simulate accurately a
population’s dynamics.

■ 6.10 CONCLUSIONS

We have presented numerous conceptual and mathematical models of mortality
in the preceding sections; however, mortality in fish populations should be more
than an abstract concept. Knowledge of mortality rates is fundamental to under-
standing the dynamics of exploited fish populations, and when compared to rates
of recruitment and growth, mortality rates are often the easiest to manage using
harvest regulations. Size limits, slot limits, creel limits, closed seasons, and gear
restrictions are all examples of regulations typically used to modify fishing mortal-
ity (Noble and Jones 1999). When you consider that promulgating regulations
and evaluating the subsequent response of freshwater fish populations to new
regulations is commonplace, it is surprising that mortality rates are not estimated
more routinely or scrutinized more intensely by fisheries scientists.

The most common methods used by inland fisheries scientists to calculate
mortality are linearized catch curves or Chapman–Robson’s catch curves. Although
some of the methods presented here have seen little use outside the marine lit-
erature, numerous freshwater sport fish and commercial fish populations are ex-
ploited in the same manner as marine stocks. For instance, crappie fisheries are
almost exclusively catch-and-harvest fisheries (i.e., catch and release of legal-sized
fish is unusual), as are most fisheries for paddlefish, catfishes, bluegill, walleye,
and sauger. Instead of large fishing fleets operating in marine systems, inland
fishers operate singly but with no less determination and zeal. The populations
that are exploited by marine and freshwater fishers are also identical with respect
to what is important to know about them and what fisheries scientists can do to
conserve or enhance these populations. It should also be apparent that many



Mortality 271

datasets lend themselves to several different analytical procedures that can pro-
duce different estimates of varying accuracy and precision. When estimates agree,
confidence in them will be high; however, when they disagree, they provide direc-
tion and justification for future efforts.

The greatest difficulty in estimating mortality is partitioning total mortality into
fishing and natural mortality. Whereas estimates of total mortality are abundant,
rates of exploitation are difficult to obtain and are known for comparatively few
populations; natural mortality rates are available for even fewer populations. The
need for accurate estimates of all three rates will grow more acute as more fisher-
ies scientists take advantage of recent advances in population models, whose out-
puts are critically sensitive to mortality rates.
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Relative Abundance and
Catch per Unit Effort
Wayne A. Hubert and Mary C. Fabrizio

■ 7.1 INTRODUCTION

Knowledge of the abundance of fish in a stock is a component of the information
used in management of fisheries (Ney 1999). Abundance estimates are used along
with data on age and length composition and weight–length relations to make judg-
ments regarding the status of fish stocks. Many methods have been developed to
estimate the numerical abundance of fish in a stock including counts within iso-
lated segments of a water body, mark and recapture, and removal methods (Chap-
ter 8; Van Den Avyle and Hayward 1999). However, in many freshwater fisheries
these methods require more time and money than can be allocated to the assess-
ment. In these cases, fisheries managers use indices of abundance to estimate rela-
tive abundance of fishes (Fabrizio and Richards 1996; Hubert 1996; Ney 1999).

The most common indices of relative abundance are computed from catch per
unit effort (C/f ) data for samples from a fish stock (Fabrizio and Richards 1996;
Hubert 1996; Ney 1999). A C/f index is defined mathematically as

C/f = qN, (7.1)

where C is the number of fish caught, f is the unit of effort expended, q is the
catchability coefficient or probability of catching an individual fish in one unit of
effort, and N is the absolute abundance of fish in the stock. When numerical
abundance cannot be estimated, fisheries scientists often use C/f to make judg-
ments about the abundance of fish in a stock.

Effort (f )  is computed in many ways depending on the sampling gear and habi-
tat in which the target species resides. Units of effort may include individual sets
or hauls with a gear, the volume or area of habitat sampled, or the temporal dura-
tion of sampling. With passive gears (Hubert 1996), such as gill nets and trap nets,
effort is generally expressed in terms of the standard “set” with a specific piece of
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gear. For example, a gill-net set might involve placing the net on the bottom over-
night for 12 h, and the net may be 100 m long and 2 m high, constructed of 2.54-
cm-square-mesh monofilament netting, and have a float line and a lead line. With
active gears (Hayes et al. 1996), such as trawls, effort is often described in terms of
the duration or length of the haul at a given boat speed. Similarly, effort with
seines is often quantified relative to the area or length of shoreline over which the
seine is pulled. With small larval fish trawls or push nets (Kelso and Rutherford
1996), the volume of water filtered is often computed, and C/f  is expressed as the
numbers captured per unit of water filtered. The C/f of electrofishing samples
(Reynolds 1996) is often described in terms of the number of fish caught in a
given amount of time (minutes or hours) or length of shoreline sampled.

7.1.1 General Applications in Freshwater Fisheries

Applications of C/f  to assessment of stocks of freshwater fish occur in both sport
and commercial fisheries. A stock is a group of fish or other aquatic animals that
can be treated as a single unit for management purposes (Lackey and Hubert
1976). A stock is generally considered to be a self-contained and self-perpetuating
population of a single species with no mixing from the outside and within which
biological characteristics and impact of fishing are uniform. This definition is
accurate when applied to populations in small lakes and impoundments. How-
ever, the geographic boundaries of many freshwater fish stocks are vague and
unknown, as in streams, rivers, large reservoirs, or large lakes. Consequently, de-
fined areas and not biological populations are sometimes used as the manage-
ment units.

Catch per unit effort data are commonly used to monitor or assess stocks when
the boundaries of the populations are unknown. Sport fisheries are often assessed
by sampling with active or passive gears (Hayes et al. 1996; Hubert 1996) or by
surveying recreational anglers and sampling creeled fish (Malvestuto 1996). Com-
mercial fisheries are often assessed using onboard or port-side sampling of the
catch (Fabrizio and Richards 1996), but sampling protocols with active or passive
gears are also used. Commercial fishery sampling programs are often used to
estimate the catch of species in a fishery and the amount of fishing effort (Gillis
and Peterman 1998). All of these sampling approaches can generate C/f  data
that can be used to assess temporal and spatial trends of fish stocks.

7.1.1.1 Monitoring of Stock Abundance over Time

One of the earliest applications of C/f  data in inland waters was a description of
annual changes in relative abundance of sport fish in Clear Lake, Iowa from 1947 to
1968 based on gill-net data (Carlander 1953; Bulkley 1970). Similarly, the temporal
patterns in relative abundance of prey fishes in Lake Michigan from 1973 to 1993
have been described using C/f  data from trawl sampling (Fabrizio et al. 2000). Also,
cyclic patterns in abundance of yellow perch in an oligotrophic lake have been
described using C/f data (Sanderson et al. 1999). Many similar monitoring pro-
grams have been conducted by state, provincial, and federal management agencies.
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Most commonly, time series of C/f data are used to assess the efficacy of fisheries
management actions, such as the response of largemouth bass and bluegill popula-
tions to the removal of excess vegetation in lakes (Pothoven et al. 1999). Monitor-
ing of C/f  is also conducted to determine declines or increases in abundance of
rare species, such as Atlantic sturgeon in the Hudson River (Peterson et al. 2000).
Other C/f monitoring efforts may be used to evaluate restoration efforts, such as
those for lake trout in Lake Superior (Hansen et al. 1995). Similarly, the response
of fisheries to introductions of exotic species can be assessed using C/f, as has been
done for Lake Erie fishes relative to the appearance of zebra mussels in the lake
(Trometer and Busch 1999).

Several measures of annual variation in C/f have been developed to predict
the future abundance of fish or the quality of a fishery. For example, C/f  of small
yellow perch in trawls in the southern portion of Lake Michigan has been used to
predict the future abundance of fish acceptable to anglers (Shroyer and McComish
1998). Similarly, C/f of walleye in gill nets during the fall can be a predictor of
angler catch rates the following summer (Isbell and Rawson 1989). Also, C/f of
age-0 fish has been used as a predictor of recruitment of age-1 fish of some species
in reservoirs (Willis 1987; Sammons and Bettoli 1999).

7.1.1.2 Evaluation of Spatial Distribution Patterns within Stocks

Another common application of C/f data is the evaluation of spatial distribution
patterns or patchiness of fish within a stock. For example, C/f  data have been
used to describe spatial distributions of fishes in large (Ward et al. 2000) and
small (Hi and Lodge 1990) lakes, as well as reservoirs of various sizes (Hubert and
O’Shea 1992; Van Den Avyle et al. 1995; Michaletz and Gale 1999). Habitat asso-
ciations of fishes may be identified using C/f data obtained from different habi-
tats in both lentic (Irwin et al. 1997; Sammons and Bettoli 1999) and lotic (Jack-
son 1995; Johnson and Jennings 1998) waters. Seasonal patterns in fish distributions
have also been described using C/f data. For example, seasonal abundance of
fishes in tributaries to the Missouri River has been described in this manner
(Braaten and Guy 1999). Fisheries scientists also use C/f data to ascertain the
effects of habitat mitigation efforts on the spatial distribution of fishes (e.g., Moyer
et al. 1995; Chipps et al. 1997).

7.1.1.3 Assessment of Stocks Relative to Other Stocks

Comparison of fish stocks in two or more water bodies based on C/f data obtained
by standard fish sampling protocols has also been applied by freshwater fishery
managers. For example, among biologists managing small impoundments there
is general consensus that electrofishing C/f  is a good measure of largemouth bass
abundance (Flickinger et al. 1999).

7.1.1.4 Surveys

Surveys are sometimes conducted in which C/f data are used to describe the fish
assemblage in a water body. However, the catchability coefficient (q) with a par-
ticular gear differs among species, so the actual composition of a fish assemblage
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is generally not well represented by C/f  data. Nevertheless, researchers have at-
tempted to consider the effects of differential encounter probabilities, fish size,
fish swimming speed, and retention probabilities of a specific gear to provide a
better indicator of actual assemblage composition. For example, Spangler and
Collins (1992) made such adjustments to C/f  data from gill nets to describe fish
assemblages in different portions of Lake Huron. Parsley et al. (1989) computed
capture efficiencies for small fishes sampled with beach seines to achieve a better
estimate of assemblage structure in a reservoir.

7.1.2 Underlying Assumptions

An underlying assumption of using C/f  as an index of abundance is that the num-
ber of fish captured is proportional to the amount of effort expended. When a
population is closed, one unit of sampling effort removes a fixed proportion of
the total population (Seber 1982). As the population declines in abundance, the
number of animals captured by one unit of effort declines. This simple linear
relation between C/f  and abundance has been extended to research and moni-
toring surveys such that C/f  data are typically treated as a measure of abundance.
However, when the assumption of a linear relation fails, C/f  can be a misleading
indicator of stock abundance.

7.1.2.1 Density As an Index of Abundance

The classic catch equation expresses catch as a proportion of abundance, and this
proportion varies with the amount of effort:

C = fq (N/A), (7.2)

where C is catch, f is fishing effort, q is (constant) catchability, N is abundance,
and A is the area in which the stock occurs (Gulland 1969). This equation can be
re-arranged to C/f  = q(N/A), so if catchability is known, C/f  is a measure of fish
density (N/A).

Assumptions of this model are (1) the population is in equilibrium (i.e., birth,
recruitment, and immigration rates are balanced by death and emigration rates);
(2) units of effort (such as individual trap or net sets) operate independently
(one unit of fishing gear does not interfere with other units); (3) q is constant
throughout the sampling period; and (4) every individual in the stock has the
same probability of capture (Seber 1982). The fourth assumption concerns the
spatial distribution of fish and is met when fish are uniformly distributed within
the boundaries of the stock. Additionally, when sampling of fish within a stock is
without replacement (i.e., live fish are not returned to the water), it is assumed
that the effects of such removals are negligible.

7.1.2.2 Constant Catchability

Technically, the constancy of the catchability coefficient (q) determines how well
C/f  serves as an index of abundance (Gulland 1969). The assumption of equal
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capture probability for each fish in the population implies that fish are uniformly
distributed in space and that all occupied areas are accessible to the gear and are
randomly sampled. However, neither fishing effort nor fish are uniformly distrib-
uted (Paloheimo and Dickie 1964). Even when effort is uniform, such as in re-
search studies using standardized sampling methods, variation in catchability arises
when changes occur in the spatial distribution of fish. It has long been recognized
that C/f  data reflect changes in animal distributions as often as they reflect changes
in abundance (Paloheimo and Dickie 1964). Changes in fish distribution (and
availability to the gear) may occur vertically (e.g., changes in the thermocline
affecting the vertical distribution of fish) or horizontally (e.g., different habitats
are occupied such that the proportion of a population occurring outside the sur-
vey area changes). Catch-per-unit-effort data are further confounded when changes
in spatial distribution occur concurrently with changes in abundance. For example,
at low abundance a relatively greater proportion of Atlantic cod were found in
shallow regions outside a survey area and were unavailable to the trawl, thereby
reducing catchability during times of low abundance (Swain et al. 1994).

Care must be taken to restrict interpretations of C/f  estimates to the portion of
a stock actually sampled. For example, when fish in a stock are spatially distrib-
uted among exploited and unexploited regions, and individuals move from an
unexploited to an exploited region, C/f  estimates from the exploited segment
are not a good measure of total stock abundance (Sampson 1991). Catch-per-
unit-effort estimates from the exploited region are representative of the entire
stock only when the rates of movement between the two regions are random.
Effects of shifts in distribution on C/f  estimates have been recognized for some
time and have been incorporated into equilibrium models of production for ex-
ploited fisheries (Die et al. 1990).

Variations in catchability decrease the accuracy of C/f  estimates as indices of
abundance. Catchability can vary with size, sex, or other intrinsic characteristics
of fish. Catchability can also vary with time of day, season, sampling site, water
temperature, dissolved oxygen levels, or other environmental features that may
affect the ability of the gear to capture fish or the distribution of fish relative to
the gear (i.e., availability).

There are several ways to address departures from the constant catchability
assumption. One approach is to stratify sampling of a stock according to the fea-
ture of interest. For example, when catchability varies with fish length, then an
estimate of catchability for a stock is really the average q for all fish in the stock. As
long as the length structure of the fish in the stock does not change, the average
q will be a reasonable estimate for the entire stock. However, the length structure
of fish in a stock is generally not constant, and catchability may best be estimated
separately for individual length-classes in the sample (Seber 1982). Another ap-
proach is to adjust C/f  data to account for changes in extrinsic factors such as
changes in fishing power (Kimura 1981). For example, trawlers with larger en-
gines consistently catch more fish and have greater fishing power than do trawlers
with smaller engines, all other things being equal (Gulland 1977). Still another
approach is to estimate catchability independently, for example, from a tagging
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study that yields estimates of stock abundance through time (e.g., Paloheimo 1963).
Whichever approach is taken, the factors affecting catchability should be mea-
sured and used to adjust C/f  data.

Numerous relationships between catchability and environmental factors have
been found by examining correlations between C/f  and these factors. For in-
stance, swimming speed of fish generally decreases at lower temperatures and fish
become more vulnerable to capture by a trawl. At the same time, the spatial distri-
bution of fish in a stock may change as temperature decreases, thereby changing
their availability to the gear. However, although C/f  may be significantly corre-
lated with environmental conditions, catchability may not be affected by those
factors (Swain et al. 2000). Careful examination and appropriate experimental
designs are needed to understand the nature of the relationship between
catchability and environmental factors.

7.1.2.3 Validation of Assumptions

The distinction between density and abundance is often overlooked, but the key
to understanding their difference is the validity of the constant area assumption.
Typically, the area occupied by a stock is assumed to remain constant. As abun-
dance changes, the expectation is that density will also change, and C/f  estimates
will remain proportional to abundance. Although the proportional relation be-
tween C/f  estimates and abundance is convenient, it is not universal (e.g., Crecco
and Savoy 1985). In some cases, as abundance increases, fish may increase their
spatial distribution and spread into adjacent nonsampled areas.

In other cases, C/f  may exhibit “hyperdepletion” in relation to abundance
(Hilborn and Walters 1992). In this situation, the rate of change for C/f  is higher
than it is for abundance. This relation is observed when C/f  decreases faster than
abundance because the most vulnerable animals are captured first, leaving behind
less vulnerable individuals (Ricker 1975; Miller 1990; Hilborn and Walters 1992).

An opposite effect is “hyperstability,” which occurs when C/f  remains high even
as abundance decreases (Hilborn and Walters 1992). This relationship occurs
when the search for fish is highly efficient, effort is concentrated in areas of high
densities, and the fish remain concentrated as abundance declines (Hilborn and
Walters 1992). This has been observed among commercial (Rose and Kulka 1999)
and recreational (Peterman and Steer 1981) fisheries. Aggregation of fish in a
small portion of the stock’s boundaries during a period of declining abundance is
termed hyperaggregation (Rose and Kulka 1999). For example, anglers experi-
enced high catchabilities of Chinook salmon during periods of low riverine abun-
dance because both fish and anglers were concentrated in small areas of the river
(Peterman and Steer 1981).

The assumption of constant catchability has been investigated for commercial
fisheries because of known changes in fishing efficiency associated with vessel
power, learning by crews, and technological improvements in commercial fleets
through time (Fabrizio and Richards 1996). These factors increase catchability
and introduce systematic error in C/f  data. Thus, long-term C/f  data from com-
mercial fisheries must be adjusted prior to computation of C/f  estimates. Without
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such adjustments, increased catchability leads to overestimation of stock abun-
dance from commercial fishery statistics. Variations in fishing power may also char-
acterize research surveys when more than one crew, vessel, or unit of gear is used
(Munro 1998). Often, such variations must be explored experimentally to derive
conversion coefficients (e.g., Pelletier 1998). When C/f  data are adjusted for dif-
ferences in catchability there is a tendency to overestimate the variance of C/f ;
thus, Munro (1998) developed a method to determine when adjustments are
warranted.

The assumption of independence of fish-sampling units (i.e., no interference
of one unit of gear with another) has been considered in a few studies. Interfer-
ence among highly aggregated gill nets has been documented (Rose and Leggett
1989). Among anglers, interference is commonly observed when total effort is
high (e.g., during holidays when crowding can lead to lower catchabilities; Ricker
1975). In general, data are insufficient to determine how frequently interference
may occur (Gillis 1999). Simulation studies show that when stock abundance is
low, C/f  estimates can fail to reflect abundance even under low levels of interfer-
ence (Gillis and Peterman 1998).

In some instances, mark–recapture experiments can be conducted to estimate
stock abundance (N ) and relate these estimates to C/f  data to obtain an estimate
of the catchability: q = (C/f )/N. For example, electrofishing catchability has been
related to largemouth bass abundance estimated by mark–recapture methods in
small impoundments (Hall 1986) and lakes (Coble 1992).

■ 7.2 SAMPLING DESIGN

The importance of sampling design cannot be overemphasized when using C/f
estimates as an index of stock abundance. Catch per unit effort can vary widely
because fish distributions are patchy and fish exhibit spatial and temporal varia-
tion in their distribution and activity patterns. Mean C/f  estimates often have
high variance (Peterman and Bradford 1987; Allen et al.1999), thereby introduc-
ing uncertainty when using C/f  to assess differences in stock abundance. Thus,
sampling designs that minimize variation in C/f  should be used. For example, in
an effort to reduce the variation in C/f , fisheries scientists often sample with the
same gear, in the same locations, and at the same time each year when assessing
annual changes in abundance of fishes (e.g., Fabrizio et al. 2000).

Generally, sampling designs are developed to minimize variation in C/f  that is
due to factors other than the true abundance of fish. Sampling locations and
times are selected based on knowledge of the life history, movement, and habitat
associations of a species (Pope and Willis 1996). Substantial literature is dedi-
cated to identifying where and when to sample different species. For example,
Mero and Willis (1992) assessed seasonal variation in gill-net catches of walleye
and sauger from Lake Sakakawea, North Dakota, to determine when C/f  was high-
est and the coefficient of variation of the C/f  data was lowest. Similarly, variation
in C/f  data for largemouth bass sampled by electrofishing is minimized when
sampling only shoreline areas (McInerny and Cross 2000).
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A study is dependent on the objectives of the fisheries scientist, and objectives
must be clearly identified. For example, objectives may be to (1) define annual
trends in abundance of walleye in a prairie lake, (2) evaluate changes in relative
abundance of channel catfish in a river in response to implementation of a mini-
mum-length limit, or (3) determine effects of shoreline restoration efforts on the
relative abundance of largemouth bass in a small impoundment. Each objective
may require a different sampling design dependent not only on the question but
also on the species and type of water body.

The experimental designs described in Chapter 3 have the potential of being
used in studies in which C/f  estimates are the response variable. Simple random
sampling is generally not appropriate when C/f  estimates are used to assess fish
stocks because low precision generates C/f  data that are too variable to detect
trends or differences that may occur. Within the fisheries literature, we have found
no examples of simple random sampling where C/f  estimates were the response
variable, but it is possible that situations may occur for which such a design may be
applicable, particularly in small water bodies with homogeneous habitat features.

There is a strong tendency among fisheries scientists to use stratified random
sampling designs, especially when assessing temporal trends in C/f . Four general
reasons for using stratified random sampling to assess fish stocks are (see Cochran
1977) (1) calculation of C/f  statistics may be required for different portions of a
stock, such as different bays within a large lake; (2) sampling constraints may
necessitate using different sampling methods in different areas, such as trawling
in offshore areas and beach seining in nearshore areas of a large lake; (3) stratifi-
cation may result in a gain in precision of C/f  estimates for the whole stock; and
(4) administrative convenience may require stratification in different areas, such
as different states or provinces around one of the Great Lakes. Michaletz and
Gale (1999) provide an example of the application of stratified random sampling
where C/f  estimates were used to assess both spatial and temporal patterns of
abundance (also, see example in section 7.5.2).

A systematic sampling design is another approach that may be considered for
studies based on C/f  data. In this approach, sampling begins at a randomly se-
lected site or time and continues at equally spaced locations or time intervals.
Systematic sampling may be used effectively in rivers to gather information on the
relative abundance of organisms along a gradient of environmental conditions
(Karr 1999). Although several estimators exist for the variance of the mean from
a systematic sample, all estimators require data from replicated systematic samples
(Cochran 1977). The variance of the mean from a single systematic sample may
be estimated, but estimators studied to date are biased and inconsistent (Skalski
et al. 1993). For example, when mean abundance estimates are obtained from
hydroacoustic surveys, systematic designs may (Simmonds and Fryer 1996) or may
not (Jessop and Harvie 1990; Skalski et al. 1993) yield highly precise estimates of
abundance. In general, systematic sampling provides less precise estimates of the
mean than does stratified random sampling (Cochran 1977) and should be con-
sidered only when the objectives of the study are not compromised by the lower
precision of systematic sampling estimators or when preliminary analyses indicate
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that lower sampling costs associated with systematic designs outweigh the need
for precision. Systematic sampling designs are probably most useful when com-
bined with stratified random sampling in a two-stage approach (Schweigert et al.
1985; Chapter 3). Additional sampling designs may be applicable to assessment of
C/f  (see Chapters 2 and 3).

■ 7.3 ASPECTS OF SAMPLING EFFORT

Design and construction of a sampling gear and factors associated with its opera-
tion contribute to variations in gear efficiency. For instance, catch rates for traps
are affected by soak time and the type of bait used to attract animals (Miller 1990).
In addition, gear efficiency may be affected by the interaction of captured ani-
mals and the gear itself (the saturation effect) and may vary according to life
stage of the target species (Miller 1990). When conducting research or monitor-
ing, care must be taken to standardize gear, not just in terms of the design and
construction, but also in terms of the operation. Standardization also pertains to
techniques used by operators of the gear. It is widely recognized that even though
using the same gear, some operators can obtain a higher catch than others. By
standardizing gear design, construction, and operation, fisheries scientists mini-
mize variation in catchability and C/f  data.

Often, preliminary sampling is necessary to identify factors associated with varia-
tion in catchability of a target species. A good example of an informative prelimi-
nary analysis is described in Bernard et al. (1991). They examined diurnal changes
in catchability, optimal baiting strategies, optimal soak duration, and hoop-net
size effects (among other factors) on the efficacy of hoop nets for capturing bur-
bot in Alaskan lakes. These results were used to design surveys of stocks of burbot
in 15 Alaskan lakes (Bernard et al. 1993).

7.3.1 Selectivity and Saturation

Gear performance is species and habitat specific (Choat et al. 1993). For example,
light-trap selectivity for larval fish sampling depends on the attraction of different
species to light, and not all taxa are equally phototaxic (Choat et al. 1993). En-
counter rates of some species or sizes can be increased by deploying the gear in
appropriate habitats and exploiting behavioral differences among species or life
stages. However, encounters with gear do not necessarily result in capture. Fish
are captured when they encounter the gear and are also retained. The probability
of retention is termed selectivity. With some gear, retention of organisms will vary
with mesh size and the likelihood of extrusion through the mesh. Body size, body
shape, and pressure exerted by fish across the net mesh are three factors that
determine the likelihood of extrusion.

Gear saturation is another factor affecting gear efficiency and catchability. Satu-
ration occurs when the present catch reduces the potential for additional catch
by reducing the number of new captures, increasing escapement, or both (Miller
1990). As a gear becomes saturated, the likelihood of capturing additional animals
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decreases. Good examples of saturation effects can be found for gill nets (the
presence of entangled fish may scare other fish away), longlines (as more fish are
captured, the number of vacant hooks decreases, and eventually no additional
fish are caught), and baited pots or traps (captured animals deplete the bait or
discourage other animals from entering the trap). In traps, reduced entry is thought
to be due to intimidation by trapped organisms using odor, posture, or sound to
prevent entry of additional animals into the trap (Miller 1990). Longlines are
notoriously prone to the effects of saturation and interspecific competition for
hooks. Under these conditions, time fished is not a good indicator of true effort.
An extreme example occurs when all hooks bear fish at time t but the longline is
retained in place until t + i; in this case, C/f  is biased low because true effort was
(over) estimated by t + i. New methods have been developed to more accurately
estimate effort associated with longlines based on time to capture as measured by
fish-activated timing devices placed on each hook (Somerton and Kikkawa 1995).

7.3.2 Sampling Issues Specific to Gear Types

7.3.2.1 Passive Gears

Passive gears rely on the movement of organisms, either schooling or more di-
rected migrations such as spawning, to bring organisms in contact with the gear
(Hubert 1996). Schooling behavior creates density differences that affect the esti-
mation of relative abundance. About one-fourth of teleosts are obligate schoolers
and exhibit schooling behavior throughout their life, and about half of all teleost
species school as juveniles (Shaw 1978). Schooling increases the vulnerability of
fish to capture by fishing gear. Increased vulnerability of individuals in schools
leads to less time expended in capturing fish, thus leading to biased C/f  esti-
mates. For example, catch rates with passive gears may be higher when environ-
mental factors cause fish movements and increase their vulnerability to capture
(Rose and Leggett 1989).

Because the effective area fished by passive gear is impossible to measure, ef-
fort is measured in terms of soak time. Although it may seem that longer soak
times should produce greater catches, in fact, as soak time increases, the gear may
become saturated and catch per unit of time will decrease. At this point, C/f  does
not provide an index of relative abundance (Hansen et al. 1998). For traps and
pots, as soak time increases, the catch actually may decrease as more organisms
escape than enter (Miller 1990). For baited longlines, saturation begins to occur
as the odor concentration from baited hooks decreases (Sigler 2000).

The relation between catch and soak time is specific for particular gear types
(Miller 1990) and must be determined experimentally. When designing experi-
ments or surveys involving traps, Miller (1990) suggests the following: (1) deter-
mine the relation between catch and soak time; (2) ensure that catch rates are
uniform throughout the study area; (3) standardize bait quantity and quality; (4)
standardize time of setting and hauling; (5) standardize trap spacing; (6) maintain
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traps in good repair; and, if following an experimental protocol, (7) randomize
sampling spatially and temporally within strata.

With other passive gears such as gill nets and drift nets, catchability may be
related to the visual acuity of fish, which, in turn, is affected by turbidity, light
intensity, or other environmental conditions (e.g., Cui et al. 1991). Light intensity
varies over a daily cycle, but lunar phase also affects light intensity. In addition,
the visibility of the net depends on the color of the mesh.

Catchability of passive gears may be affected by changes in activity of fish asso-
ciated with light levels. For example, most decapods are more active during dawn,
dusk, or generally at night, and catchability increases during these times (Miller
1990). Some fish are also more active at night, increasing their vulnerability to
passive gear. However, this relation of increased activity and light intensity may
change seasonally. For example, burbot are nocturnal in spring and summer but
diurnal in the fall (Bernard et al. 1993).

7.3.2.2 Active Gears

Active gears often have different catchabilities depending on light intensity. This
may be due to diel vertical movements of fish or reduced visibility (Walsh 1991;
Casey and Myers 1998; Korsbrekke and Nakken 1999). Catchability may also be
affected by the ability of fish to escape, and that ability depends on the behavior
of individuals during herding and capture (Godø et al. 1999).

Electrofishing is a highly effective active sampling gear for fish in streams
and littoral zones of lakes (Reynolds 1996). Electrofishing tends to be more
effective for larger fish and for species that float at the surface when stunned.
Some species exhibit relatively low catchabilities to electrofishing gear. For in-
stance, benthic fishes exhibit low catchabilities because the likelihood of seeing
immobilized individuals is low, whereas other pelagic species avoid the electric
field (Bohlin et al. 1989), thereby reducing their catchability. Additionally, in-
creasing water levels can reduce electrofishing catchabilities in rivers (Bohlin et
al. 1989). Standardization of electrofishing techniques is important when using
C/f  as an index of abundance.

7.3.3. Standardization of Effort

The appropriate units for measuring effort for a given gear can vary depending
on the target species and habitat sampled. For example, electrofishing C/f  is usu-
ally reported as catch per minute (e.g., Tillma et al. 1998), especially for highly
abundant species or life stages such as age-0 bluegills in Midwestern lakes. At
times, electrofishing C/f  may be reported as catch per hour (e.g., Paragamian
1989; Miranda et al. 1996), but this usually occurs when the species of interest is
rarely captured. In some cases the shoreline of a lake or reservoir may serve as the
sampling unit in an electrofishing survey and C/f  is measured as catch per area
(e.g., fish per 100 m2 of littoral zone) or catch per length of shoreline (e.g., fish
per 100 m).
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Fishing power should be standardized to maintain constant catchability. For
example, C/f  estimates from trawl surveys can change with vessel speed, so vessel
speed must be constant. With all types of sampling, fisheries scientists must con-
sider how procedural changes may affect fishing power. For example, electrofishing
equipment is typically standardized by using constant voltage or constant amper-
age. Variations in electrical power (wattage) have caused 12–15% increases in
variation in electrofishing catch rates (Burkhardt and Gutreuter 1995).

7.3.3.1 Multiple Gears

In some instances it is desirable to use two or more gear types to sample organisms
and to combine C/f  estimates from the different gears (Seber 1982). However,
care must be taken to ensure that catchability of each gear remains constant.
Although catchability may be constant through time for one gear, it may not be
for another (e.g., gill nets and trap nets for Atlantic cod, Rose and Leggett 1989).
At times it may be possible to calibrate C/f  from multiple gears, but patterns of
variation in C/f  may be due to behavioral characteristics of the species under
study (Methven and Schneider 1998).

7.3.3.2 Effects of Seasonal and Daily Variation

Catch per unit effort can change seasonally due to variations in recruitment, growth,
and mortality, but such changes may not be the same for all species or for a given
species in all habitats (Pope and Willis 1996; Richards et al. 1996). For example,
seasonal variation in C/f  for the virile crayfish was observed in Minnesota lakes
but not for the northern clearwater crayfish in streams (Richards et al. 1996). For
some species, catchability may increase temporarily during a particular season as
fish increase activity levels in response to environmental factors such as tempera-
ture and photoperiod (e.g., Bernard et al. 1993; Braaten and Guy 1999; Gordoa et
al. 2000). Also, seasonal patterns in C/f  may not be observed every year due to
climate variability (Gordoa et al. 2000).

When collecting C/f  data over time to examine trends, care must be exercised
to sample at appropriate times if seasonal variation in density exists. In the case of
sampling during a seasonal spawning migration, annual C/f  data will reflect rela-
tive abundance only if the seasonal timing of the migration remains the same
from year to year (Fréon and Misund 1999). Thus, when sampling migratory spe-
cies, the timing within the run is critical. For example, two-thirds of the annual
emigration of Chinook salmon smolts occurred during a new or waning moon
(Roper and Scarnecchia 1999). If using C/f  data to compare abundance of a
species from various areas, then care must be exercised to sample the areas of
interest during the same time. For example, a comparative survey of bluegill abun-
dance in Minnesota lakes found that data collected at different times of the year
should not be compared because about 40% of the variation in C/f  was explained
by day of the year (Cross et al. 1995).

Daily or circadian variations in C/f  are well known (e.g., Walsh 1991). Such
variations may be related to the visual acuity of fish or diel vertical movements in
lentic systems (Stoner 1991). Similarly, electrofishing catchability may (Paragamian
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1989; Dumont and Dennis 1997) or may not (Maceina et al. 1995; Van Zee et al.
1996; Dumont and Dennis 1997) increase at night depending on the target spe-
cies or the habitat in which the species occurs (Kessler 1999).

7.3.3.3 Consideration of Life History and Behavior

Catchability may be affected by life history or physiological stage of the target
species. This is illustrated among decapod crustaceans. Typically, the increased
activity levels of decapods during warm temperatures increase their vulnerability
to capture in baited traps, but their vulnerability ceases during molting (e.g., Somers
and Green 1993; Richards et al. 1996). Similarly, catchability of the American
lobster in traps decreases to near zero during molting, and because males and
females may molt at different times of the year, sex-specific catchability varies
(Miller 1990). In Minnesota streams, catchability of northern clearwater crayfish
in baited traps was highest between molting periods when animals were actively
feeding (Richards et al. 1996). Thus, behavioral changes associated with life his-
tory events should be taken into account when interpreting C/f  estimates.

Some of the most effective fishing gears use the behavioral responses of organ-
isms to maximize encounter rates and retention. A pertinent example is how ol-
factory cues can be used to elicit behavioral responses of fish to enhance encoun-
ter probabilities. For example, when Gerhardt and Hubert (1989) baited hoop
nets, the C/f  of channel catfish was doubled during the postspawning period.

Some species or life stages are photopositive, so gear catchability can be in-
creased by using light lures at night. While lighted traps and other nets may in-
crease nocturnal catches of certain fishes or life stages, the phase of the moon
may interact with catchability if fish activity varies with lunar phase. For example,
Rooker et al. (1996) found that nocturnal catches of larval fishes increased sig-
nificantly when lighted lift nets were used during the new moon.

The presence of predators or competitors may influence catchability. For
example, in Ontario lakes, crayfish catchability in baited traps declined in the
presence of rock bass and smallmouth bass and with increasing numbers of co-
occurring crayfish species (Collins et al. 1983; Somers and Green 1993). These
affects were noted only in lakes with relatively high abundance of predatory fishes
(Collins et al. 1983).

Habitat preferences and behavior of organisms contribute to variation in C/f
(Fréon and Misund 1999). Juvenile and adult fish may be distributed in areas vary-
ing in depth (Hubert and Sandheinrich 1983; Bernard et al. 1993). Individuals of
some species may segregate spatially on the basis of sex (Miller 1990). If a substan-
tial portion of a stock occupies a habitat that is inaccessible to the sampling gear,
then the proportion available to the gear is likely to vary through time depending
on environmental factors that alter habitat selection (Fréon and Misund 1999). For
example, tidal currents in the Barents Sea have been shown to influence the verti-
cal distribution of cod and haddock such that they are available to bottom trawls
only during periods of low or decreasing tidal currents (Michalsen et al. 1996).

Habitat preferences of fish are sometimes exploited to enhance catchability.
For example, some species prefer areas with cover and fisheries scientists may
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purposefully sample in these areas. Often, nets are set or gear is towed in areas
likely to contain fish, and the sampling locations are not truly standardized or
random. This type of selection mimics the manner in which commercial fisheries
operate by locating areas with potentially high densities of fish and fishing only in
these areas. If the objective is to compare changes through time in an impound-
ment or lake, then such judgment sampling may be appropriate (Hubbard and
Miranda 1988). When sampling for largemouth bass, electrofishing in areas near
weed beds, stump fields, or flooded timber in the littoral zone would constitute
judgment sampling (Hubbard and Miranda 1988). As long as the judgment sam-
pling sites are constant over time (i.e., permanent sampling sites), this approach
can yield an efficient means to assess temporal trends in relative abundance within
a given water body.

7.3.3.4 Consideration of Gear Efficiency in Different Habitats

The efficiency of a given gear can vary substantially among habitat types. For
example, electrofishing efficiency can vary widely among habitat types. In habi-
tats with low water clarity (transparencies less than 1 m) and depths greater than
a few meters, electrofishing is not very efficient (Bohlin et al. 1989). For example,
Dewey (1992) reported that in turbid, highly vegetated waters, electrofishing was
less efficient than were other gears because low visibility and entanglement of fish
in the vegetation reduced capture efficiency.

7.3.4 The Need to Minimize Variance and Bias

One of the most common approaches to increasing the precision of C/f  estimates
is to increase the number of samples. Assuming the sampling design is appropri-
ate (see section 7.2; Chapters 2 and 3) and catchability is constant, increasing
sample size will likely increase precision. However, factors affecting catchability
must remain constant during the sampling period. For instance, if catchability
varies greatly with light intensity and samples are collected throughout a 24-h
period without regard to this factor, then an increase in the number of samples
may not improve precision. We recommend that variation in catchability be stud-
ied with respect to factors that influence the magnitude of C/f  estimates includ-
ing those that influence availability of animals to the gear and vulnerability to
capture. Once these factors are known, then the value of increasing the number
of samples can be determined.

In stratified random sampling designs the optimal sampling plan may not in-
volve equal sampling among all strata, but rather optimal sampling intensity may
vary according to stratum size. Minimizing the variation of C/f  data is particularly
important when these data are used to evaluate changes in relative abundance.
Trends in abundance may be difficult to discern or detect when the data are highly
variable (see Box 7.1).

The considerations we discussed to maximize precision of C/f  estimates are
not exhaustive, and additional considerations should be made. For example,
only fully recruited age-classes should be considered in deriving C/f  estimates;
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otherwise, recruitment variability will induce variation in catchability (Seber 1982).
A single gear will not capture all components of a stock in proportion to their
abundance, so a key piece of information is the selectivity of the gear for various
life stages or length-classes of the target species. In addition, all habitats inhabited
by a species will not be equally sampled. Sampling should be conducted during a
time when factors affecting catchability are similar if C/f  data are used to com-
pare across time or space (Richards and Schnute 1986; Miller 1990). A good ap-
proach is to focus the unit of study and define it properly, and then consider gains
in precision through replication.

Box 7.1 Detection of Changes in Relative Abundance with Highly Variable Catch
per Unit Effort (C/f ) Data

The time series data below illustrate the effects of highly variable C/f data on the ability to detect
relative abundance changes for a hypothetical fish population that is declining through time. The
first column is the year; the second column, population abundance (N), shows a decline of 5% each
year; the third column gives C/f as 0.001N; the forth column shows C/f varying randomly by 5% or
10% above or below 0.001N; and the fifth column is C/f varying randomly by 20% or 40% above or
below 0.001N.

Table Times series data for a hypothetical fish population.

Year Population abundance (N) C/f C/f  ± 5% or 10% C/f ± 20% or 40%

1 10,000 10.0 10.5 6.0
2 9,500 9.5 8.6 13.3
3 9,025 9.0 8.1 5.4
4 8,573 8.6 7.7 10.3
5 8,145 8.1 7.7 4.9
6 7,739 7.7 6.9 4.6
7 7,351 7.4 8.1 5.9
8 6,983 7.0 7.7 5.6
9 6,634 6.6 7.2 9.2
10 6,302 6.3 6.0 8.8
11 5,987 6.0 6.3 8.4
12 5,688 5.7 5.4 3.4
13 5,404 5.4 5.7 6.5
14 5,133 5.1 4.8 3.1
15 4,877 4.9 5.4 6.9

A significant correlation (r = 0.64; P < 0.001) is observed between N and the C/f ± 5 or 10% measure-
ment error, but the correlation (r = 0.33; P = 0.23) between N and the C/f ± 20% or 40% measure-
ment error is not significant. Note that with the C/f ± 20% or 40% measurement error the C/f in year
15 exceeds the C/f in year 1.

Both levels of measurement error used in this example are within the range of what may be
encountered in the field when sampling fish populations and obtaining C/f data. This illustrates
how C/f measurement error can mask changes in actual abundance of fish populations.
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7.3.5 Assessment of Sample Sizes Prior to Initiation of Sampling

A power analysis allows the researcher to determine the level of effort (i.e., sample
size) necessary to detect a change of a predetermined magnitude given a mea-
sure of the variability in the factor of interest (see Box 7.2). For instance, the
number of trap-nights necessary to detect a 25% change in relative abundance of
bluegill can be determined using an estimate of the variance of the mean C/f . In
general, power analysis requires the assumption that C/f  data follow a normal
distribution. If the C/f  data are not normally distributed, it becomes important to
identify a transformation that yields an approximately normal distribution (Gryska
et al. 1997). An example of statistical power analysis applied to C/f  data from
electrofishing samples is given in Paller (1995). In general, many samples will be
necessary to detect small (<20%) differences among means, but when C/f  is low,
an even greater number of samples is necessary (Paller 1995).

■ 7.4 STATISTICAL ANALYSIS

A common approach to analysis of C/f  data has been to compute means and
assume normal distributions of the data. However, the frequency distributions of
C/f  data are seldom normal. This is not surprising because C/f  is a ratio estimator
having catch and effort as random variables (Cochran 1977). Testing hypotheses
regarding C/f  generally involve application of statistical tests that assume the vari-
ables have a continuous scale of measure, the data exhibit a normal frequency
distribution, and standard deviations are independent of the mean. Statistical
analyses that require these assumptions can lead to reductions in power and mis-
leading results when the assumptions are not met. Nonparametric statistical pro-
cedures have less restrictive assumptions regarding distributions, but it is difficult
to assess the magnitude of difference between treatments or change over time
based on nonparametric procedures.

7.4.1 Normalization of C/f Distributions

The shapes of C/f  sample distributions can vary widely and may include normal
frequency distributions and negative binomial distributions. It is common for C/f
distributions to have standard deviations that are about equal to the mean, to be
positively skewed (Moyle and Lound 1960), and to have standard deviations that
increase proportionally with the mean—indications of distributions that are not
normal. Among 703 published studies on larval fish abundances estimated from
replicated sampling, Cyr et al. (1992) found many positive relationships between
the variance and the mean, indicating that C/f  frequency distributions were not
normal in many studies. It has been suggested that the shape of C/f  sample distri-
bution changes with fish abundance (see Hubert 1996). At very high fish densi-
ties, C/f  data may be normally distributed, but as fish densities decline, the mode
shifts to the left and the distribution becomes skewed to the right. At relatively
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Box 7.2 Power Analysis Assessment of  Sampling Effort

Preliminary sampling of channel catfish in two hypothetical small impoundments is conducted
with traps in early summer to obtain C/f data as the first step in establishing an annual monitoring
program to assess temporal variation in mean C/f. In each reservoir, 20 traps are set at randomly
selected locations, left overnight, and retrieved the following day. The following C/f data (i.e., fish/
trap-night) and statistics are obtained for each impoundment. Each C/f value is transformed as
log10(C/f + 1) to assess the effects of data transformation on C/f statistics and estimates of needed
sampling effort.

Table Catch per unit effort data and summary statistics for channel catfish in two hypothetical
impoundments.

Net set and
Impoundment A Impoundment B

summary statistic C/f log10(C/f  + 1) C/f log10(C/f  + 1)

1 0 0 1 0.301
2 0 0 1 0.301
3 0 0 2 0.477
4 0 0 2 0.477
5 0 0 3 0.602
6 0 0 3 0.602
7 0 0 3 0.602
8 0 0 4 0.699
9 1 0.301 4 0.699
10 1 0.301 4 0.699
11 1 0.301 4 0.699
12 1 0.301 5 0.778
13 2 0.477 5 0.788
14 2 0.477 5 0.788
15 3 0.602 6 0.845
16 3 0.602 6 0.845
17 7 0.903 8 0.954
18 9 1.000 10 1.041
19 12 1.114 12 1.114
20 20 1.322 20 1.322

Mean     3.1 0.385 5.4 0.731
SD 5.2 0.422 4.4 0.254

Observation of the data and the summary statistics suggests that the C/f data for Impoundment A
are highly skewed and substantially depart from a normal distribution; furthermore, the logarith-
mic transformation did little to affect the shape of the distribution. For both forms of C/f data the
standard deviation exceeds the mean. The C/f data for Impoundment B are less severely skewed,
and a logarithmic transformation reduces the standard deviation and creates a frequency distribu-
tion that more closely resembles a normal distribution.

Power analysis allows definition of the required sampling effort to determine specified changes in
mean C/f at predetermined levels of significance (�) and power (1 –�) to guard against type I

(Box continues)
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(rejecting the null hypothesis of no difference when it is true) and type II (failing to reject the null
hypothesis of no difference between the means when it is false) errors (Brown and Austen 1996;
Gryska et al. 1997). Power analysis is conducted by computing needed sampling effort at various
levels of significance, power, and detectable effect sizes. Means and variances of C/f data from
previous or preliminary sampling periods are used in the computations. The detectable effect size
is the specified difference in two means when the null hypothesis is rejected at a specified � and �
(Cohen 1969). For example, if the mean C/f is 3.1 fish/trap-night (as was observed for Impoundment
A during the preliminary sampling) and the fisheries scientist specifies that the desire is to detect a
change in C/f in either direction of 10% or more, the detectable effect size is 0.31 fish/trap-night.
The desire is that the null hypothesis would be rejected if future sampling means differ from the
preliminary sampling mean by 0.31 fish/trap night or more. How much sampling effort is needed to
detect such a difference at various probabilities of type I and type II error?

Calculations are performed using the formula of Snedecor and Cochran (1989):

n = 2 (z� + z�)2 (s2/d2);

n = number of samples needed;
z� = standard normal deviation for the probability of a type I error at a given level of probability
(significance);
z� = standard normal deviation for the probability of a type II error at a given level of probability
(power = 1 – �);
s = standard deviation of the preliminary C/f data; and
d = the detectable effect size as an absolute number.

Standard normal deviations, or z scores, are easily obtained from tables in reference books or
programs in various statistical software packages.

An example computation is conducted using the logarithmic transformation of C/f data from
Impoundment B because it most closely resembles a normal distribution and yields the smallest
estimates of needed sampling effort. The mean log10(C/f  + 1) is 0.731 and SD (s) is 0.254. If it is
specified that the detectable effect size is 10% of the mean, or 0.0731, � is 0.05, and � is 0.10, then
z� = 1.65,  z� = 1.28, and

n = 2 (1.65 + 1.28)2 (0.2542/0.07312) = 207 trap nights.

It is unlikely that the needed sampling effort could be achieved by practicing fisheries scientists as
part of a routine monitoring program.

If the specified criteria are relaxed, lesser amounts of sampling effort are needed. For example, if it is
specified that the detectable effect size is 20% of the mean, or 0.146,  � is 0.10, and � is 0.20, then

n = 2 (1.28 + 0.84)2 (0.2542/0.1462) = 27 trap nights.

Although substantially less sampling effort is needed, the magnitude of change in C/f that would
occur before that change is detected is doubled, and the probabilities of both type I and type II
errors are doubled.

Box 7.2 (continued)
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low fish densities, the most frequent catch is no fish and the distribution is likely
to approximate a negative binomial probability (Power and Moser 1999). Because
most fish stocks occur in relatively low densities and have patchy spatial distribu-
tions, C/f  sample distributions that resemble negative binomial probability distri-
butions are fairly common.

The negative binomial distribution is widely recognized as a descriptor of ani-
mal distribution patterns, and it has been argued that the negative binomial distri-
bution is a reasonable probability distribution for the overall description of C/f
data (Moyle and Lound 1960; Power and Moser 1999). Often, C/f  data are char-
acterized by a high frequency of zeroes (Bannerot and Austin 1983; Power and
Moser 1999), and occasionally one or more C/f  values are excessively large, thereby
exerting excessive influence on the arithmetic mean (Pennington 1996;
Kappenman 1999). The variance of the mean C/f  is often large; thus, it is difficult
to discern if mean C/f  estimates differ among groups or over time using paramet-
ric statistical testing (e.g., a t -test or analysis of variance [ANOVA]; Bannerot and
Austin 1983). In addition, if the mean C/f  is small and the variance is large, the
probability of observing zero catches will be high (Power and Moser 1999) if the
fisheries scientist assumes that data are from a normal probability distribution.
For these reasons, mean C/f  calculated from data distributed as a negative bino-
mial distribution may not provide a reasonable statistic for comparison of samples.

Because the occurrence of negative binomial distributions of C/f  data have
been recognized, logarithmic transformations (y = loge [x + 0.001] or y = log10 [x +
0.001]) have been applied frequently in an attempt to normalize distributions
(Bulkley 1970; Bagenel 1972) but with quite variable success. It has become com-
mon practice to apply logarithmic transformations to C/f  data prior to conduct-
ing statistical tests and to assume that the transformation sufficiently normalizes
the distribution so that test assumptions are not grossly violated. Fisheries scien-
tists who follow this practice seldom carry out statistical tests to determine if nor-
mal distributions are achieved by the transformation. It is our experience that
logarithmic transformations of C/f  data seldom yield a normal distribution but
can reduce the variance relative to the mean (see Box 7.2). Other transforma-
tions of C/f  data have been applied in attempts to normalize the distributions
(Shroyer and McComish 1998), but none was found to have wide success.

7.4.2 Appropriate Sample Statistics

Fisheries scientists occasionally use statistics other than the arithmetic mean to
describe C/f  distributions, primarily the geometric mean, median, and the fre-
quency of occurrences of the target species among samples.

The back-transformed mean of the logarithmically transformed C/f  data is called
the geometric mean (Sokal and Rohlf 1981) and is used by fisheries scientists as a
measure of central tendency for C/f  data (Craig and Fletcher 1982; Hamley and
Howley 1985; Hansen et al. 1995). It seems to be a logical expression of C/f  when
the data are logarithmically transformed for analysis. However, because the scale
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is not familiar to many, it is difficult to grasp the magnitude of difference or change
using the geometric mean.

The median of the C/f  data distribution has an equal number of observations
on either side of it (Sokal and Rohlf 1981) and also has been used by fisheries
scientists as a measure of central tendency (Moyle and Lound 1960; Moyer et al.
1995). Moyle and Lound (1960) provided a method for computing confidence
limits around median C/f  estimates.

Another statistic applied to C/f  data is based on enumeration of the frequency
of occurrence of the target species among individual units of effort (Bannerot
and Austin 1983; Counihan et al. 1999). If the frequency distribution of C/f  data
resembles a negative binomial, Bannerot and Austin (1983) suggested comparing
the frequency of zero catches, which they found was a less biased index of abun-
dance than mean C/f . The frequency of zero catches was more responsive to
changes in stock abundance than mean C/f  for a marine fishery (Bannerot and
Austin 1983). Similarly, Counihan et al. (1999) stated that an index based on the
proportion of individual units of effort when a target species is captured may have
advantages over mean C/f  because it is robust to biases and errors in sampling
and insensitive to extremely high C/f  values. Presence–absence indices generate
proportional data that can be analyzed for differences among groups or over time
(Sokal and Rohlf 1981). This approach circumvents issues of normal distributions
associated with using the mean C/f  and statistical tests requiring the assumption
of normal C/f  frequency distributions.

7.4.3 Bootstrap and Jackknife Techniques

Bootstrap and jackknife techniques are used to answer the same question: how
precise is a particular statistic? These techniques can provide estimates of preci-
sion of C/f  statistics (Dixon 1993). These techniques release fisheries scientists
from the restrictive assumption that C/f  data conform to a normal frequency dis-
tribution (Krebs 1989). Because both techniques compute a standard error for a
statistic, they allow us to compute t -tests.

Bootstrap and jackknife techniques can be applied to statistics computed from
C/f  data, including the arithmetic mean, geometric mean, and median. They
provide measures of the precision of the statistics and enable statistical compari-
sons of two samples. For statistics that are bounded in range (such as any of the
three C/f  statistics mentioned above, which are always greater than or equal to
zero), these techniques may work more satisfactorily if the data are subjected to
logarithmic transformation. Programs for bootstrap and jackknife routines are
available, but some computational shortcuts may yield erroneous results. We rec-
ommend that fisheries scientists who want to apply these techniques work with
statisticians to develop programs appropriate for their applications. It should be
noted that the bootstrap and jackknife techniques will not usually yield the same
answer (Dixon 1993), and there is no agreement on which technique is “better”
for analysis of C/f  data (Krebs 1989).
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Some examples of using bootstrapping to obtain estimates of precision from
C/f  data can be found in the fisheries literature. In one example, Kimura and
Balsiger (1985) applied bootstrapping to estimate the precision of C/f  data for
sablefish captured in pot gear off the Pacific Coast. Estimates of precision (i.e.,
coefficient of variation) of C/f  data were obtained from different sampling areas
and water depths and were then used to develop recommendations for the num-
ber of locations that should be sampled. Kimura and Balsiger (1985) also used the
bootstrap technique to compute Z -statistics to estimate the statistical significance
of observed differences in C/f  between years within specified locations and depths.
Similarly, Stanley (1992) used bootstrapping to estimate the variance and confi-
dence limits for C/f  data from four trawl fisheries along the Pacific Coast, and this
information was then used to estimate the number of hauls needed to estimate
mean C/f  at ±25% of the actual rate 80% of the time (� = 0.2). Bernard et al.
(1993) applied bootstrapping to an assessment of burbot in Alaskan lakes. The
bootstrap procedure was used to generate an empirical sampling distribution from
which the variance was estimated for individual lakes. More recently, Smith (1997)
developed bootstrap confidence limits for groundfish trawl survey estimates of
mean C/f .

7.4.4 Comparison of Two Samples

In a classical statistical approach, a comparison of two samples is undertaken by
testing the equality of means. Assuming the observations are selected randomly
from a normal frequency distribution, the arithmetic mean provides a measure of
central tendency. Because the mean is computed from a sample (and not the
entire population), the uncertainty of the mean can be measured by the variance,
another characteristic of the distribution. Under these conditions, a comparison
of two samples is fairly simple: estimates of the variance are used to calculate
standard errors, and confidence intervals around the means are constructed.
However, as mentioned earlier, C/f  data generally violate many of the assump-
tions of classical statistical approaches. For example, using traditional statistical
approaches (t -tests and analysis of covariance) and logarithmically transformed
data, only order-of-magnitude differences in larval fish abundance could be de-
tected among sampling areas or time periods (Cyr et al. 1992).

To compare mean C/f  values from different sampling locations or across time,
an estimate of the variance (hence, standard error) is needed. Although some in-
vestigators advocate estimating the variance with regression methods (e.g., regress-
ing catch on effort, Smith 1980) or jackknifing the variance of the ratio (Smith
1980), these approaches assume a linear relation between catch and effort. Because
this assumption is not often met, we recommend seeking alternate approaches.
One such approach uses maximum-likelihood methods to estimate C/f  and its vari-
ance from the bivariate distribution of catch and effort (Richards and Schnute 1992).

Recently, Power and Moser (1999) applied an approach based on the assump-
tion that the distribution of the catch data follows a negative binomial and variances
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need not be homogeneous. Their generalized linear model permits comparison of
catch rates among two or more samples and allows catch rates to vary as linear (or
nonlinear) functions of exogenous variables. Generalized linear models share the
same structure as general linear models (GLMs), but unlike general linear models,
generalized linear models are not constrained by the assumption of normality. Us-
ing bootstrap simulations, Power and Moser (1999) demonstrated that the linear
model with negative binomial errors performed better than the t -test in detecting
differences between the means of two samples; furthermore, this was true when the
t -test was applied to either raw data or logarithmically transformed data.

7.4.5 Analysis of Variance

7.4.5.1 Comparisons Based on Blocked Designs

When testing hypotheses based on ecological experiments, particularly field ex-
periments, experimental units are sometimes grouped together in blocks. The
purpose of this is to identify groups of similar experimental units so there is more
similarity within blocks than among blocks. Blocks are not randomly assigned (as
are treatments) but are either intrinsic characteristics of the experimental units
(e.g., year-classes of a particular species, where the species is the experimental
unit) or arbitrary segments of the experimental unit (e.g., 0.5-ha area of sandy
bottom, where sections of sandy areas are the experimental units in a lake; Newman
et al. 1997). In fisheries fieldwork, the blocking factors most likely to be encoun-
tered are areas fished (e.g., station or individual lakes), length-classes, or age-
classes. The purpose of blocking is to improve the precision of the estimator. The
example in Box 7.3 demonstrates how blocking can improve the ability to detect
effects associated with factors of interest to fisheries scientists.

 7.4.5.2 Other Analysis of Variance Models

Catch-per-unit-effort data are frequently collected from surveys and are intended
to measure changes in abundance of fish in a stock. Depending on the design,
ANOVA can be used to analyze these data under certain assumptions and con-
straints. Because surveys typically consist of repeated measures (e.g., C/f  is esti-
mated from a set of fixed or random stations through time), a repeated-measures
ANOVA could be used to analyze such data (see Maceina et al. 1994). This ap-
proach accommodates temporal autocorrelation among observations—that is, it
explicitly accounts for the fact that two observations taken closely apart in time
will likely be correlated, and the correlation is likely to decrease as observations
further apart in time are considered. The repeated-measures approach is recom-
mended when (1) the study includes only fixed effects, (2) the data are balanced,
and (3) the variance–covariance structure of the data conforms to a restrictive form
(i.e., compound symmetry; Neter et al. 1996). Some adjustments exist for incorpo-
rating random effects into a repeated-measures ANOVA and for relaxing the as-
sumption of compound symmetry (Neter et al. 1996). However, in many fishery
surveys, C/f  measures are repeated not just across time but also through space. In
these cases, a different approach must be taken to accommodate correlations in
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Box 7.3 Illustration of Blocked Design in One-Way Analysis of Variance (ANOVA)

An investigator wishes to determine if the abundance of bluegill differs among vegetated and
nonvegetated areas of lakes. Bluegills are sampled using trap nets set within a vegetated and a
nonvegetated area in each of eight lakes. In this study, the vegetation (presence or absence) is a
fixed effect, the blocking factor is lake, and the response is the C/f of bluegill (fish/trap-night). Using
the following hypothetical data set, we show how ignoring the blocking factor (lake) can lead to
erroneous conclusions about the effect of vegetation on the relative abundance of bluegill.

Table Catch per unit effort data for bluegills.

Lake

Vegetation A B C D E F G H

Absent 63 45 30 50 80 67 48 55
Present 70 56 42 68 87 75 49 62

Program
The following SAS program is employed.

data bluegill;
input lake $ vegetation $ cpue;
lines;
[input data]
proc glm data=bluegill;
class lake vegetation;
model cpue=lake vegetation;
title ‘One-Way ANOVA, Block Design’;
prog glm data=bluegill;
class vegetation;
model cpue=vegetation;
title ‘ANOVA without Blocking’;
run;

Results
Table Results of one-way ANOVA with block design. The number of observations in the data set is
16. Abbreviations are as follows: mean square error (MSE); coefficient of variation (CV); and sum of
squares (SS).

Class Level Information

Class Levels Values

Lake 8 A B C D E F G H
Vegetation 2 absent present

Analysis of Variance

Source df SS Mean square F-value P > F

Model  8 3339.000 417.375 34.20 0.0001
Error 7 85.438 12.205
Corrected 15 3424.438

R2 0.975 Root MSE 3.494
CV 5.903 C/f mean 59.188

(Box continues)
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Analysis of Variance (continued)

Source df Type I SS Mean square F-value P > F

Model  8 3339.000 417.375 34.20 0.0001
Lake 7 3023.938 431.991 35.39 0.0001
Vegetation 1 315.063 315.063 25.81 0.0014

Table Results of ANOVA without blocking. The number of observations in the data set is 16.

Class Level Information

Class Levels Values

Vegetation 2 absent present

Analysis of Variance

Source df SS Mean square F-value P > F

Model (vegetation) 1 315.063 315.063 1.42 0.253
Error 14 3109.375 222.098
Corrected total 15 3424.438

R2 0.092 Root MSE 14.903
CV 25.179 C/f mean 59.188

Interpretation
A cursory examination of the data reveals that within a lake, bluegill C/f is higher in vegetated areas
than in nonvegetated areas. However, on closer inspection, we see that bluegill C/f in nonvegetated
areas of lakes A and F was just as high as C/f in vegetated areas of lakes H and D. Results from the
blocked ANOVA indicate that vegetation significantly affects the mean relative abundance of
bluegills (vegetation is a significant factor in the ANOVA). In addition, the relative abundance of
bluegills varied significantly among lakes (lake is a significant factor in the ANOVA). Thus, by
blocking the design and accounting for lake to lake differences in the relative abundance of
bluegills, the investigator was able to examine the effect of vegetation on bluegill abundance
within lakes. Incidentally, if the investigator had randomly sampled one set of lakes (say lakes L, M,
N, O, P) to estimate bluegill C/f in vegetated areas, and another set of lakes (say lakes Q, R, S, T, U) to
estimate bluegill C/f in nonvegetated areas, then lake would not be a blocking factor because the
treatment (vegetated versus nonvegetated) was randomly applied across lakes. In our blocked
design, the treatment (vegetated versus nonvegetated) occurred in the same lake; because of this,
the response to the two treatment levels was measured from the same lake. In this respect, data
from a blocked design could also be analyzed as a paired t-test (see Sokal and Rohlf [1981] for
further discussion).

In the second analysis, blocking is ignored, and it is not possible to detect the effect of vegetation
on bluegill abundance. This occurs because in the unblocked design, the variation associated with
lakes is considered part of the error term (compare the sums of square error terms from both
models). By ignoring the blocking effect, we would interpret the results of this ANOVA in the
following manner: on average across all lakes sampled, variation in relative abundance of bluegills
is not affected by the presence of vegetation.

Box 7.3 (continued)
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space in addition to serial correlations in time. Fabrizio et al. (2000) demonstrated
how the mixed-model procedure (MIXED) in SAS (SAS Institute 1998) can be
used to study changes in fish abundance from a complex repeated-measures de-
sign. Procedure (PROC) MIXED was used to fit a linear model with correlated
errors to a 20-year time series of catch data from Lake Michigan, but the approach
is applicable to other fixed-station fishery surveys. The linear model used by Fabrizio
et al. (2000), y = X� + e, is similar to a GLM (one fit with SAS’ PROC GLM) except
that in the GLM, the vector e is a vector of independent random variables, and in
the linear model with correlated errors, e is a vector of possibly correlated random
errors with covariance matrix R (Littell et al. 1996). In this notation, y is a vector
of observations, X is a matrix of fixed effects values, and � is a vector of fixed
effects coefficients. Another difference between the two models is that instead of
simply modeling the mean and a single variance of y (the GLM), the mean, vari-
ance, and covariance of y are modeled in the linear model with correlated errors.

Procedure MIXED is a flexible approach that works well for unbalanced data.
It can be used to fit a variety of models, including mixed models that contain both
fixed effects and random effects: y = X� + Z� + e, where y, X, �, and e are defined
as before, Z is the design matrix (usually a matrix of 0s and 1s), and � is a vector of
random effects parameters (Littell et al. 1996). To use PROC MIXED, the investi-
gator must identify and specify the type of the variance–covariance structure that
defines the error term of the model. Version 6.12 of SAS offers about 20 options
for the structure of the variance–covariance matrix, and Wolfinger (1996) dis-
cusses useful variance–covariance structures for models fit to repeated-measures
data. A new procedure, PROC NLMIXED, available with SAS version 7 and higher,
can fit nonlinear models using likelihood-based methods (Wolfinger 1999).

7.4.6 Nonparametric Alternatives to Analysis of Variance

Because nonparametric tests do not require the assumption that the data come
from a normal distribution, these tests have been recommended when assump-
tions of parametric statistics cannot be met. Standard parametric tests such as the
t -test and ANOVA have nonparametric counterparts that can be easily implemented
once the raw data are rank transformed. For example, the counterpart to the t-
test is the Mann–Whitney U-test or Wilcoxon’s rank-sum test. However, it should
be noted that the null hypothesis of a nonparametric test is not equivalent to that
tested by the analogous parametric method. In the case of the Mann–Whitney or
Wilcoxon test, the null hypothesis is that two distributions are identical. Nonpara-
metric tests will detect differences not just in central tendency but also differ-
ences in the spread or shape of distributions (Johnson 1995). When performing a
nonparametric comparison of two samples, a significant test result provides no
information on whether the difference is due to the mean, variance, shape, or
some other characteristic of the distribution (Johnson 1995).

Although nonparametric techniques obviate the need for normally distributed
data and appear to be well suited for analysis of C/f  data, relations between C/f
and other variables must still be considered. For example, Richards and Schnute
(1986) found that C/f  data had to be standardized prior to applying a Kruskal–
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Wallis test when evaluating the effects of sea surface condition, time of day, and
tidal phase on C/f . These data were standardized by working with observations
from a restricted time (only when sea surface conditions were calm) when catches
were thought to be most reliable.

With nonparametric tests investigators still must apply a priori significance levels
to tests and consider the trade-offs between type I and type II errors. Because some
fisheries scientists perceive the power of nonparametric tests to be low, larger alpha
levels (e.g., � = 0.10 or 0.15) are sometimes used in significance testing. However,
nonparametric tests often have as much power as their parametric counterparts.

7.4.7 Time Series Analysis

Fish abundance measures that are estimated repeatedly through time are typi-
cally examined for patterns of change through time by means of regression analy-
sis. The relation between observations close in time may be similar—that is, values
in a given year may be influenced by values in the previous year. This relationship
generally decreases with increasing time intervals. Such data are said to exhibit
positive autocorrelation. The presence of autocorrelation (or serial dependence)
in fish abundance data compromises statistical interpretation of correlation and
regression analyses that may be undertaken to relate changes in fish abundance
to environmental or biological variables (Pyper and Peterman 1998). The reason
is that most parametric statistical tests assume independence (correlation equals
0) of observations. Hypothesis tests on autocorrelated data require adjustments
to the degrees of freedom to reflect the lack of independence among observa-
tions (Pyper and Peterman 1998).

For predictive modeling or exploratory analyses, autocorrelated data must be
transformed. Several transformations have been used with autocorrelated data,
including smoothing, first-differencing, and prewhitening. A smoothed data se-
ries results from the computation of a series of weighted averages from nearby
points. A simple smoothing technique is the running average (moving average).
Smoothing is an effective transformation for removing high-frequency variation,
which appears as rapid changes over short time scales. An example of high-
frequency variation is measurement error. Sometimes it may be desirable to re-
move the signal associated with slow, long-term changes from a time series of C/f
data. These changes are typical of low-frequency variation and first-differencing
or prewhitening may be used to transform the data series (Pyper and Peterman
1998). In first-differencing, the observation at time t – 1 is subtracted from the
observation at time t. Prewhitening is typically applied when the analyst wishes to
relate C/f  data to one or more environmental variables. For example, to deter-
mine if the pattern of variation in C/f  is associated with the pattern of variation in
temperature data, the time series of temperature data are modeled with an ap-
propriate time series model. That model is then applied to the series of C/f  data
to prewhiten the C/f  series. Model identification, parameter estimation, and
diagnostic checking procedures are beyond the scope of this chapter but are



Relative Abundance and Catch per Unit Effort 305

well described in Box and Jenkins (1976). Additional information on smooth-
ing, first-differencing, and prewhitening is available in Pyper and Peterman (1998),
along with an effective method for adjusting the degrees of freedom for statistical
testing of autocorrelated data.

It should be noted, however, that the decision to employ any of the transforma-
tions should be taken with extreme caution. Pyper and Peterman (1998) point
out that if low-frequency variation is removed from a time series of data, the effect
of a slowly changing variable on the dynamics of the population will be difficult to
detect, but the effect of a quickly changing variable (high-frequency variability)
will be well detected if it is the dominant source of covariation. When the domi-
nant source of covariation is low frequency, Pyper and Peterman (1998) recom-
mend adjusting the degrees of freedom because this approach has greater statis-
tical power.

7.4.8 Assessment of Relationships between C/f and Other Variables

Regression analysis is commonly applied to C/f  data to make predictions. For
example, Isbell and Rawson (1989) found that C/f  of walleye captured in experi-
mental gill nets was a predictor of angler catch rates in western Lake Erie. Mean
C/f  in gill nets was used as the predictor variable, and mean C/f  among anglers
was used as the response variable. Similarly, Shroyer and McComish (1998) pre-
dicted the future C/f  of quality-length (>200 mm total length) yellow perch based
on C/f  of stock-length (>130 mm total length) yellow perch in trawl samples in
Indiana waters of Lake Michigan.

Regression analysis has also been used to predict C/f  of fish from various habi-
tats. For example, Johnson and Jennings (1998) assessed the habitat associations
of small fishes around islands in the upper Mississippi River based on C/f  as an
index of abundance. They predicted C/f  from measures of habitat. Similarly, Irwin
et al. (1997) assessed the habitat associations of age-0 largemouth bass along the
shoreline of a large reservoir. Regression analysis was used to determine if mea-
sured habitat features accounted for variation in C/f  of age-0 largemouth bass
among 43 discrete shoreline sections.

These approaches are fairly straightforward when habitat variables are static
characteristics of the environment. However, when habitats or environmental con-
ditions are dynamic (such as salinity and water temperature), it is advisable to
remove the high frequency (<24 h) variation of these dynamic physical variables
prior to using such data in a regression (Rose and Leggett 1989).

Fishery scientists have long recognized the problem of using C/f  as a predictor
variable in regression analysis (see Ricker 1975) because the predictor variable is
assumed to be known accurately. This is an untenable assumption with C/f  data
that are fraught with measurement errors. Measurement errors in C/f  data are a
good example of what statisticians call the “errors in variables” problem. In general,
errors in variables tend to flatten the probability density function and increase dis-
persion; such changes lead to upwardly biased variance estimates and downwardly
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biased estimates of the mean (Chesher 1991). Ricker (1975) demonstrated how to
use functional regression analysis to estimate regression parameters from C/f  data,
but Ricker’s approach is now considered ad hoc (Hilborn and Walters 1992). A
good review of the fisheries-related work on the errors in variables problem is
provided in Hilborn and Walters (1992). Although errors in variables are unavoid-
able in fisheries modeling, the magnitude of the bias associated with the errors in
variables problem can be investigated using Monte Carlo simulation techniques
(Hilborn and Walters 1992). When modeling the stock–recruitment relation, even
small measurement error (mean = 0 and SD = 0.2) can lead to erroneous conclu-
sions about the nature of the relationship (Walters and Ludwig 1981). Several
other approaches have been proposed to work with C/f  data subject to the errors
in variables problem, including techniques for data containing measurement er-
ror in both the dependent and independent variables (e.g., Richards and Schnute
1986; Kimura 2000).

Most linear models, including regression analysis, do not address extra-Poisson
or extra-binomial variation, and, because of this, such models may not provide
reliable confidence intervals or significance tests for parameters of interest (Casey
and Myers 1998). As discussed in section 7.4.3, the jackknife or bootstrap ap-
proach may be useful in estimating precision of regression parameters. Another
approach is to use simulation modeling. In addition to these techniques, the ran-
domization approach may be used to estimate confidence intervals for a regres-
sion parameter, particularly if the standard significance levels or standard errors
of the parameter estimates are not reliable (Casey and Myers 1998).

Detection of trends in C/f  data has been recently pursued with regression
tree methods (Watters and Deriso 2000). Observed trends were ascribed to
changes in catchability and to actual changes in abundance. This regression
tree application required estimation of 139 parameters for 30 years of monthly
data on bigeye tuna from the Pacific Ocean, so it is not likely to be appropriate
for short time series. Regression trees are useful in examining the interaction of
factors such as area (e.g., latitude–longitude grids) and time (e.g., specific
months) and may be more parsimonious (fewer parameters) than GLMs or spa-
tially explicit models that account for variations in environmental conditions
(Watters and Deriso 2000).

■ 7.5 INTERPRETATION AND APPLICATION OF C/f STATISTICS

Monitoring changes in fish stock abundance through time is a costly activity un-
dertaken typically by federal and state agencies. The goal of these surveys is to
provide long-term information on the status of species so that changes in abun-
dance can be detected. These surveys require an investment in gear and person-
nel as well as an institutional commitment to multiyear support. Analysis of data
collected from monitoring surveys is often difficult due to the nature of the C/f
data, which may also reflect the vagaries of the weather and the reliability of the
equipment and gear.
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7.5.1 Example of a Temporal Monitoring Program

In this section, we illustrate how to assess patterns of change in C/f  over time. We
use mean C/f  of bay anchovy from two regions of a mid-Atlantic estuary as an
example (see Box 7.4). The C/f  data were collected from fixed stations along a
salinity gradient in the estuary and are considered repeated measures. To begin
analysis, components that represent the treatment structure and those represent-
ing the design structure must be designated so that the appropriate statistical
model can be identified. In general, the treatment structure refers to the compo-
nents of the experimental design whose effects are of interest. In a temporal
monitoring program, this typically includes effects of time and may also include
effects of other factors such as region (in this example), habitat type, or habitat
manipulation. Design structure components are elements necessary to conduct
or construct the experiment and assist in addressing the components of the treat-
ment structure. Randomization and blocking are two examples of design struc-
ture elements. Statistical testing is focused on components of the treatment struc-
ture and generally not on the design structure. In this example, we use PROC
MIXED to examine changes in mean C/f  between two regions in the estuary and
through time. The treatment structure consists of two fixed effects: region (bay
versus river) and time. The design structure incorporates a random component
(i.e., stations, which are nested within regions).

In a typical repeated-measures design, the response is measured from the same
subject multiple times. In this temporal monitoring example, the “subjects” are
stations from which C/f  data were sampled; the repeated measures are C/f . To
designate stations as the experimental units, we must restrict our inferences to
the two regions sampled and assume that the C/f  data from the two regions are
uncorrelated. (Technically, because our treatment [region] cannot be applied to
each station, the stations are not independent experimental units, and further
investigation of the dependency among stations may be pursued prior to model-
ing. However, this line of inquiry is beyond the scope of this example and will not
be illustrated here.)

Although PROC GLM provides several approaches for analyzing repeated-
measures data (using split-plot or multivariate approaches), we advise against using
this SAS procedure to analyze fisheries survey data such as these. The split-plot
and multivariate approaches to analysis of repeated measures are useful for analy-
sis of some ecological data, but in those cases, the experimental units are typically
groups of organisms or samples that can be randomly assigned a treatment. In
addition, the split-plot repeated-measures design has been used to analyze fisher-
ies data obtained at various points in time before and after an experimental ma-
nipulation, where the manipulation affects all possible sample sites within a water
body (e.g., to test the effects of vegetation removal on length structure of fish in a
small lake; Maceina et al. 1994). The split-plot approach is well suited to surveys of
individual water bodies from which replicates are taken and treatments can be
applied to each experimental unit (station and replicate). The split-plot approach
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Box 7.4 Analysis of C/f Data from a Temporal Monitoring Program

Bay anchovies were sampled with an otter trawl every 6 months from November 1996 through May
2000 for a total of eight sampling periods. Trawl tows were taken at 13 randomly selected sites in
the river and 11 randomly selected sites in the bay. A single 5-min tow was completed at each
station during each sampling period, the area swept was calculated, and C/f was computed as the
number captured per unit of area swept. The analysis was designed to address two questions. Did
mean C/f change through time? Did mean C/f differ between the river and bay?

The data set contained 192 otter trawl samples, but 134 samples contained no bay anchovies.
Because the C/f data contained many zeros, had a large coefficient of variation, and had a variance
that exceeded the mean, the C/f observations were transformed as loge(x + 0.0001). River sites were
coded as 0 and bay sites as 1 in a variable termed region. Sampling periods were coded 1 through 8
in a variable termed time. Sampling sites were coded 1 to 13 in the river and 1 to 11 in the bay in a
variable termed station.

We first identified the type of covariance matrix that best described the random component (i.e.,
stations sampled repeatedly) in this study. The keyword TYPE identifies the covariance matrix in the
repeated statement of PROC MIXED. Because the C/f data are repeated measures, temporal
correlation among samples from a site may occur with the correlation decreasing as the time
interval increases. If the decrease is exponential, then the covariance structure can be modeled
using a first-order autoregressive structure (TYPE = AR[1]). If the correlations are equal across time
intervals, the covariance can be modeled using a compound symmetric structure (TYPE = CS). For
maximum flexibility in modeling the correlations, an unstructured covariance matrix may be
specified (TYPE = UN). We fitted these three covariance structures to the data and compared the
model fit using a likelihood-based criterion, Akaike’s Information Criterion (AIC; Littell et al. 1996).
The best model provides the smallest AIC, which is reported in a SAS output under “Fit Statistics.”
We found TYPE = AR(1) provided the best description of the covariance structure for these data.

Procedure MIXED was used to test for region and time effects. Before fitting the model to the data
we examined the interaction plot to determine the relation between region and time.

Program
The following SAS program was employed.

/* Plot the mean data through time for each region — Interaction Plot */
proc univariate noprint data=cpue.anchovy;
var lcpue_a;
by region t;
output out=anc_out mean=ybar;
proc plot data=anc_out;
plot ybar*t=region/box;
proc mixed data=cpue.anchovy;
class region station t;
model lcpue_a = region t region*t / outp=predict1;
random station(region) / s;
/* This is the error term for testing the region effect */
repeated / subject=station type=ar(1);
ods listing exclude solutionr;
ods output solutionr=randsoln;
title ‘Proc Mixed Results for Anchovy Data’;

/* Assess residuals for approximate normality at the whole plot (region)
level. Actually, these are estimated random effects. */

proc univariate data=randsoln plot normal;
var tvalue;
probplot tvalue / normal;
title ‘Residuals — Estimated Random Effects’;
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/* Assess residuals for approximate normality at the subplot (time) level. */
proc univariate data=predict1 plot normal;
var resid;
probplot resid / normal;
title ‘Residuals — From Predicted’; run;

In the PROC MIXED statements, note that region, station, and time are class variables. The model
statement includes region, time, and the region × time interaction, which we suspect may be
significant. The output option (outp=) in this statement specifies that the output SAS data set is
called predict1. All the modeled effects are fixed effects. The single random effect identified in the
random statement was station nested within region. The s option in the random statement
requests estimation of the solution, which will be used to evaluate normality of random effects. The
repeated statement defines the subjects of this repeated-measures analysis, which were stations.
Two statements are included to control the output delivery system (ods). The first (listing exclude
solutionr) suppresses the listing of the model estimates for each of the 24 random effects. The ods
output statement places the random effects estimates in a SAS data set (randsoln). Portions of the
output from the PROC MIXED analysis are given below.

Results
Table Portion of results for mixed-model ANOVA of bay anchovy C/f. Abbreviations are first-order
autoregressive structure (AR[1]); time (t); numerator (Num); and denominator (Den).
Covariance Parameter Estimates

Covariance Parameter Estimates

Covariance parameter Subject Estimate

Station (region) 0.5511
AR(1) Station 0.2283
Residual 4.4531

Type 3 Tests of FIxed Effects

Source Num df Den df F-value P > F

Region    1 22 2.81 0.1077
t 7 154 7.01 <0.0001
Region*t    7 154 2.79 0.0093

Interpretation
The interaction plot indicated that mean C/f may be changing differently in the two regions,
hinting that an interaction of time and region may occur (see Quinn and Keough 2002).  The output
reveals the estimate of the variance of the mean C/f among stations nested within regions (0.5511).
The correlation coefficient (0.2283) indicates a relation in C/f between adjacent 6-month sampling
times. The F-test identifies a significant interaction of region and time (region*t, F value = 2.79, P > F
= 0.0093), as suggested by the interaction plot, making interpretation of region and time effects
difficult to assess.  The interaction indicates that processes contributing to changes in mean C/f
differ in the river and bay. Options for further analysis may be to test for the presence of trends in
C/f for each region separately or omit the distinction between regions and assess the collective
data set for temporal trends.
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cannot be applied to our example data set because each whole plot (station in bay
or river) would need to contain both treatments (regions). Furthermore, for some
moderately complex designs, the GLM procedure is known to compute incorrect
standard errors. When analyzing repeated-measures data with PROC GLM, the
analyst should be aware of potential problems that occur with missing data, espe-
cially when the random statement is used or when modeling multivariate con-
trasts (Littell et al. 1996). We note that for most field studies, missing data are
common due to experimental failures, weather-related loss of sampling opportu-
nity, and other unplanned problems. Procedure MIXED was developed to ad-
dress some of the limitations of PROC GLM for modeling data from experiments
that incorporate random components either in the design structure, treatment
structure, or both.

7.5.2 Example of an Assessment of Spatial Patterns

Fisheries scientists are frequently faced with the need to identify spatial patterns
in fish distributions. Given the target species and type of water, an approach may
entail the use of C/f . A hypothetical example of an assessment of spatial distribu-
tion patterns of a fish stock based on C/f  data may be illustrated by means of
yellow perch in a stratified Midwestern lake (Box 7.5). The fisheries scientists
wanted to know if the midday depth distribution patterns of yellow perch differed
between June and August. A stratified random sampling design was used. The
strata were the two sampling months and five sampling depths (2.5, 5, 10, 15, and
20 m). Within each depth stratum, three redundant locations were randomly se-
lected for sampling during each sampling month. Gill nets were set perpendicu-
lar to the shore 1 h before midday and retrieved 2 h later. Fish/net/h was used as
an index of yellow perch relative abundance. Two-way ANOVA (i.e., PROC GLM)
was used to assess variation in C/f  among months and sampling depths (see Box
7.5). No significant difference in mean C/f  was found between June and August,
but mean C/f  differed significantly among sampling depths. Sampling month
and depth exhibited no significant interaction, indicating that patterns in the
depth distribution of yellow perch were similar in June and August. The mean C/f
was greatest at the 10-m sampling depth during both months. The data suggest
that yellow perch are most abundant between 5 and 15 m with lower numbers
near shore (2.5 m) and at 20 m.

7.5.3 Example of the Use of a Regression Estimator

A common problem encountered by fisheries scientists is the need to identify
relations between fish abundance and habitat features. Such relationships help
define habitat features needed by a species, determine habitat quality, or define
the likely responses of aquatic organisms to improvement or degradation of habi-
tat (Orth and White 1999; Summerfelt 1999). Because experiments involving
manipulation of habitat are difficult, time-consuming, and expensive to conduct,
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Box 7.5 Assessment of Depth Distribution Patterns of Yellow Perch Based on  C/f Data

Data on C/f (fish//net/h) of yellow perch captured with gill nets in a Midwestern lake were obtained
during midday at five depths during 2 months with three randomly selected sites sampled at each
depth during each month. A two-way ANOVA was used to assess effects of sampling depth and
month as well as the interaction between the two.

Table Data on C/f of yellow perch in a Midwestern lake. Three sites were sampled at each of five
depths during two dates (June = 1 and August = 2).

Month Depth (m) C/f Month Depth(m) C/f

1 2.5 2 2 2.5 0
1 2.5 4 2 2.5 2
1 2.5 7 2 2.5 0
1 5.0 6 2 5.0 10
1 5.0 10 2 5.0 10
1 5.0 12 2 5.0 9
1 10.0 8 2 10.0 13
1 10.0 12 2 10.0 40
1 10.0 33 2 10.0 46
1 15.0 10 2 15.0 6
1 15.0 10 2 15.0 5
1 15.0 17 2 15.0 12
1 20.0 0 2 20.0 0
1 20.0 2 2 20.0 0
1 20.0 3 2 20.0 0

Program
The following SAS program was employed.

data yelperch;

input month depth catch;

cards;

[input data]

proc glm;

class month depth;

model catch=month depth month*depth;

proc sort;

by month depth;

proc means mean stderr;

by month depth;

var catch;

Results
The ANOVA indicated that C/f varied significantly among sampling depths, but no significant
difference occurred among sampling months and no interaction occurred.

(Box continues)
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fisheries scientists often rely on a regression analysis to make inferences on the
relationships between fish abundance and habitat features. Many examples exist
in the literature in which a regression analysis was used to identify habitat features
that might be related to fish abundance, particularly as measured by C/f  (Irwin et
al. 1997; Tillma et al. 1998; Braaten and Guy 1999). Cause and effect relations
between measured habitat features and C/f  cannot be proven by means of a

Table Two-way ANOVA of C/f data for yellow perch. There were 30 observations.

Class Level Information

Class Levels Values

Month      2 1  2
Depth 5 2.5  5  10  15  20

Analysis of Variance

Source df SS Mean square F-value P > F

Model 9 2659.633333 295.514815 5.48  0.0008
Error 20 1079.333333 53.966667
Corrected total 29 3738.966667

R2   0.711328 Root MSE 7.346201
CV 76.25814 Catch mean 9.633333

Source df Type I SS Mean square F-value P > F

Month 1 9.633333 9.633333   0.18 0.6772
Depth 4 2249.800000 562.450000 10.42 <0.0001
Month*depth 4 400.200000 100.050000 1.85 0.1582

The mean C/f and SE for each sampling month and depth are given below so that comparisons can
be made between months.

Table Mean C/f and SE for yellow perch data.

June August

Depth (m) Mean C/f SE Mean C/f SE

2.5 4.33 1.45 0.66 0.66
5.0 9.33 1.76 9.66 0.33
10.0 17.67 7.75 33.00 10.15
15.0 12.33 2.33 7.67 2.19
20.0 1.66 0.88 0 0

Box 7.5 (continued)
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regression analysis, but substantial insight and predictive capabilities can be gen-
erated if studies are designed properly and analyses are conducted carefully.

We provide a hypothetical example to illustrate application of a regression de-
sign to examine habitat quality when C/f  data are used to index fish abundance.
In this example, fisheries scientists wanted to identify habitat features that may
affect the abundance of age-0 smallmouth bass in shoreline areas and to develop
the ability to predict abundance from measured habitat features. Box 7.6 con-
tains a hypothetical data set for age-0 smallmouth bass and demonstrates how
habitat features along the shoreline of a small natural lake may be associated with
C/f  of age-0 fish. Twenty sites representing the range of shoreline habitats were
selected from the periphery of the lake. At each site, a 50-m segment was sampled
between the shoreline and the 1-m-depth contour in late July. The mean bottom
slope, proportion of the bottom composed of gravel–cobble substrate, and pro-
portion of the bottom covered by aquatic macrophytes were measured at each
site. Over each 50-m segment, one pass was made at night with a boat-mounted
electrofishing unit, and all age-0 smallmouth bass captured during the pass were
counted. The C/f  (number/50 m of shoreline) was used as an index of age-0
smallmouth bass abundance at each site.

Pearson’s correlation coefficients were computed to assess relations among the
three habitat features. A significant correlation was found between the propor-
tion of gravel and the bottom slope indicating that these two independent vari-
ables may be redundant measures of the same ecological feature, which may or
may not be important to age-0 smallmouth bass. Linear regression analysis was
next used to evaluate relationships between C/f and each habitat feature. A log10(x
+ 1) transformation of the C/f data was made to improve the linear relation. Gravel
accounted for significant variation in C/f  (see Box 7.6). When C/f  was trans-
formed, the coefficient of determination (r 2) increased and the probability (P)
that the relation was due to chance declined, indicating a more linear relation-
ship. Vegetation, which was not correlated with gravel, did not account for addi-
tional variation in C/f  when included in a multiple-regression model with gravel.
Based on the high coefficient of determination (r 2 = 0.84), the relation between
gravel and log10(C/f  + 1) would be judged as a good predictor of age-0 small-
mouth bass abundance in shoreline areas. However, fisheries scientists using this
model should note that cause and effect relations were not defined by the regres-
sion model. In this case, it is likely that small gravel is a suitable spawning sub-
strate for smallmouth bass and that age-0 fish are abundant where spawning was
concentrated not necessarily because gravel is a needed habitat feature for age-0
fish. The model should be tested with several independent data sets before it is
used for management decisions.

■ 7.6 SUMMARY

When assessing temporal or spatial trends in fish stocks, freshwater fisheries sci-
entists often use C/f  as an index of relative abundance. Underlying assumptions
associated with the relationship between C/f  data and actual population abundance
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Box 7.6 Regression Analysis to Assessment of Habitat Features when C/f Data
Are Used As the Response Variable.

This hypothetical problem focuses on defining the habitat features affecting the densities of age-0
smallmouth bass around the shoreline of a natural lake in the Midwestern United States.

Table Data: for 20 sites sampled along 50-m segments of shoreline of a Midwestern natural lake in
late July. The mean bottom slope, proportion of the bottom composed of gravel–cobble substrate,
and proportion of the bottom covered by aquatic macrophytes were measured at each site, and
one pass was made at night with a boat-mounted electrofishing unit for age-0 smallmouth bass.

C/f (fish/50 m) Gravel (%) Vegetation (%) Slope (%)

0 0 0 7.3
5 5.2 10.1 1.5
1 0.3 1.1 2.2
10 5.5 13.6 1.2
12 6.7 7.3 1.7
0 0.8 10.9 5.3
1 0.1 10.0 8.3
3 1.9 0 3.0
25 8.3 0 1.5
0 0.5 5.0 4.3
98 11.1 1.8 1.5
2 0.9 4.0 4.3
15 6.6 1.3 1.1
60 10.0 11.0 1.4
0 3.0 0 5.9
1 1.0 7.7 8.0
7 5.9 1.0 1.3
1 1.0 4.0 4.4
0 4.0 0 8.7
5 4.3 7.6 1.4

The data were entered into a spreadsheet, and the C/f data were transformed [log10 (C/f  + 1)]
to create a second response variable. Correlations were assessed among the habitat features to
avoid inclusion of redundant variables in regression models. Simple linear regressions were
computed between each of the three habitat features and each of the two measures of relative
abundance.

Program
The following SAS program was employed.:

data bass;
input cpue logcpue gravel vegetation slope;
gravveg=gravel*vegetation;
cards;
[...input .data...]
proc corr;
var gravel slope vegetation;
proc reg;
model cpue=gravel;
model cpue=slope;
model cpue=vegetation;
model logcpue=gravel;
model logcpue=slope;
model logcpue=vegetation;

Results
The correlation analysis indicated that the proportion of gravel and the shoreline slope were
negatively correlated (r = –0.649, P = 0.002).
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Table Pearson’s correlation coefficients (r), (n = 20) for habitat variables and the probability of a
greater |r| under the null hypothesis that rho = 0.

Gravel Slope Vegetation

Gravel 1.00000 0.03204 –0.64916
0.8933 0.0020

Slope 0.03204 1.00000 –0.09309
0.8933 0.6963

Vegetation –0.64916 –0.09309 1.00000
0.0020 0.6963

The regression analyses indicated that the strongest linear relationship between relative abun-
dance and a measured habitat feature occurred between log10 C/f and the proportion of gravel
(r2 = 0.837, P < 0.0001):.

Table Regression analysis of log10(C/f + 1) of smallmouth bass and the proportion of gravel.

Analysis of Variance

Source df SS Mean square F-value P > F

Model  (gravel) 1 5.93149 5.93149 92.59 <0.0001
Error 18 1.15315 0.06406
Corrected tTotal  19 7.08464

R2 0.8372 Root MSE 0.25311
Adjusted R2 0.8282 Dependent mean 0.66490
CV 38.06690

Parameter Estimates

Variable df Parameter estimate SE t-value P > |t |

Intercept 1 0.04083 0.08608     0.47 0.6410
Gravel 1 0.16189 0.01682       9.62 <0.0001

Interpetation
The model that used the untransformed C/f  as the response variable and gravel as the dependent
variable was significant (<0.0001), but the amount of variability in C/f accounted for by gravel was
substantially less (r2 = 0.636).

Multiple-regression models were computed with both the proportion of gravel and the proportion
of vegetation as habitat variables, as well as with the interaction term (gravveg = gravel × veg).  The
following SAS program was employed:.

Proc reg;

model logcpue=gravel vegetation;

model logcpue=gravel vegetation gravveg;

Results
Neither the proportion of vegetation nor the interaction term was significant.  Slope was not
included in the multiple-regression model because it was significantly correlated with the propor-
tion of gravel. Therefore, the regression analysis suggests that the relative abundance of age-0
smallmouth bass can be predicted from the proportion of gravel along shoreline areas.
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must be considered, or C/f  can be a misleading indicator of abundance. While
there are several assumptions to be considered, the assumption of constant
catchability may be the most critical and commonly violated. Substantial effort
should be made to assure constant catchability in management assessments and
research designs. In order to minimize uncontrolled sources of variation (error)
in C/f , stratified random and systematic sampling designs are commonly used.
Such designs incorporate standardization of gear and effort and identification of
sampling times and locations. Assessing the extent of variability in C/f  with a par-
ticular design and identifying the sampling effort required to detect changes over
time or to detect differences among sampling sites through preliminary sampling
are necessary components of management and research efforts.

A major problem in the application of C/f  sampling data is that the distribu-
tion is seldom normally distributed. Negative binomial distributions are common
among C/f  data sets, but they cannot be assumed to occur. A variety of descriptive
statistics have been used to characterize the distribution of C/f  data, but none are
universally applicable. The power of classical statistical methods is substantially
reduced when C/f  data are incorrectly assumed to be normally distributed. Fur-
thermore, changes in C/f  over time or among different locations may not be
detectable when, in fact, differences in fish abundance exist. However, recent
applications of general linear models and mixed models that incorporate tempo-
rally and spatially autocorrelated errors into C/f  analyses provide substantial prom-
ise for more powerful analyses. Similarly, advances in regression analyses beyond
classic least-squares regression are providing better descriptors of relations be-
tween C/f  and other variables. The historic and emerging statistical methods de-
scribed in this chapter have utility in management and research; however, users
of these techniques are advised to seek consultation of professional statisticians to
assure that the most appropriate analytical methods are used and to avoid mis-
leading results or interpretations.
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Abundance, Biomass,
and Production
Daniel B. Hayes, James R. Bence, Thomas J. Kwak,
and Bradley E. Thompson

■ 8.1 INTRODUCTION

Fisheries scientists face a challenge in that virtually all methods of fish capture or
observation are selective. Further, most fish capture methods can be applied to
only a fraction of the entire area of interest. Thus, measures such as catch per
unit effort (C/f) or catch per area can only be regarded, at best, as being propor-
tional to the true population abundance (see Chapter 7). The methods presented
in this chapter are designed to address these problems and provide estimates of
absolute abundance or “true” fish density. In general, these methods require ad-
ditional sampling beyond that required to estimate relative abundance. As such,
careful consideration should be given to whether relative measures of abundance
are adequate or if the need for estimates of absolute abundance justifies the addi-
tional cost.

In many cases, relative abundance is sufficient to answer important research or
management questions. One example is when the principal goal is to determine
if abundance has changed over time. As long as vulnerability to the gear remains
constant over time, trends in C/f can accurately indicate changes in abundance
(see Chapter 7). In such cases, the extra effort required to determine absolute
abundance is better spent in sampling more sites. In general, estimates of abso-
lute abundance are needed when catchability is likely to vary across time or be-
tween sampling sites, confounding comparisons of C/f across space or time. Abso-
lute abundance estimates are also important when harvest quotas are being
computed.

Whether relative or absolute measures of abundance are desired, it is critical to
define the population of interest carefully. In many cases, some part of the popu-
lation is excluded from consideration because of limitations of the sampling gear.
For example, population estimates of yellow perch in midsummer conducted by
means of gill nets would likely not include age-0 fish because they would not be
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vulnerable to the gear. Similarly, care must be taken in defining the spatial extent
of the target population. Sometimes one is interested in the population in only a
particular stream reach, whereas in other situations, the desired scale is an entire
watershed, which would likely need to be subsampled.

Another consideration common to both relative and absolute measures of abun-
dance is the precision and accuracy required for the task. Accuracy, bias, and
precision are defined in Chapter 3. Applying these concepts to population esti-
mates, it is important to recognize that failures to meet assumptions often reduce
both accuracy and precision. Therefore, we emphasize methods for checking as-
sumptions in addition to the methods commonly used to provide point estimates
and measures of variability.

■ 8.2 DIRECT OBSERVATION METHODS

In some situations, direct observation of all fishes in a given area (sampling site) is
possible, providing a complete census of the area searched. This approach has
been applied in small streams (Hankin and Reeves 1988) or in other situations
where fish are tightly constrained. Likewise, counts of fish in hydroacoustic sur-
veys are often assumed to represent all individuals within the hydroacoustic beam
path. In situations in which counts are assumed to be accurate and complete, the
total population is estimated as the product of the mean density in the sites sampled
times the total area. The precision of total population estimates depends princi-
pally on the variability between sampling sites (Hankin and Reeves 1988) and the
sampling design used (e.g., stratified random sampling). Methods of computing
the variance for several sampling designs are presented in Chapter 3 and can be
applied directly to data collected through complete censuses at selected sites.
One specialized design not included in Chapter 3 is hydroacoustic surveys for
which counts are collected along the path of the boat (i.e., along a transect). If
data are collected along a single transect, specialized statistical methods are nec-
essary to calculate the variance of the population estimate because of the
autocorrelation between counts at adjacent points. (Foote and Stefansson 1993;
Vondracek and Degan 1995). If two or more randomly placed transects are fol-
lowed, however, each transect can be treated as a sampling site, and the methods
described in Chapter 3 can be applied.

In many situations, visual observation misses some proportion of the popula-
tion, even in situations where fish are constrained. Because of this, estimates of
density for individual sites are imprecise and contribute to the overall imprecision
of total density estimates. In order to estimate the proportion observed within a
sampling site, additional information needs to be gathered. The most commonly
used method is to measure the distance that each animal observed lies off the
transect (i.e., the right-angle distance from each animal seen to the transect) or
from the center of a fixed point of observation. Depending on the observation
technique, this distance can be determined directly, or the distance and angle of
departure from the transect can be determined and the right-angle distance cal-
culated by simple geometry. Generally, the proportion of fish present that are
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detected (i.e., sightability) declines farther from the point of observation or from
the transect surveyed (Figure 8.1). Assuming that fish are randomly distributed
with respect to the transect and sightability is 100% at or near the center of the
transect, the proportion observed can be estimated as a function of distance from
the transect.

Critical assumptions for applying the direct observation approach include (1)
fish are randomly and independently distributed, and movement of the observer
does not attract or repel fish prior to observation; (2) distances are measured
accurately; (3) fish are not counted more than once; (4) fish are detected at their
original position with respect to the transect; and (5) sighting of each fish is inde-
pendent of other fish, meaning that the likelihood of seeing an individual fish

Figure 8.1 Example of animals sighted in a transect survey. The histogram depicts the relative
frequency of observations within 0.1-m intervals from the transect. The shaded box depicts the
effective width of the transect. Open circles indicate fish that are not sighted and closed circles
indicate fish that are sighted. Figure modified from Thompson et al. (1998).
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does not depend on the number of other fish in the vicinity (Seber 1982; Buckland
et al. 1993; Thompson et al. 1998). Carefully implemented field techniques can
help ensure that assumptions 1–4 are met. The assumption of independent
sightings, however, depends on the behavior of fish and their schooling behavior
and patchiness. When fish are sighted in groups, but the proportion of fish sighted
is constant with fish density, the precision of population estimates is generally
reduced, but the population estimate is not necessarily biased (Buckland et al.
1993). In cases in which the unit of observation is a school or other aggregation of
animals, we refer the reader to Buckland et al. (1993) for methods for appropri-
ately analyzing these data. When sightability varies as a function of density or
school size, estimates of fish density are likely to be biased, and the applicability of
this approach should be reconsidered.

For a single line-transect survey, the general formula for density is (Buckland
et al. 1993)

D = n
2Lw

,^

^ (8.1)

where D
^
 = estimated density; n = number of fish observed; w^ = estimated effective

width of transect from center; and L = transect length.
When counts are conducted from a single fixed point (point plot survey), the

area surrounding the point is observed, resulting in a circular search area. In this
situation, the general formula for density is (Buckland et al. 1993)

D = n
2�w 2

,^

^ (8.2)

where w^ = estimated effective search radius.
In applying these formulae, a critical component is estimating w, the effective

width of the transect or search radius from a point. Essentially w corresponds to
an equivalent transect for which all fish out to w are detected and all fish beyond
w are not. In order to estimate this quantity accurately, it is necessary to select a
function describing the pattern of sightability with distance. Many functions can
be used to describe the sightability function. We apply two of these functions to
illustrate that the choice of sightability function matters, and we provide formulae
for estimating total population abundance from density and the total area of the
study site in Box 8.1. Buckland et al. (1993) provide a thorough discussion of
various sightability functions and methods for selecting among these functions.

The variance for the density estimate (and population size) for a single transect
within a site can be estimated approximately based on the binomial distribution
describing observed and unobserved fish (Box 8.1), assuming that fish are ran-
domly and independently distributed. When multiple transects or points are ob-
served, the variance among transects should be determined based on the overall
sampling design, following methods outlined in Chapter 3.

Specialized software packages are available to estimate population size based
on distance sampling (for example, the comprehensive package, DISTANCE;
Thomas et al. 2001; available at http://www.ruwpa.st-and.ac.uk/distance/).
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Box 8.1 Estimation of Abundance and Density Based on Distance Sampling

An investigator snorkels along a 100-m transect that is randomly located in a stream reach
containing 500 m2. Thirty brook trout are observed at the following right-angle distances (m) from
the center of the transect: 0.7, 0.1, 0.6, 0.3, 0.4, 0.1, 3.2, 0.4, 0.6, 1.4, 0.2, 0.1, 2.5, 0.4,4.6, 2.2, 0.5, 1.6, 0.4,
0.4, 1.5, 0.8, 0.0, 0.2, 2.1, 0.4, 0.4, 0.1, 1.1, and 0.6. The investigator would like to estimate the density of
brook trout in the section and the total population in the reach.

We define the following variables:

n = number animals observed;
N = total population in reach;
A = total area of reach (m2);
D = density of fish (number/m2);
L = length of transect (m);
y = right angle distance (m) from transect for each animal;
w = effective strip width;
V(N

^

) = estimated variance of population estimate; and
CI = confidence interval.

Based on the assumption that sightability drops off exponentially with distance from the transect,
and that fish are independently distributed in the reach, we have the following (Seber 1982):

D = n

2Lw

^

^
=

30

2 · 100 · 0.962
= 0.156;

N = nA

2Lw

^

^
=

30 · 500

2 · 100 · 0.962
= 78;

w = �y
n – 1

^ =
27.9

30 – 1
= 0.962;

V(N ) =
^  n

n
N
^( )

2 (1 –  n
N
^ +  n

n – 2 ) =
 30
30
78

2

( )
(1 –  30

78
+  30

30 – 2 ) = 342;

N ± Z �/2   V(N )
^ ^

CI = = 78 ± 1.96    342 = 78 ± 36 = 42, 114.

Based on the assumption that the sightability function follows a half-normal distribution, the
formula for effective width is (Buckland et al. 1993)

w = 
2

��(y2/n)

^ =
1

= 1.752,
1

2
� · 1.956

and density is calculated as above:

D = ^ 30
2 · 100 · 1.752

= 0.086.

If sightability drops off exponentially, the estimated population is 78 with an approximate CI of 42
to 114. Note that the density (and hence total abundance) based on a half-normal distribution is
approximately half that obtained with an exponential model, highlighting the need to test the
assumed sightability function (see Buckland et al. 1993 for these methods).



332 Chapter 8

■ 8.3 POPULATION ESTIMATION: MARK–RECAPTURE METHODS

8.3.1 Closed Population Mark–Recapture Methods

The underlying concepts and assumptions of mark–recapture methods of popu-
lation estimation have a long history in the fishery literature. Because of the
extensive reviews available on this subject (Otis et al. 1978; Seber 1982; Burnham
et al. 1987), we will emphasize common applications and methods that provide a
base for specialized or particularly complex situations.

8.3.1.1 Single Marking Period and Single Recapture Period

In the simplest case, fish are randomly collected from a closed population, and
easily recognizable, permanent marks are applied to captured individuals. These
individuals are then released and allowed to mix completely with the remainder
of the population. A second sampling is undertaken, and the ratio of marked to
unmarked fish can be used to estimate the total population. Assumptions in basic
mark–recapture studies include (1) the population is geographically closed, with
no immigration or emigration, (2) the population is demographically closed, with
no birth or deaths, (3) no marks are lost or missed (4) marking does not change
fish behavior or vulnerability to capture, (5) marked fish mix at random with
unmarked fish, and (6) all animals have an equal probability of capture that does
not change over time (Otis et al. 1978; Seber 1982). A number of formulae have
been developed for this basic situation. In practical terms, all give similar results
when reasonable numbers of marked fish are recaptured (e.g., at least 2–3, but
preferably greater than 10; Chapman 1951; Robson and Regier 1964). Because of
its widespread use and theoretical basis, we recommend the use of the Chapman
estimator (Seber 1982):

N = (n1 + 1)(n 2 + 1)
(m 2 + 1)

– 1 ,
^

(8.3)

where n1 = number caught and marked in first sampling period; n2 = number
caught in second sampling period; andm2 = number of marked animals in second
sampling period.

The variance of this estimator can be approximated as (Seber 1982)

V(N) = (n1 + 1)(n 2 + 1)(n1 – m 2)(n2 – m 2)
(m 2 + 1)2(m 2 + 2)

– 1.
^

(8.4)

Numerous approaches are available to develop confidence intervals (CIs) for N
^
.

Unfortunately, a diversity of methods occurs because of different distributional
assumptions and different approximations for small and modest sample sizes. As
such, a single method has not yet been identified as being generally best. For
large sample sizes (e.g., m2 > 50), the normal approximation is generally adequate
(Seber 1982), and ([100 – �]%) confidence limits can be calculated as
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N ± Z�/2   V(N). 
^ ^ (8.5)

For a 95% CI, � = 0.05, and Z�/2 = 1.96. When there are fewer than 50 recaptures,
Chapman (1948; reproduced in Seber 1982 and Appendix) provides a table from
which CIs can be calculated based on the number of recaptured fish.

8.3.1.2 The Schnabel Method

When multiple marking and recapture samples are collected over a short period
(so that the population is closed with no immigration, emigration, recruitment,
or mortality), population size can be estimated with the Schnabel method
(Schnabel 1938; Seber 1982):

N = 
niMi

,^
�
i = 2

t

mi + 1�
i = 2

t (8.6)

where t = number of sampling occasions; ni = number of fish caught in ith sample;
mi = number of fish with marks caught in ith sample; and Mi = number of marked
fish present in the population for ith sample.

The variance of this estimator can be approximated as (Seber 1982)

(�niMi)
2

V(N) = 
^ N

^

�niMi

+ 2 ·[ N 2^

(�niMi)
3

+ 6 · N 3^

].N 2^

(8.7)

Confidence intervals for N
^
 with the Schnabel method can be computed following

the same recommendations for the Chapman method in a single mark–recapture
experiment.

8.3.1.3 Multiple Recapture Events with Uniquely Marked Individuals

In many situations, a simple design using a single marking period and single re-
capture period or a Schnabel-type design is sufficient to estimate population abun-
dance. The effectiveness of such designs, however, rests on adequately meeting
the assumptions. Unfortunately, it is generally not possible to test these assump-
tions using the data collected during a single recapture period or when fish are
simply marked as being previously caught. To test the assumptions underlying
mark–recapture methods of population estimation, it is generally necessary to
sample over multiple periods and to have marks that allow for the capture history
of individual fish to be determined (e.g., by using individually numbered tags).

For closed populations with uniquely marked fish, Otis et al. (1978) present a
hierarchical suite of models intended to cover a range of situations for which
particular assumptions hold (Figure 8.2). The simplest, yet most restrictive, model
is that for which all assumptions listed earlier apply (Mo). In the next tier of mod-
els, three basic mechanisms causing unequal capture probabilities are addressed.
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In model Mt , the probability of capture is allowed to vary among different sample
periods (time). Variability in capture over time may occur due to factors such as
weather or due to changes in the amount or type of fishing gear deployed. In
model Mb, the probability of capture is allowed to vary due to behavioral response
to prior capture (i.e., fish become more prone or less prone to capture after be-
ing caught, handled, and marked). In surveys of small mammals, for example,
investigators find that marked animals may become trap happy or trap shy, thus
biasing population estimates if such behavior is not considered (Seber 1982). The
final model, Mh, allows for heterogeneity in the capture probability of individual
fish. This heterogenity may occur for a variety of reasons, including inherent fea-
tures of each fish, such as its size, or less obvious factors such as variation in the
size of home ranges, resulting in different vulnerabilities to passive gears such as
trap nets. Methods have been developed to estimate population size for each of
these models and are illustrated below. Because of the complexity of the required
analyses, we strongly recommend the use of specialized software when applying
these models. The program MARK (White and Burnham 1999; available at http://
www.cnr.colostate.edu/~gwhite/mark/mark.htm.) is a very flexible software pack-
age designed to analyze data from mark–recapture studies.

In the next tier of models, variations in probability of capture occur through
combinations of two of the above factors (Figure 8.2). Thus, model Mtb represents
the case in which capture probability varies over time, as well as with the prior
capture history of an animal (behavior). Estimation methods are also available for
each of these models; however, we refer the reader to software, such as MARK,
specially designed to handle such situations. Unfortunately, no method has yet
been developed to estimate population size and account for these three sources
of variation simultaneously (i.e., to estimate the parameters for model Mtbh).

A central concept to estimating population size by means of these models is the
capture history of an animal. Because the population is assumed to be closed, the
number of animals in the population (N ) remains constant over all sampling
periods. As such, during each of the sampling periods (numbered 1 to t), an
animal can either be caught or not. For convenience, the capture history of all
animals observed can be recorded in a matrix in which a 1 is used to indicate a
capture and 0 to indicate no capture during a particular sampling period.

The second concept central to estimating population size based on these mod-
els is the likelihood function. Although this is the foundation for many methods
of population estimation (in fact, it is the basis for the Chapman and Schnabel
estimators), likelihood functions may be unfamiliar to many readers. We provide
a brief synopsis of this topic in the context of population estimators in Box 8.2.
Readers should consult texts in mathematical statistics (e.g., Bickel and Doksum
1977; Rice 1995) for a more thorough treatment. In some cases, likelihood meth-
ods result in a formula for directly estimating population abundance. In most
situations, however, there is no direct formula relating the data to the population
estimate. Instead, the likelihood function is repeatedly evaluated at trial values of
N (or related parameters that determine N ) until a value of N is found that pro-
duces the maximum value of the likelihood function. This is chosen as the best or
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most likely population estimate, N
^
. With modern computing power, a “brute force”

solution can be found simply by starting with a trial value of N set equal to the
total number of distinct individuals caught (i.e., the minimum possible popula-
tion) and then evaluating the likelihood function for each integer value of N up
to an arbitrary maximum. Generally, the logarithm of the likelihood function is
evaluated because it is often easier to compute and because it provides a useful
basis for comparing between models and for estimating CIs. Further, the likeli-
hood function can often be maximized focusing on one parameter at a time,
producing what is called a concentrated likelihood (Seber and Wild 1989). Fol-
lowing precedent in the literature, and for simplicity, we will generally not distin-
guish between concentrated likelihood functions or likelihood functions that in-
clude all parameters.

The log-likelihood function (loge L)used to estimate N
^
 for model Mo (Otis et al.

1978) is

(8.8)

Figure 8.2 Hierarchical organization of models for capture–recapture methods of population
estimation as described by Otis et al. (1978). Model Mo allows all assumptions of the mark–recapture
model to apply; model Mt allows the probability of capture to vary among sample periods (time);
model Mb allows the probability of capture is to vary due to behavioral response to prior
capture; model Mh allows for heterogeneity in the capture probability of individual fish; and the
remaining models allow variations in probability of capture through combinations of the above
factors. Figure modified from Otis et al. (1978).

Mtbh

Mth

Mb

Mo

MbhMtb

Mt Mh

logeL(N |X) = {loge( N !
(N – Mt + 1)!) + [n· loge(n·)] + [(tN – n·)loge(tN – n·)] – [tN loge(tN )]} ,
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where X = capture history matrix; Mt + 1 = total number of distinct fish caught; n. =
total number of fish captured; and t = number of sampling periods.

Once the maximum-likelihood estimate, N
^
, has been calculated by finding the

N that maximizes equation (8.8), the corresponding maximum-likelihood esti-
mate for the probability of capture is

p = n.

tN
.^

^ (8.9)

An asymptotic estimate of the variance for N
^
 is (Otis et al. 1978)

V(N) = .^ N
^

[(1 – p)–t –
1 – p

t^

^( ) + (t – 1)] (8.10)

Confidence intervals for N
^
 can be obtained in a number of ways. The first

method is to estimate variance of N
^
 by means of equation (8.10) and calculate

upper and lower bounds based on equation (8.5). This approach assumes that N
^

has a normal distribution, which should be a reasonable approximation when
more than 30 animals are recaptured. An alternate method, discussed in Box 8.2,
is to use the likelihood function itself to determine CIs. Trial values of N that
produce likelihood values that differ from the maximum likelihood by more than
3.841, which is the critical value for a �2 distribution with 1 df and an � of 0.05,
define the bounds of the CI. The likelihood method for determining CIs is often
preferred because it does not require the assumption of normality, thereby allow-
ing for asymmetric CIs for modest sample sizes.

In model Mt , the capture probability for individual animals varies over time. As
such, this model has t + 1 parameters: N, which is the population abundance, and
p1, p2, . . . , pt, which are the time-specific capture probabilities. The log-likelihood
function for model Mt is (Otis et al. 1978)

logeL(N |X) = loge [ N !
(N – Mt + 1)! ] + [ ]�

j = 1

t

n j loge(nj)

+ [ ]�
j = 1

t

(N – n j)loge(N – n j) – [tN loge(N )].
(8.11)

The N that maximizes equation (8.11) is the maximum-likelihood estimate, N
^
.

The corresponding maximum-likelihood estimates for the probability of capture
for each time period can be determined by

pj = 
nj

N
.^

^ (8.12)
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Box 8.2 Application of Likelihood Functions in Population Estimation

Here, we illustrate the ideas underlying likelihood functions in the context of estimating population
size. For this example, consider the situation in which 60 fish are present in a pool within a stream
and we have a 40% chance of catching each fish with one electrofishing pass. In this example, we
theoretically could catch between 0 and 60 fish. Assuming that the probability a fish is caught is
independent among fish, the probability a specific number of fish will be caught in one pass is
given by a binomial probability distribution. For example, the probability of capturing 20 in one
pass (i.e., number caught = n =20), assuming catchability is 0.4, is given by the formula

P(n = 20|N = 60, q = 0.4) = 
N !

n ! (N – n)!
q n(1 – q)N – n

60!
20! (60 – 20)!

0.420(1 – 0.4)60  –20= = 0.0616.

Applying this formula for each possible outcome, we can see that the outcome with the highest
probability (i.e., the most likely outcome) is 24 fish captured (Figure 8.3A). Equations of this type are
known as probability functions for discrete distributions or probability density functions for
continuous distributions.

When estimating population size by maximum likelihood, we reverse the role of parameters and
data. We know our data (or, in this case, datum, i.e., n = 20) and ask what is the most likely popula-
tion size that would have produced our observation. For simplicity in this example, we assume that
q = 0.4 and is known. Now, we can write

P(N = 60|n = 20, q = 0.4) = 
N !

n ! (N – n)!
q n(1 – q)N – n

60!
20! (60 – 20)!

0.420(1 – 0.4)60  –20= = 0.0616.

Note that this is mathematically identical to the previous equation. However, we now refer to P(N =
60|n = 20, q = 0.4) as the likelihood. When using the likelihood, we generally take the view that the
parameter we are estimating (N ) can be varied to maximize this likelihood. The process of calculat-
ing the likelihood for a series of different parameter values over some range is referred to as
profiling the likelihood. The fundamental concept of statistical likelihood is that our observations
(the data) occur through a stochastic or random process with a defined probability structure.
Through this process, we are likely to observe data in proportion to their probabilities as described
in the formulae above.

As shown in Figure 8.3B, the likelihood given the data (n = 20) is maximized for N = 50. Our estimate is
less than the true value of 60 because we happened to capture somewhat less than one might
typically capture. Note that although N = 60 does not maximize the likelihood, it has a likelihood that
is reasonably high (Figure 8.3B). Thus, we cannot rule out N = 60, as it could have reasonably gener-
ated the observed data. On the other hand, the likelihood is very low for N = 100. If we repeated the
process of sampling, sometimes our population estimates would be above and other times they
would be below the true value, but our estimates would very rarely be above 100. As such, the
likelihood is a measure of how consistent the data are with different population sizes.

(Box continues)
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In this simple example, we assumed that q was known. If we had not, we could not have computed
a unique solution (e.g., our data could have resulted from a combination of smaller q and larger N).
As indicated in the introduction to this chapter, we generally need more information than catch per
unit effort (C/f ) from a single sampling event to estimate true abundance. In our simple example,
the additional information we need is the probability of capture with a single pass (i.e.,
catchability).

To be somewhat more realistic, assume that q is unknown and we apply a depletion sampling
experiment (see section 8.4) to the stream and catch 24 fish in the first sampling pass, 17 fish in the
second sampling pass, and 8 fish in the third sampling pass. We will also make the usual assump-
tions that the population is closed and that all fish have equal vulnerability and that this is consis-
tent over time. The details of the likelihood function for the removal method are presented in
section 8.4, equation (8.24). Note that the loge of the likelihood is often used to make the computa-
tions more tractable. Applying the formula to various levels of catchability from 0 to 1.0, we can
profile the likelihood for these data as shown in Figure 8.4A.

From Figure 8.4A, it is apparent that it is possible that catchability (q) is equal to 0.6, but it is not
very likely relative to other possible values of q. Likewise, q could be 0.01, but that too is not very
consistent with our observations. In this example, the value of q that is most consistent with our
observations is 0.40. Thus, we term this the maximum-likelihood estimate of q. Because we sampled
the population three times, the estimated cumulative proportion of the population removed is
1 – (1 – q)3 = 1 – (0.6)3 = 0.784. Given that we caught a total of 49 fish, the most likely estimate of N is
49/0.784 = 62 (Figure 8.4B).

There are several ways to estimate variances and CIs associated with maximum-likelihood esti-
mates. One way is to consider how the likelihood changes when the parameters move small
distances away from the maximum-likelihood value. The first derivative of the logarithm of the
likelihood measures how quickly the likelihood changes relative to a change in the parameter and
is equal to zero at the maximum. Variance is estimated by taking the negative of the reciprocal of
the second partial derivative of the logarithm of the likelihood with respect to each parameter
(Seber 1982). The second partial derivative measures the curvature of the log-likelihood portrayed
in Figure 8.4. If the magnitude of the second derivative is large, the likelihood falls off rapidly as we
move the parameters away from the maximum-likelihood estimate; the estimated variance would
be relatively small because alternative values very far from the estimate are unlikely. Confidence
intervals can be constructed from the variance estimated above, assuming a distribution (often
normal) for the estimate. The profile likelihood can also be used to construct CIs directly by
determining values for the parameters that give a log-likelihood value that is less than the
maximum value of the log-likelihood by 3.841. This method is based on the fact that, under the null
hypothesis, this difference approximates a �2 distribution with 1 df, and 3.841 is the 5% critical value
for the �2 distribution with 1 df. As shown in Figure 8.4B, the maximum-likelihood estimate of N is
62 with a 95% CI of 51 to approximately 1,650.

Both approaches for computing variances and CIs produce approximations based on asymptotic
(i.e., large sample) statistical properties and require relatively large sample sizes to be accurate. The
profile likelihood method often performs better because the shape of the likelihood profile is
examined and no assumption of normality is made. The better performance of the profile likeli-
hood method comes at the cost of greater computation, however.

Box 8.2 (continued)
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The asymptotic variance of N
^
 under model Mt is (Otis et al. 1978)

V(N) = .^ N
^

(1 – p j)
1 – p j

1
^

^

�
j = 1

t

1  + (t – 1) – � (8.13)

As with model Mo, CIs for N
^
 under model Mt can be estimated using the vari-

ance of N
^
 and an assumption of normality or through a likelihood-based approach

as outlined in Box 8.2.
Model Mb (variability in capture probability due to changes in behavior after

capture) has three parameters: N, p, the probability of capturing an unmarked
animal, and c, the probability of capturing an animal that was previously cap-
tured, marked, and released. The parameter c can be estimated separately from
estimation of N and p by (Otis et al. 1978)

Figure 8.3 (A) Probability of capturing n fish from a population with 60 individuals, each with
a 40% chance of capture, and (B) log-likelihood of the observation (n = 20 fish caught) as a
function of population size (N).

0.15

0.10

0.05

0.00

Pr
o

b
ab

ili
ty

0 10 20 30 40 50 60

A

0.15

0.10

0.05

0.00

Li
ke

lih
o

o
d

Number caught

B

0 10 20 30 40 50 60

Population size

70 80 90 100



340 Chapter 8

c  = m.
M.

,^
(8.14)

where m· = �mj ; mj  = number of marked animals in j th sample; M· = �Mj ; and Mj

= number of marked animals in the population for the j th sample.
The likelihood function for model Mb is (Otis et al. 1978)

(8.15)

logeL(N) = loge[ N !
(N – Mt + 1)!] + [Mt + 1 loge(Mt + 1 )]

– [(tN  – M.)loge(tN  – M.)] + m. loge(c ) + (M. – m.)loge(1 – c )^ ^ .

+ [(tN  – M. – Mt + 1 )loge(tN  – M. – Mt + 1 )]

Figure 8.4 Log-likelihood as a function of (A) catchability (q) and (B) population size (N) given
depletion sampling experiment described in Box 8.2.
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Once N
^
 has been found by maximizing equation (8.15), the maximum-likeli-

hood estimate of p is calculated as (Otis et al. 1978)

p = 
Mt + 1

tN – M.
.^

^ (8.16)

An asymptotic variance estimate for N
^
 is (Otis et al. 1978)

V(N) = .^ N(1 – p)t[1 – (1 – p)t]^

[1 – (1 – p)t^ ^– t 2p 2(1 – p )]
^ ^

2
^ t  –  1

(8.17)

Estimation of the parameters for model Mh is more problematic than it is for
model Mo, Mt, or Mb. The reason for this is that each fish (including unobserved
fish) has its own individual catchability. A number of approaches have been taken
to solve this problem, generally by making an assumption regarding the statistical
distribution of catchabilities. For details of computation for this model, we refer the
reader to Otis et al. (1978) and to the program MARK (White and Burnham 1999).

An example applying models Mo, Mt, and Mb is given in Box 8.3. Beyond being
able to estimate the parameters for each of these models, an important question
is how to choose among them. The most common way of doing this is to compare
the maximum-likelihood value for each model and select the model with the high-
est maximum likelihood. Because the maximum likelihood that can be obtained
generally increases as more parameters are added, the likelihood obtained from
models with more parameters is typically “penalized” for the additional flexibility
offered. The most widely used adjustment to the likelihood function is Akaike’s
Information Criterion (AIC; Akaike 1973), which is calculated as

AIC = –2 loge(likelihood) + 2 (number of parameters). (8.18)

After computing the AIC, one then selects the model that has the lowest AIC
value (Box 8.3).

8.3.2 Open Population Mark–Recapture Methods

Open populations are characterized by having immigration, emigration, mortal-
ity, or recruitment occur during the study period. As in closed populations, gen-
eral models developed to estimate abundance in open populations also make use
of the encounter history matrix as the basis for maximum-likelihood estimators
and assume that each fish is uniquely marked. Conceptually, the encounter his-
tory matrix is important because it defines which animals are observed at particu-
lar times. From this, we can also infer which time periods the animal is known to
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Box 8.3 Estimation of Population Abundance for a Closed Population
Based on Otis et al.’s (1978) Mark–Recapture Models

An investigator conducts a mark–recapture study on a closed population of largemouth bass in a
farm pond in order to determine the abundance of adult fish. The sampling consists of four
sampling events; fish captured in each event are given a uniquely numbered Floy Tag and released.
The capture–recapture data are arranged into a capture matrix in which each cell of the matrix (Xij)
is referenced by fishi in row i and sample periodj in column j. An entry of 1 in the matrix indicates
that a fish was caught, and a 0 indicates that the fish was not caught during that sampling period.
Fish 1, for example was caught in all four sampling periods, whereas fish 4 was caught in only the
first sample period.

TTTTTableableableableable Data matrix for mark–recapture study of closed population of largemouth bass.

Fish Sample 1 Sample 2 Sample 3 Sample 4

1 1 1 1 1
2 1 1 0 0
3 1 0 1 0
4 1 0 0 0
5 1 1 0 1
6 1 0 1 1
7 1 0 0 0
8 0 1 1 0
9 0 1 0 0
10 0 1 0 1
11 0 1 0 0
12 0 1 0 0
13 0 1 1 1
14 0 0 1 0
15 0 0 1 0
16 0 0 1 0
17 0 0 1 1
18 0 0 0 1
19 0 0 1 1
20 0 0 0 1

From these data, the investigator explores which of the Otis et al. (1978) suite of capture–recapture
models is most appropriate. For this investigation, we obtain the following basic statistics that are
used in the estimation of population abundance, for which t = number of sampling occasions; ni =
number of fish caught in ith sample; mi = number of fish with marks caught in ith sample; and Mi =
number of marked fish present in the population for ith sample.

t = 4;
Mt + 1 = 20;
n1 = 7, n2 = 9, n3 = 10, n4 = 9, n . = 35;
m1 = 0, m2 = 3, m3 = 5, m4 = 7, m . = 15; and
M1 = 0, M2 = 7, M3 = 13, M4 = 18, M . = 38.
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logeL(N = 30| X) = {loge( 30!

(30 – 20)! ) + [35loge(35)] + [(4 ·30 – 35)loge(4 ·30 – 35)] – [4 ·30loge(4 ·30)]}  = –12.890; and
^

logeL(N = 23| X) = {loge( 23!

(23 – 20)! ) + [35loge(35)] + [(4 ·23 – 35)loge(4 ·23 – 35)] – [4 ·23loge(4 ·23)]} = –11.299.
^

Starting with Model Mo (see Figure 8.2), we compute the log-likelihood for trial values for N
^

  by
applying equation (8.8). Two examples for trial values are 30 and 23. Using these values, we obtain

When the log-likelihood is computed and plotted for trial values of N
^

  ranging from 21 to 100 for
model Mt (equation [8.11]), we find that the maximum of the log-likelihood is

The maximum of the log-likelihood for model Mt is –10.854 at N
^

  = 23 (Figure 8.5).

When model Mb is employed (equation [8.15]), the log-likelihood for the same trial values is

The maximum of the log-likelihood for model Mb is –11.247 at N
^

  = 24 (Figure 8.5). The Akaike’s
Information Criterion (AIC) for each model is

AIC for Mo = –2(–11.299) + 2(2) = 26.598;
AIC for Mt = –2(–10.854) + 2(5) = 31.708; and
AIC for Mb = –2(–11.247) + 2(3) = 28.494.

Based on the AIC, we would choose model Mo as the best model among those considered. The
likelihood for this model is not substantially lower than for Mt and Mb, but it requires fewer param-
eters, resulting in a more parsimonious model.

logeL(N = 30|X) = loge [ 30!
(30 – 20)! ] + [7 loge(7) + 9 loge(9) + 10 loge(10) + 9 loge(9)]

+ {[(30 – 7)loge(30 – 7)] + [(30 – 9)loge(30 – 9)] + [(30 – 10)loge(30 – 10)]

^

+ [(30 – 9)loge(30 – 9)]} – [4 ·30 loge(30)] = –12.492; and

logeL(N = 23|X) = loge [ 23!
(23 – 20)! ] + [7 loge(7) + 9 loge(9) + 10 loge(10) + 9 loge(9)]

+ {[(23 – 7)loge(23 – 7)] + [(23 – 9)loge(23 – 9)] + [(23 – 10)loge(23 – 10)]

^

+ [(23 – 9)loge(23 – 9)]} – [4 ·23 loge(23)] = –10.854.

logeL(30|X) = loge [ 30!
(30 – 20)! ] + [20loge(20)] + [(4 ·30 – 38 – 20)loge(4 ·30 – 38 – 20)]

– [(4 ·30 – 38)loge(4 ·30 – 38)] + 15loge(0.395) + (38 – 15) loge(1 – 0.395)] = –11.491;  and

logeL(23|X) = loge [ 23!
(23 – 20)! ] + [20loge(20)] + [(4 ·23 – 38 – 20)loge(4 ·23 – 38 – 20)]

– [(4 ·23 – 38)loge(4 ·23 – 38)] + 15loge(0.395) + (38 – 15) loge(1 – 0.395)] = –11.270.
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be alive even if it is not observed. For example, a fish marked at the beginning of
an experiment, but not observed again until the end, is known to have survived
through all intervening sampling events. Open population models are also simi-
lar to the Otis et al. (1978) hierarchy of models in that numerous factors and
assumptions can be represented in a suite of models applicable to open popula-
tions. Compared with closed population models, additional parameters describ-
ing losses and additions to the population are necessary for open population
models. The additional parameters necessary to describe open populations often
lead to a decline in the precision of population estimates. Further, allowing for an
open population requires stronger adherence to some of the model assumptions.
In particular, heterogenity in capture probability becomes increasingly important
and can lead to bias in population estimates.

In Box 8.4, we demonstrate computations for a basic model illustrating the un-
derlying approach applicable to a broader range of possible models for open popu-
lations. Lebreton et al. (1992) and Seber (1982) provide in-depth coverage of this
broader family of models, commonly referred to as Cormack–Jolly–Seber (CJS) sur-
vival models. The software program MARK, referred to earlier, can accommodate
CJS models. The program RELEASE (available at http://www.warnercnr.colostate.
edu/~gwhite/software.html) was also recommended by Lebreton et al. (1992).

Figure 8.5 Log-likelihood as function of population size (N) for Otis et al.’s (1978) hierarchy
(see Figure 8.2) based on example in Box 8.3. An approximate confidence interval for N under
model Mo is where the x-axis crosses the log-likelihood curve.
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Box 8.4 represents a commonly used open population model in which the
abundance of animals changes over time due to births and deaths, survival varies
over time, but capture probability is constant over time and across all individuals
in the population. As such, this model is analogous to model Mo, with the addition
of time-varying population abundance and survival. In the CJS models, four basic
sets of parameters are estimated: population abundance (Ni), capture probability
(pi), apparent survival (�i), and additions (births and immigrant) to the popula-
tion (Bi). The term apparent survival is used instead of survival because, in most
cases, it is impossible to distinguish any losses due to emigration from mortality. If
the population is geographically closed, �i  is an estimator for actual survival rate.
Each of the above parameters are indexed by time, but care must be taken in
understanding that �i  indicates the survival rate from time i to i + 1. Further, not
all quantities are estimable; for example, abundance at the beginning of the study
(N1) generally cannot be determined. The application of this model is illustrated
in Box 8.4. For simple models, closed-form equations exist to estimate population
size and other necessary parameters. In more complex situations, an iterative (i.e.,
starting with an initial guess, and then using a numerical optimization to improve
the fit) approach is necessary to solve the likelihood equations.

■ 8.4 POPULATION ESTIMATION: REMOVAL METHODS

8.4.1 Closed Population Removal Methods

Like mark–recapture methods, removal methods rely on sequentially sampling
the target population. During each sampling period, the number of fish captured
are recorded, and captured fish are temporarily (e.g., during monitoring surveys)
or permanently (e.g., in recreational or commercial fisheries) removed from the
population. Through the reduction in the population, catch in subsequent sam-
pling periods is reduced. The rate at which catch declines gives a measure of the
proportion of the original population that has been removed.

As with mark–recapture methods, removal methods generally rely on the popu-
lation being closed and individuals in the population having equal vulnerability
to the sampling gear. Typically, equal amounts of effort are expended during each
sampling period, and it is assumed that the capture probability is equal across all
sampling periods. Historically, regressions relating C/f to cumulative catch (Leslie
method, Leslie and Davis 1939) or cumulative effort (De Lury method, De Lury
1947) were used to estimate population size in removal experiments. These meth-
ods are still commonly used and often result in reasonable population estimates.
Currently, there is a shift away from the regression-based methods to likelihood-
based methods. The principal advantage of likelihood methods over regression
methods is that they provide means for testing some of the assumptions of the
removal method and creating models that can accommodate a relaxed set of as-
sumptions. For example, the assumption of equal catchability over all sampling
periods can be relaxed if a function can be used to describe how catchability
changes over time.
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Box 8.4 Estimation of Abundance Based on a Cormack–Jolly–Seber Model
for Open Populations

In order to determine the conservation status of desert pupfish, a graduate student performs a
3-year capture–recapture experiment on the population in a desert pool that is closed to immigra-
tion and emigration but where recruitment and mortality occur on an annual basis.

Table Capture matrix from capture–recapture experiment with desert pupfish.

Year

Fish idenfication 1998 1999 2000

1 1 1 1
2 1 1 1
3 1 1 0
4 1 1 0
5 1 0 1
6 1 0 1
7 1 0 1
8 1 0 1
9 1 0 0
10 1 0 0
11 1 0 0
12 1 0 0
13 1 0 0
14 0 1 1
15 0 1 1
16 0 1 1
17 0 1 1
18 0 1 0
19 0 1 0
20 0 1 0
21 0 1 0
22 0 0 1
23 0 0 1
24 0 0 1
25 0 0 1
26 0 0 1
27 0 0 1
28 0 0 1
29 0 0 1
30 0 0 1
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m1 = 0, m2 = 4, m3 = 10;

n1 = 13, n2 = 12, n3 = 19;

r1 = 0, r2 = 6, r3 = 0;

z1 = 0, z2 = 4, z3 = 0;

M1 = 0 (by definition), M2 = 4 + 12 · 4 = 12, M3 = not estimable;

N1 = not estimable, N2 = 12 · 12 = 36, N3 = not estimable;

p1 = not estimable, p2 =  4  = 0.33, p3 = not estimable; and

�1 =         12         = 0.92, �2 = not estimable.

6
^^ ^

^^ ^

4

12
^^ ^

0 – 0 + 13
^^

Ni = ni Mi

mi

^
^

= estimated population abundance;

Mi = mi +  Ri zi

ri

^
;

pi = mi

Mi

^ = estimated capture probability;^

�i = Mi + 1

Mi – mi + Ri

^ = estimated apparent survival;^

Bi = Ni + 1 – �i (Ni – ni + Ri) = estimated additions (births and immigration) to the population,
^ ^ ^

From these data, we define the following components of the Cormack–Jolly–Seber model for an
open population:

where Mi = number of marked animals in population at start of sample i; mi = number of marked
fish caught in ith sample; ni = number of fish caught in ith sample; Ri = number of fish caught in ith
sample that are marked and released; zi = number of fish caught before ith sample that are not
captured in ith sample but are caught at a later time; and ri = number of fish released at the ith
sample that are later recaptured.

From these components, we can estimate the following quantities:

As this example illustrates, estimating abundance for open populations is much more difficult
than for closed populations, with several important population parameters not being estimable.
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In the simplest situation, all of the above assumptions hold, and sampling is
done during two periods with equal effort. Catch (i.e., the number removed, ni) is
recorded for each sampling period. Zippin (1956, 1958; Seber 1982) showed that
the maximum-likelihood estimator in this situation is

N = 
n1

n1 – n2

.^
2

(8.19)

Note that n1 must be greater than n2 to estimate N
^
. An estimate of catchability,

q^, is given by

q  = 
n 2

n 1

.^ (8.20)

The variance estimator for N
^
 is

V(N) = 
n1

2n2
2(n1 + n 2)

(n1 – n 2)
4

.^

(8.21)

Because of the dependence on only two data points, the precision of popula-
tion estimates in this situation is often poor. Moreover, variability in catches can
result in higher C/f in the second sampling period, resulting in no estimate of
abundance. Heimbuch et al. (1997) present a method for adjusting population
estimates in two-pass sampling when many sites are visited. In their method, the
catch data are added across sites to allow an estimate of the population for all sites
together. By adding data from many sites, variations in the catch at individual sites
tend to cancel, resulting in a better estimate of average catchability. Heimbuch et
al. (1997) also present extensions to this method by which variability in individual
catchability can be accounted for, analogous to model Mh of Otis et al. (1978).

When fish are removed during three sampling periods, the following maxi-
mum-likelihood estimators for catchability and population size (Junge and
Libosvárský 1965; cited in Seber 1982) may be applied:

q  = 3X – Y –   Y 2 + 6XY – 3X 2
, and^

2X
(8.22)

N  = 6X 2 – 3XY – Y 2 + Y   Y 2 + 6XY – 3X 2
,^

18(X – Y)
(8.23)

where X = 2n1 + n2 and Y = n1 + n2 + n3.
Variance estimates and CIs for N

^
 are covered in the general case (below) of

four or more removal passes.
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When more than three removal passes are conducted, there is no closed-form
equation available for directly estimating population size from the data by means
of current maximum-likelihood methods. As in the more complex mark–recap-
ture situations, the relative likelihood of parameter values is calculated, and nu-
merical search methods are used to determine which combination of parameter
values is most likely given the observed data. When catchability (q) is assumed to
be constant over time, the results of this analysis are easy to portray graphically as
a profile likelihood (see Box 8.2). In the maximum-likelihood approach,
catchability is generally estimated directly, and N

^
 is calculated from the cumula-

tive catch and estimated cumulative proportion of the population that this repre-
sents, based on the estimated catchability (Box 8.5). The likelihood function (drop-
ping those parts of the function that are constants not affecting estimation) for
estimating q^  is (Gould and Pollock 1997)

(8.24)

where t = number of removal passes; ni = catch in ith sample; xi = cumulative catch
prior to removal pass i; qi = probability of capture in ith removal pass; and pi = 1 – qi .

Once qi has been estimated, N
^
 is estimated by

N = 
xt + 1

(1 – q t )
.^

^ (8.25)

When the cumulative removal is relatively large (e.g., greater than 30), the
asymptotic variance of q^ and N

^
 are (Seber 1982)

V(N) = , and ^ N(1 – q t)q t
^

(1 – q t)2 – {[t(1 – q)]2q t  – 1^

^ ^

^ ^

(8.26)

V(q) = .^ [(1 – q)q]2(1 – q t)

N <q (1 – q t)2 – {[t(1 – q)]2q t}>^

^ ^

^^

^

^ ^

(8.27)

loge(q |n1, n2, n3, . . . nt) = loge ( xt + 1!
n1!, n2!, n3!, . . . nt !)

+ n1loge ( q1

1 – q1 – p1p2 – p1p2q3 – . . . p1p2 . . . qt
)

+ n2loge ( q2p1

1 – q1 – p1p2 – p1p2q3 – . . . p1p2 . . . qt
)

+ n3loge ( q3p2p1

1 – q1 – p1p2 – p1p2q3 – . . . p1p2 . . . qt
) + . . . ,
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Box 8.5 Estimation of Abundance Based on the Removal Method in a Closed Population

In order to estimate the abundance of brown trout in a 50-m section of stream below a culvert, a
fishery manager conducts a three-pass removal experiment. Fish cannot move upstream because
of the culvert, and the manager places a block net on the lower section of the study reach to insure
that the population is geographically closed. All three sampling passes are conducted during the
same day by means of a backpack electrofishing unit. During sampling, 24 brown trout are caught
in the first sampling pass, 17 in the second sampling pass, and 8 in the third sampling pass.

Although the population size can be estimated applying equation (8.23), we illustrate the applica-
tion of the more general likelihood equation (8.24). Given a trial value for catchability (q) of 0.2,

A search across a range of q^ from 0.01 to 0.99 in steps of 0.01 indicates that the most likely value of
q^ is 0.40, with a log-likelihood value of –49.832. From this,   N

^
 is calculated as

N = 
49

(1 – 0.43) 
= 63,

^

with an estimated variance of

Var(N ) = 
^ 63(1 – 0.4)3(0.43)

[(1 – 0.43)2] – {[3(1 – 0.4)]2(0.42)}
= 10.55.

Confidence intervals are typically obtained from the profile likelihood of q^. From the search across
values of q^ ranging from 0.01 to 0.99 (in 0.01 increments), the log-likelihood values for q = 0.65 and
q = 0.01 differed from the log-likelihood at q^ = 0.4 by 3.841 or more (which is the critical value for
the �2 distribution with 1 df ). The population sizes corresponding to these values of q are 51 and
1,650 and represent approximate 95% CIs for N

^
.

loge(q = 0.2|n1 = 24, n2 = 17, n3 = 8) = loge ( 49!
24!17!8! ) + 24loge ( 0.2

1 – 0.2 – (0.8)(0.2) – (0.8)(0.8)(0.2) – (0.8)(0.8)(0.8)(0.2) )
+ 17loge ( (0.2)(0.8)

1 – 0.2 – (0.8)(0.2) – (0.8)(0.8)(0.2) – (0.8)(0.8)(0.8)(0.2) )
+ 8loge ( (0.2)(0.8)(0.8)

1 – 0.2 – (0.8)(0.2) – (0.8)(0.8)(0.2) – (0.8)(0.8)(0.8)(0.2) ) = 60.409.

Confidence intervals can be obtained by assuming that q^ and N
^
 are normally

distributed (equation [8.5]) or from the profile likelihood of  (e.g., Box 8.2).
Once q^ and N

^
 have been estimated, the goodness of fit of the estimates can be

assessed by comparing the expected catches with the observed catches. Expected
catch for each removal pass is predicted by

�~1 = N
^

q^; (8.28)

�~2 = N
^

q^(1 – q^); (8.29)
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�~3 = N
^

q^(1 – q^)2 . . . ; and (8.30)

�~t = N
^

q^(1 – q^)t – 1. (8.31)

Goodness of fit can then be assessed by a �2 test by comparing the observed
catches with the expected catches. This provides a useful diagnostic test to deter-
mine if the assumption of constant catchability over time is reasonable.

�2 = �
(�

i
 – �

i
)2~

�
i

~ , (8.32)

where �i = observed catch in pass i, and �~i = expected catch in pass i.
One of the more common violations of the assumptions in the removal method

is that individual fish often differ in their catchability, analogous to model Mh for
mark–recapture studies. Two approaches can be used to estimate population size
in this situation. The first approach rests on the observation that removal studies
can be viewed as a special case of mark–recapture model Mb, where the “response”
to capture is removal from the vulnerable population (this is equivalent to setting
c in model Mb equal to 1.0). Heterogeneity in individual catchability can then be
accounted for by fitting model Mbh in the Otis et al. (1978) hierarchy. The calcula-
tions for this model are complex, but program MARK includes this option.

The second approach for handling variations in catchability is to fit a time-
varying function to q^. Because fish with higher catchability tend to be captured
and removed earlier in the sampling process, the average catchability of the re-
maining population tends to decline as the population is depleted. Thus, addi-
tional parameters describing how q^ declines with each sampling pass can be esti-
mated. We refer the reader to Schnute (1983) for more detailed description of
this approach.

Several software packages are available to estimate abundance from removal
experiments. White and Burnham’s (1999) MARK handles removal data well and
has the option of fitting alternate models as described above. Van Deventer and
Platts’ (1989) MicroFish is a software package available through the American
Fisheries Society that is designed for removal studies. Its particular strength is that
removal experiments from multiple sites and multiple species can be analyzed
from a single data file.

8.4.2 Open Population Removal Methods

The application of removal methods to open populations is much more difficult
than it is for closed populations because mortality and recruitment need to be
estimated in addition to population size. Furthermore, removal methods are gen-
erally applied to open populations only when there is a fishery harvesting a sub-
stantial portion of the population. As such, the timing and magnitude of removals
are often out of the fisheries scientist’s control. Further, there is the potential
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problem of under (or over) reporting of catch, resulting in biased estimates of
population size. This is not to dissuade readers from pursuing removal methods
for open populations—this is often the only feasible approach given the data
available. Rather, we emphasize that the particular details of the data and the
fishery will determine which model is most appropriate. In this chapter, we present
a relatively simple formulation requiring minimal data to illustrate the essence of
these methods.

Consider a population that is closed to immigration and emigration but is open
to natural mortality (M), fishery harvest (C), and recruitment (R). One represen-
tation of the dynamics of the population is (Collie and Sissenwine 1983)

Nt + 1 = (Nt – Ct + Rt )e–M + Et . (8.33)

In this model, Et  represents random variations in mortality that are not in-
cluded in either catch or natural mortality (which is assumed to be constant). The
parameter Et  reflects what is often called a process error, meaning the unaccounted
variation in the underlying dynamical processes. Including this in the population
dynamic equation (8.33) is important because process error actually influences
system dynamics, and these process errors can accumulate over time. This model
implicitly assumes that recruitment and fishery removals occur at the beginning
of the year. Natural mortality operates at a constant rate for the remainder of the
year, and a proportion (e –M) survive to the beginning of the next year. Alternative
formulations can be derived for populations for which the fishery and recruit-
ment occur throughout the year (see Ricker 1977).

For the model described above, information on harvest alone is insufficient to
estimate population abundance. Additional information in the form of relative
abundance indices (e.g., C/f) for the adult stock (nt ) and recruits (rt ) are also
required. Age-structured measures of C/f and population dynamic equations can
also be used, leading to methods such as virtual population analysis or statistical
catch-at-age. We refer the reader to Ricker (1977), Edwards and Megrey (1989),
and Hilborn and Walters (1992) for a detailed discussion of these extensions.

If we assume that the expected C/f for adults and recruits is directly propor-
tional to the true population size (Nt and Rt ) and that all members of the popula-
tion are equally vulnerable to the survey gear, we have

nt = n^t�t = qNt�t , and  (8.34)

rt = r^t �t = qRt �t . (8.35)

where q = proportionality constant relating survey C/f to true abundance (i.e.,
catchability in survey); �t = measurement error term for adults with a mean of 1.0;
and �t = measurement error term for recruits with a mean of 1.0.

We have assumed that adults and recruits have equal vulnerability to the survey
gear. This assumption or a known ratio of recruit to adult vulnerability is generally
required when using these Collie–Sissenwine catch survey models (Mesnil 2003).
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A critical concept underlying equations (8.34) and (8.35) is that C/f, which is
based on samples from the entire population, is generally estimated with consid-
erable variance. The variance associated with these estimates is often termed
measurement error and, in the context of population modeling, implies that C/f
should not be treated as an exact measure of relative abundance but rather needs
to be treated as being imprecise. Using equations (8.34) and (8.35) leads to the
following dynamic equation describing the trajectory of the expected value for
adult C/f:

n^t + 1 = (n^t – qCt + r^t)e–M + �t . (8.36)

Here, �t = qEt and is the process error as it influences adult C/f. The estimation
procedure attempts to minimize these process errors as well as the measurement
errors (see Box 8.6).

Generally, M is assumed to be known and constant over time. Under the addi-
tional assumption that the measurement errors are negligible (i.e., all are close to
1.0), equation (8.36) can be rewritten in a form by which standard linear regres-
sion can be used to estimate q (and thereby Nt and Rt ). However, as Collie and
Sissenwine (1983) state, nt and rt are generally both measured with substantial
imprecision. Because of this, we recommend the methods of Collie and Sissenwine
(1983; illustrated in Box 8.6) over a regression approach because the assumption
of negligible measurement error is rarely credible.

We are not aware of any software program that handles the broad range of
situations that are likely to occur when using removal methods in open popula-
tions. As such, practitioners must either use specialized software previously devel-
oped for special cases similar to theirs or develop the models and associated es-
timation routines in a general programming environment (e.g., C++, Visual Basic,
or SAS), a spreadsheet environment (e.g., Microsoft Excel), or a specialized pro-
gramming environment designed for statistical parameter estimation (e.g., AdModel
Builder [Otter Research, Sidney, British Columbia]). Schnute et al. (1998) discuss
some of the trade-offs faced in choosing software for such modeling.

■ 8.5 BIOMASS AND YIELD ESTIMATION: SURPLUS PRODUCTION METHODS

In situations where a geographically closed population is subjected to a signifi-
cant fishery (e.g., where the population has been substantially reduced by fishing;
Hilborn and Walters 1992), it is sometimes possible to estimate biomass from the
pattern of yield (biomass of fish removed) and fishing effort over time. Conceptu-
ally, surplus production models (also known as biomass dynamic models, Hilborn
and Walters 1992) are based on the idea that the biomass in a given year (Bt)
depends on the biomass in the previous year (Bt  – 1) plus recruitment and growth
minus yield and natural mortality. It is often convenient to group recruitment and
growth into a single term representing processes that contribute to biomass. If
this production is in excess of natural mortality, the surplus production will in-
crease the biomass from one year to the next. Alternately, the surplus production
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Box 8.6 Estimation of Abundance Based on the Removal Method in an Open Population

A population of lake trout subjected to a commercial fishery was studied from 1985 to 2001 with
the goal of determining trends in abundance over time. The population is sampled each year by a
fishery-independent otter trawl survey. Data collected in the survey provide measures of relative
abundance (C/f ) for fish large enough to be vulnerable to capture in the commercial fishery
(adults) and prerecruits that are not vulnerable to the commercial fishery. The number of fish
harvested in the commercial fishery is recorded each year and is assumed to occur at the begin-
ning of the year.

Table Lake trout catch in annual otter trawl survey.

Year Catch (number of fish) Adult C/f Prerecruit C/f

1985 94,500 43.15 11.24
1986 99,154 38.46 7.99
1987 74,201 29.70 14.17
1988 65,827 32.85 19.15
1989 66,569 35.07 10.37
1990 69,000 34.38 17.56
1991 93,633 34.91 9.52
1992 78,069 31.05 14.06
1993 78,614 23.73 21.20
1994 82,258 37.11 12.41
1995 60,351 22.92 17.05
1996 48,212 23.49 13.23
1997 45,449 27.77 3.50
1998 34,020 28.58 21.12
1999 38,488 38.09 6.60
2000 44,865 32.04 8.75
2001 47,680 34.31 9.01

To proceed, we need initial values for the measurement errors (�t for the adult C/f index and �t for
the prerecruit C/f ). A good initial guess would be to set all values to 1.0, but we show the table
below with the final estimates. From these initial guesses of 1.0, we then fill in the columns for the
expected indices by dividing the observed C/f values by these multiplicative errors. The final
column in the table below is a forecast of the adult survey index at time t + 1 from the expected
index at time t, ignoring process error (see equation [8.33]). To fill in this column, a value for q
(catchability) is required. This is unknown (to be estimated), but an initial guess is needed to get
started for this quantity also. One approach is to use past experience to obtain an initial value for
exploitation rate in recent years, say 25%, and thus approximate N as four times C. Then, the initial
value for q would be N/n, perhaps based on an average of such values over years. We illustrate
calculations, however, with the final estimate for this parameter also. Once a value of q is available,
forecast values are obtained by application of equation (8.36), dropping the process error and
denoting the forecast value as ñt . For example, the forecasted value for 1986, assuming q = 0.00011
and M (natural mortality) = 0.2, is

ñ1986 = (n^1985 – qC1985 + r^1985)e–M = (46.42 – 0.000110 · 94,500 + 11.46)e–0.2 = 38.88

Note that no prediction is made for the first year of the time series (1985) because survey indices
are not available for the year prior.
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Table Forecasted values for the lake trout fishery. Given are measurement errors (�t for the adult
C/f index and �t for the prerecruit C/f); the expected, n^t , and forecasted, ñt , adult survey index; and
the expected recruitment survey index, r^t .

Year �t n^t �t  r^t ñt

1985 1.076 46.42 1.020 11.46
1986 1.032 39.68 1.007 8.04 38.88
1987 1.132 33.63 1.063 15.06 30.14
1988 0.964 31.68 0.979 18.76 33.18
1989 1.111 38.97 1.033 10.71 35.36
1990 0.969 33.32 0.984 17.28 34.68
1991 1.115 38.91 1.031 9.82 35.21
1992 0.810 25.14 0.914 12.85 31.46
1993 1.222 28.99 1.198 25.41 24.07
1994 0.709 26.29 0.902 11.20 37.46
1995 0.879 20.15 0.910 15.52 23.29
1996 1.089 25.59 1.050 13.89 23.76
1997 1.315 36.51 1.040 3.64 27.99
1998 1.017 29.07 1.013 21.39 28.78
1999 0.972 37.01 0.995 6.56 38.25
2000 1.183 37.90 1.050 9.19 32.21
2001 1.000 34.31 1.000 9.01 34.51

Assuming that M is known to be 0.2, the above model has three sets of parameters: q, which
applies to both adults and prerecruits; �t , which encapsulates measurement errors for the adult
index; and �t , which encapsulates measurement errors in the recruitment index. Parameter
estimation is accomplished by minimizing the following sum (representing the sums of squared
deviations, or errors [SSE]):

SSE = �
t  

loge(�t)2 + �
t  

loge(�t)2 + �
t  

�t
2

The first two components are directly calculated from parameter estimates that are also entries in
the above table. The values of �t , the process error, depend jointly on all the estimated parameters
and are calculated as (n^t – ñt ).Thus, q, the �s, and the �s are adjusted through an iterative search
procedure from the initial guesses so as to minimize SSE. Note that underlying this minimization
are assumptions that the process errors are normal, the logarithms of the measurement errors are
normal (i.e., the original terms are lognormal), and the variances for each of these are equal. The
terms in this sum could be weighted to represent different variances for each type of error (Collie
and Sissenwine 1983).

Outputs of the model include estimates of the above parameters, as well as the annual population
size and number of recruits entering the population. Using an Excel spreadsheet to do the
calculations, and the solver function to minimize the SSE by changing the parameters, we
obtained the following estimates for population size and recruitment.

(Box continues)
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may be harvested and still maintain the population biomass. Generally, surplus
production is related to the standing biomass; at low biomass levels, surplus pro-
duction is low due to limited recruitment. At high biomass levels, surplus produc-
tion is also generally low due to density-dependent growth, recruitment, or both.
Surplus production typically peaks at intermediate levels of biomass.

Because of the relatively simple representation of population dynamics, surplus
production methods do not require age-specific data. As such, these methods are
often used in the analysis of difficult-to-age marine fish stocks. Moreover, simulation
studies have suggested that management advice based on surplus production meth-
ods may be as robust as population estimates based on age-structured analyses using
only yield and effort data (Ludwig and Walters 1985). Although surplus production
models have not been widely used in freshwater fishery analysis, they are likely to be
applicable and beneficial in some situations for which data are limited.

We approach the problem by developing a model of the biomass dynamics, using
that model to predict fishery C/f over time, and then fine-tuning the parameters of
the model so that the predicted C/f best fits the observed time series. Hilborn and
Walters (1992) provide a thorough review of the principal approaches for fitting
surplus production models to data in order to estimate biomass, recruitment, and

Box 8.6 (continued)

Table Estimate of lake trout fishery population size (N
^

) and recruitment (R
^

).

Year N
^

R
^

1985 404,106     99,766
1986 345,247 70,078
1987 293,215 130,682
1988 275,807 163,343
1989 339,441 93,111
1990 290,035 150,535
1991 338,783 85,313
1992 220,131 110,506
1993 253,001 220,645
1994 231,912 94,364
1995 175,706 134,730
1996 223,029 120,793
1997 318,281 31,410
1998 253,196 186,325
1999 322,324 57,199
2000 330,591 79,522
2001 299,049 78,541

Collie and Sissenwine (1983) provide details on how to calculate the variance of the parameter
estimates.
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density dependence. Although not the only approach to estimation, they indicate
that the time series approach we follow here appears to be the best. Although
there are many variations of surplus production models, a common model is
(Hilborn and Walters 1992)

Bt = Bt – 1 + rBt – 1(1 – 
K

Bt – 1 ) – Ct – 1 ; (8.37)

Et

Ct ; andObserved C/ft = (8.38)

Predicted C/ft = qBt ,^^ (8.39)

where Ct = yield during year t; Et = effort during year t; r = intrinsic rate of increase;
K = carrying capacity; and q^ = catchability.

This formulation treats the observed yield as an exact measure of removals and
C/f as an inexact measure of relative abundance. Although equation (8.37) di-
rectly involves only yield information, experience has shown that parameter esti-
mation generally requires additional information on relative abundance over time.
Here, we use fishery C/f as this auxiliary information calculated according to equa-
tion (8.38) and predicted by equation (8.39). The biomass at the start of the time
series is also often estimated as a parameter in the model, allowing the iterative
solution of equations (8.37) through (8.39) in order to fit best the observed and
predicted time series of C/f. An example of the application of this approach is
provided in Box 8.7. A useful software package for surplus production modeling
is ASPIC (available at http://sefsc.noaa.gov/mprager/ASPIC.html).

■ 8.6 BIOMASS ESTIMATION

Most of the methods presented in this chapter produce estimates of numerical
abundance. In some situations, however, biomass (i.e., weight of the population)
may be a better measure of the “size” of a population. Generally, biomass is esti-
mated indirectly by multiplying the numerical abundance by the mean weight or
by applying methods such as surplus production models that directly estimate
biomass. In this section, we will cover indirect methods for estimating biomass.

In the simplest situation, biomass is estimated as

B
^
 = N

^
 · w– , (8.40)

where B
^
 = estimated biomass (g); N

^
 = estimated abundance; and w–  = mean weight

of fish in the population (g).
In this equation, N

^
 can be estimated using any of the methods presented ear-

lier, and mean weight is estimated from a random sample representative of the
size- or age-groups contained in N

^
 (Anderson and Neumann 1996).
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Box 8.7 Application of Surplus Production Modeling

The commercial fishery for a population of alewife was monitored from 1985 to 2001. Each year, the
total weight of the catch (kg) and the total effort (days fished) were recorded, providing C/f as a
measure of relative abundance. These data were analyzed using a surplus production model to
estimate carrying capacity (K), initial biomass (B0), catchability (q), and the intrinsic rate of growth (r)
for this fishery population.

Table Catch and effort data for alewife fishery.

Year       Effort (days fished)  Catch (kg) C/f (kg/d)

1985 825 90,000 109
1986 1,008 113,300 112
1987 1,411 155,860 110
1988 1,828 181,128 99
1989 2,351 198,584 84
1990 2,074 198,395 96
1991 1,877 139,040 74
1992 1,566 109,969 70
1993 1,139 71,896 63
1994 893 59,314 66
1995 1,029 62,300 61
1996 727 65,343 90
1997 658 76,990 117
1998 953 88,606 93
1999 1,012 118,016 117
2000 1,203 108,250 90
2001 1,034 108,674 105

With B0 = 800,000 kg, K = 4,000,000, q = 0.0001, and r = 0.17 as initial guesses for the parameters of
equations (8.37) and (8.39), we can predict catch and C/f as follows:

B1986 = B1985 + rB1985
^ B1985

K
– C1985

^ ^ (1 – )^

^

= 800,000 + 0.17 · 800,000 800,000
4,000,000(1 – ) – 90,000 = 818,800

C/f1986 = qB1986 = 0.0001 · 818,800 = 81.88 ~ 82
^ ^

~

Table Recursive application of equations (8.37) and (8.39) result in time series of predicted values
for the alewife fishery.

Predicted Predicted Squared
Year biomass (kg) C/f (kg/d) C/f (kg/d) deviation for C/f

1985 800,000 109 80 841
1986 818,800 112 82 961
1987 816,203 110 82 841
1988 770,784 99 77 484
1989 695,440 84 70 225
1990 594,526 96 59 1369



Abundance, Biomass, and Production 359

Predicted Predicted Squared
Year biomass (kg) C/f (kg/d) C/f (kg/d) deviation for C/f

1991 482,178 74 48 676
1992 415,227 70 42 841
1993 368,518 63 37 729
1994 353,498 66 35 961
1995 348,968 61 35 729
1996 340,818 90 34 3,136
1997 328,477 117 33 7,225
1998 302,742 93 30 3,969
1999 261,707 117 26 8,281
2000 185,270 90 19 5,184
2001 107,057 105 11 9,025

Note the discrepancy in the trend between observed C/f and predicted C/f, indicating that our
initial guesses for parameter values were not very good. We used the solver function in Excel to
perform a nonlinear search across the parameter values (i.e., B0, K, q, and r were used as the
“change cells” in solver) to find the combination of parameters that minimized the sum of squared
deviations between predicted and observed C/f. Solver returned estimates of B

^

0 = 732,506, K
^ 

=
1,160,771, q^ = 0.0001484, and r  ̂= 0.4049 with a sum of squared deviations of 1,616.7. (Note that
when C/f is rounded to the nearest 1.0, the squared deviations sum to 1,433). Based on these
parameter values as the best estimates, the predicted biomass and C/f over time is shown below.

Table Predicted values for the alewife fishery given parameter values that minimize the sum of
squared deviations.

Predicted Predicted Squared
Year biomass (kg) C/f (kg/d) C/f (kg/d) deviation for C/f

1985 732,506 109 109 0
1986 751,925 112 112 0
1987 745,852 110 111 1
1988 697,932 99 104 25
1989 629,475 84 93 81
1990 547,540 96 81 25
1991 466,259 74 69 25
1992 440,166 70 65 25
1993 440,828 63 65 4
1994 479,629 66 71 25
1995 534,265 61 79 324
1996 588,713 90 87 9
1997 640,836 117 95 484
1998 680,061 93 101 64
1999 705,480 117 105 144
2000 699,496 90 104 196
2001 703,787 105 104 1

Note that the trend in predicted C/f matches the observed trend in C/f closely after obtaining the
best estimates for B0,, K, q, and r.
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Assuming that the variance of N
^
 is estimated through methods described ear-

lier, and the variance of w– is also estimated, the variance of B
^
 is approximated as

V(B
^
) = w– 2V(N

^
) + N

^2V(w–) – V(N
^
)V(w–). V(8.41)

This approximation (Goodman 1960) is based on the assumption that N
^
 and

w– are estimated independently, an assumption that is reasonable in most cases.
Although equations (8.40) and (8.41) provide relatively simple means of ob-

taining point estimates of biomass and the associated variance, developing CIs for
B
^
 is much more difficult because the distribution of B

^
 must be known or as-

sumed. We are not aware of any general guidance in the literature suggesting a
suitable distribution for B

^
. Since B

^
 is computed as the product of two random

variables, the lognormal distribution is a reasonable choice (Aitchison and Brown
1976). Assuming a lognormal distribution, approximate 95% CI bounds for B

^
 are

e (loge(B) ± 1.96   Var(B)).
^ ^ (8.42)

In many situations, abundance and mean weight are estimated separately for
different age- or size-classes. In such situations, biomass can be estimated as

B = � Ni · wi ,
^ ^ – (8.43)

where N
^

i = estimated abundance for class i, and w–i = mean weight of fish in class i.
In this case, the variance of B

^
 is

V(B)= � [wi V(Ni) + Ni V(wi)],
^ ^– 2

^ 2 – (8.44)

and the 95% CI can be computed following equation 8.42.

■ 8.7 PRODUCTION ESTIMATION

8.7.1 Concepts and Definitions

Fish abundance parameters, such as density or biomass, are static measures of a
population’s status. That is, information on the state of the population is pro-
vided only for a single point in time. Conversely, dynamic population measures
describe parameters as rate functions over time and may be more descriptive and
meaningful for applications in fisheries science. Examples of dynamic population
parameters are rates of recruitment, growth, and mortality (Chapters 4–6). Pro-
duction is the integration of static and dynamic population measures over time,
wherein biomass, recruitment, growth, and mortality are synthesized into a single
dynamic measure. As such, production is an indicator of ecological success and is
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especially responsive to environmental change (Mann and Penczak 1986). Thus,
production rate of a fish population can be a useful measure and comparative
tool, with many valuable applications for fisheries research and management.

Production is defined as the rate of tissue elaboration over time, regardless of
whether it survives to the end of a given period (Waters 1977). It is expressed in
units of quantity/space/time, usually kilograms/hectare/year for fish populations.
Production rate represents the flow of energy through trophic levels and may also
be expressed in units of calories/hectare/year.

The methods and terminology for estimating fish production have evolved to a
generally accepted convention, and fish production estimates are routinely found
in the literature, especially for fishes of small streams and salmonid species. How-
ever, many fisheries scientists rarely consider using this assessment tool, even though
they may regularly gather the data required to estimate production. Presumably,
this occurs because the computations can be complex and cumbersome and are
more so if precision of production estimates and related parameters is estimated.
The development of computer software and availability of other technical resources
to minimize computation effort and reduce calculation error associated with the
process of estimating production may increase the utility of this tool in fisheries
science (Railsback et al. 1989; Kwak 1992).

8.7.2 Production Estimation Methods

Five methods to estimate production rate of aquatic animal populations have been
developed, refined, and accepted by ecologists (Waters 1977; Bagenal 1978;
Chapman 1978). Some of these methods were originally intended for estimating
aquatic macroinvertebrate production but were readily adapted for use with fish
populations. The five methods include two iterative summation methods, (1) the
removal summation and (2) increment summation methods; (3) the instanta-
neous growth rate method and a graphical representation, (4) the Allen curve;
and (5) the size-frequency method. Three of the methods (increment summa-
tion, instantaneous growth rate, and size-frequency) have been refined for appli-
cation to fish populations, and variance estimators for all parameters associated
with those methods have been derived. All methods except the size-frequency
method are cohort based, meaning that information on the age structure of the
fish population is required.

Sampling requirements to estimate fish production are a series of absolute den-
sity and biomass estimates (sections 8.3, 8.4, and 8.6) for a population within a 1-
year period, with the first and last sampling dates occurring approximately 1 year
apart to estimate annual production. Cohort-based methods require stratification
and separate estimates by cohort; thus, data must be collected on population age
structure. In general, production is estimated by individual cohorts for a single time
interval; then, those partial estimates are summed for all cohorts to yield a produc-
tion estimate for the entire population during the specific interval. The production
estimate for a 1-year period (annual production) is the sum of the production esti-
mates for intervals within the annual period. When the size-frequency method is
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used, individual losses from one size-group to the next are summed from mean
values over the annual period to yield a production estimate.

8.7.2.1 Summation Methods

Summation methods to estimate production stem from the concept that tissue
lost from, or accumulated by, a population over a series of time increments is
equivalent to an estimate of production. The removal summation method involves
estimating the number of individuals lost, by mortality or other removal, from a
cohort over a time interval and coupling those data with biomass information,
which results in an estimate of production for that cohort during that interval.
These are then summed over intervals and cohorts to estimate annual produc-
tion. Removal summation is not typically applied to fish populations, and algo-
rithms to estimate associated variance are not readily available. As such, we rec-
ommend the use of the more commonly used increment summation method in
preference to the removal summation method.

Similar to the removal summation method, but quantifying accumulation rather
than loss, the increment summation method sums the growth increments of a
cohort over time. The growth increment is quantified as the increase in mean
individual weight over a time interval for each cohort, and this increment is mul-
tiplied by the density of the cohort to obtain a production estimate for the cohort
during that interval. Production for each cohort is summed for the population,
and production for each interval is summed for an annual estimate.

Explicit formulae for increment summation production estimation and associ-
ated variance estimators for fish populations were developed by Newman and
Martin (1983) as

P
^
 = N

–
	w– , (8.45)

where P = production for a given cohort within a specified interval; N
– 

= estimated
arithmetic mean cohort density from time t to t + 1; and 	w–  = estimated change in
mean weight of individuals in the cohort from time t to t + 1 (i.e., w– t + 1 – w– t).

Sampling variance of the production estimate can be estimated as (Goodman
1960)

V(P
^
) = N

– 2V(	w–) + (	w–)2V(N
–

) – V(N
–

)V(	w–), (8.46)

where V(	w–) and V(N
–

) are the estimated variances of  	w– and N
–

, respectively.
Algorithms to estimate variance of 	w– and N

–
 are found in Newman and Mar-

tin (1983) and require estimates of variance for each density and mean weight
estimate (sections 8.3 and 8.6). The statistical software Pop/Pro (Kwak 1992; avail-
able on CDROM) includes a module to estimate fish production by the incre-
ment summation method according to cohort and time interval, including re-
lated parameters and associated variances.
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8.7.2.2 Instantaneous Growth Rate and Allen Curve Methods

The instantaneous growth rate method was initially developed to estimate pro-
duction of fish populations (Ricker 1946; Allen 1949). By this method, produc-
tion is estimated as simply the product of the estimated instantaneous growth rate
and estimated mean biomass as

P
^
 = G

^
B
–

, (8.47)

where P
^
 = estimated production for a given cohort within a specified interval,

G
^
 = estimated instantaneous growth rate for the cohort from time t to t + 1 (i.e.,

loge w
–

t + 1 – loge w
–

t), and B
–

 = estimated arithmetic mean cohort biomass from time
t to t + 1 (i.e., B

^

t  + B
^

t + 1)/2).
From Newman and Martin (1983), the variance of the production estimate

may be estimated as

V(P
^
) = V(B

–
)G

^2 + V(G
^
)B

–2, (8.48)

where V(B
–

) and V(G
^
) are variances of the mean biomass and instantaneous growth

rate, respectively. The variance of mean biomass is estimated as

V(B
–

) = [V(B
^

t) + V(B
^

t + 1)]/4 , (8.49)

where V(B
^

t) and V(B
^

t + 1) are the variances of biomass at times t and t + 1, respectively.
The variance of the instantaneous growth rate may be estimated as

V(G
^
) = V(loge w

–
t) + V(loge w

–
t + 1), (8.50)

where V(loge w
–

t) and V(loge w
–

t + 1) are variances of the natural logarithms of esti-
mated mean weights of individuals of the cohort at times t and t + 1, respectively.
By using a Taylor series expansion (delta method; Seber 1982; Cone and Krueger
1988), V(loge w

–
t) can be approximated as

V(loge w
–

t) = V(w– t)/w– t
2. (8.51)

Mean annual density or biomass estimates (and their variances) computed
from multiple intervals of different duration must be weighted according to the
number of days in each interval (i.e., equations [8.47] and [8.48] must be modi-
fied) and should be computed following formulae in Newman and Martin (1983).
Fish production, including related parameters and associated variances, can be
estimated according to cohort and time interval by the instantaneous growth
rate method by means of Pop/Pro statistical software (Kwak 1992). Additional
algorithms are available in the software documentation. An example calcula-
tion of fish annual production estimated by the instantaneous growth rate method
is presented in Box 8.8.
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Box 8.8 Production Estimation Based on the Instantaneous Growth Rate Method

Density, mean weight, and biomass (and associated variances) of a brook trout population in Valley
Creek, Minnesota, were estimated in a stream reach with an area of 0.181 ha on four dates between
March 1974 and March 1975 (Waters 1999). Population statistics for two of these dates are pre-
sented below in order to illustrate how to estimate production using the instantaneous growth rate
method.

Table Population statistics for brook trout in Valley Creek, Minnesota.

Age-class Density Mean weight Biomass
and total (N

^

) V(N
^

) (w–, g) V(w– ) (B
^

, g) V(B
^
)

Sampling date: 8 March 1974
1 277.85 1,336.05 6.86 0.13 1,905.34 75,455.97
2 157.54 317.71 28.56 0.79 4,499.83 222,126.45
3 36.11 34.00 107.23 19.89 3,872.13 469,764.75
4 11.17 13.16 170.05 42.09 1,898.89 350,364.34

Total 482.67 1,700.92 12,176.19 1,117,711.51

Sampling date: 29 July 1974
1 276.45 553.56 24.27 0.62 6,709.17 306,074.53
2 68.08 94.58 77.31 2.49 5,262.90 278,582.66
3 9.76 7.64 146.18 100.67 1,427.00 167,558.97
4 8.12 1.11 194.72 1.67 1,582.12 30,259.81

Total 362.41 656.89 14,981.19 782,475.97

To estimate production for the age-1 cohort during this interval, we follow equation (8.47) as

P
^

= GB
–, or

P
^

= (loge24.27 – loge6.86)[(6,709.17 + 1,905.34)/2] = 5,442.36g.

where P
^

 is the estimated production and G is the estimated instantaneous growth rate for a given
cohort within a specified interval. To estimate the variance of P

^
, we begin by estimating the

variance B
–

 of  from equation (8.49) as

V(B
–

) = [V(Bt) + V(Bt + 1)]/4, or
V(B

–
) = (75,455.97 + 306,074.53/4 = 95,383.62g.

Allen (1951) extended the instantaneous growth rate method to a graphical
form to estimate production in what has become known as the Allen curve method.
The Allen curve is a growth–survivorship curve for a given cohort, wherein the
number of surviving individuals is plotted against the mean weight of those indi-
viduals (Figure 8.6). Following this configuration, the biomass of the cohort can
be estimated at any point in time on the curve as the corresponding product of
number of individuals (or density) and their mean weight. Likewise, the area
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Then, we estimate the variance of G from equation (8.50) as

V(G) = V(logew–t) + V(logew–t + 1), expanded by incorporating equation (8.53) as
V(G) = V(w–t)/w–t

2 + V(w–t + 1)/(w–t + 1)2, or
V(G) = 0.13/6.862 + 0.62/24.272 = 0.003815.

Now, we may employ equation (8.48) as

V(P
^

) = V(B
–

)G2 + B
–2V(G), or

V(P
^

) = (95,382.62)(loge24.27 – loge6.86)2 + [(6,709.17 + 1,905.34)/2]2(0.003815) = 223,058g.

The sampling area was 0.181 ha, so to convert our production estimate to a standard area unit (ha),
we divide by the area, and to convert to a standard mass unit (kg), we divide by 1,000.

 P
^

 = 5,442.36g/0.181 ha/1,000 = 30.1 kg/ha.

Whenever you multiply a statistic by a constant, you multiply the variance of that statistic by the
constant squared. Thus, to convert the variance of our production estimate to standard units, we
divide by the area (0.181 ha) squared and divide by 1,000 squared as

V(P
^

) = 223,058/0.1812/1,0002 = 6.8 kg/ha.

Our production estimate ± approximate 95% CIs [±1.96V(P
^

)0.5] for this cohort during this interval is
30.1 ± 5.1 kg/ha. This procedure is then repeated for the other age-classes to estimate production
for the population (rounded to the nearest tenth) during this interval as 62.8 ± 7.4 kg/ha, as below.

Table Production estimate for population of brook trout during first time interval.

Age-class Production (kg/ha ± 95% CI)

1 30.068 ± 5.111
2 26.856 ± 4.293
3 4.536 ± 2.664
4 1.303 ± 0.859

Total 62.763 ± 7.240

Note that CIs are not additive, and variances should be summed to compute a CI for a total. The
entire procedure is then repeated for the other two intervals within the annual period to estimate
annual production and its CI.

under the curve may be calculated in corresponding units as production of the
cohort during the specific interval plotted. The Allen curve is rarely presented in
recent literature, most likely because explicit variance estimators have not been
derived for it and the quantitative form of this concept, the instantaneous growth
rate method, is more precise and relatively easy to apply using software applica-
tions. Nonetheless, examination of Allen curves can be an instructive means to
visualize and elucidate production dynamics of a fish population.
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8.7.2.3 Size-Frequency Method

The size-frequency method to estimate production was first developed by Hynes
(1961) as an alternative means to estimate production when cohort identification
was not possible; it was formerly also referred to as the Hynes method. Conceptu-
ally, the method is similar to the removal summation method, except that the size-
frequency method sums tissue losses between successive size-groups rather than
over time intervals. Originally, the method was used to approximate production
roughly for multispecies assemblages of aquatic animals, but subsequent criteria
and assumptions, established to improve the method, restrict its practical applica-
tion to single species or closely related species with similar life histories (Waters
1977; Krueger and Martin 1980).

Production is estimated by the size-frequency method for fishes as (Garman
and Waters 1983)

(8.52)

where P = production for a given population or multispecies group within a speci-
fied interval, N

–
 = estimated mean density (arithmetic mean of estimates) for a

specific length-group, w– = estimated mean weight (arithmetic mean of estimates)
of individuals in a specific length-group, k = index for length-groups, c = number
of length-groups, and CPI = the cohort production interval (average maximum
age of fish in the population or multispecies group in years).

Estimated variance of the production estimate is computed as

Figure 8.6 A generalized Allen curve depicting growth–survivorship for a fish cohort (after
Allen 1951; Waters 1977). Production for the time interval is estimated as the area under the
curve (shaded), and biomass at any point in time (dark-shaded area) is the product of the
number of individuals (or density) and their mean weight.
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(8.53)

where V(N
–

) and V(w–) are variances of mean density and mean weight, respec-
tively, for length-groups. If the production period spans more than a single time
interval (more than two samples), then mean density and mean weight estimates
(and associated variances) must be weighted by interval length (days) according
to algorithms provided by Garman and Waters (1983). An example calculation of
fish annual production estimated by the size-frequency method is presented in
Box 8.9.

8.7.3 Production to Mean Biomass (P/B
–

) Ratio

The annual production to annual mean biomass (P/B
–

) ratio is of special interest
as an ecological index (also referred to as the turnover ratio) and as a simple
conversion factor to approximate production (Waters 1977). Based on the premise
that P/B

–
 is relatively constant for an organism or related organisms, it has been

suggested that production may be approximated from a biomass estimate using
the P/B

–
 ratio as a multiplier. The ratio of P/B

–
 for most fish species varies from 0.2

to 4.0. However, P/B
–

 can be quite variable within and among species (Waters
1977, 1999; Mann and Penczak 1986; Elliott 1994) and may vary with the number
of cohorts (or life span) of a population (Waters 1992; Kwak and Waters 1997).
Thus, this method should be applied carefully and considered an imprecise ap-
proximation of production. The exact P/B

–
 ratio to employ for such estimates

should be species specific and may be refined further if the number of cohorts in a
population is known (Waters 1992; Kwak and Waters 1997). Estimates of mean an-
nual biomass should be weighted by interval duration if more than a single interval
is included. Newman and Martin (1983) present formulae for estimating mean
annual biomass and its variance, as well as a variance estimator for the P/B

–
 ratio.

8.7.4 Production Estimates in Practice

In general, if age data are available, the instantaneous growth rate method is the
preferred approach to estimate fish production and associated parameters; other-
wise, the size-frequency method may be used. Estimating production using the P/B

–

ratio should be used only when data are lacking for application of more precise
methods. Computer software is available for using the increment summation or
instantaneous growth rate methods (Kwak 1992; available at http://www4.ncsu.
edu/~tkwak), and a spreadsheet application can facilitate calculations by other
methods. Estimates of variance (precision or sampling error) should be reported
for all estimates of production and related population parameters as approximate
95% CIs.

V(P) = (0.5c)2^ –

– –

k = 2

c – 1 ––

– – – –

{ (w1 + w2)
2V(N1) + V(w1)(N1 – N2)

2

�[(wk – 1 – wk + 1)
2V(Nk) + V(wk)(Nk – 1 – Nk + 1)

2]– – –
+

+ (wc – 1 – wc)
2V(Nc ) + V(wc )(Nc – 1 – Nc )

2– – – – – – } (1/CPI)2 ,



368 Chapter 8

Box 8.9 Production Estimation Based on the Size-Frequency Method

Density and mean weight (and associated variances) of a rainbow trout population in Valley Creek,
Minnesota, were estimated in a stream reach on three dates between April 1977 and April 1978
(Garman and Waters 1983). The catch data were broken into 10 size-groups in order to allow
investigators to estimate production using the size-frequency method.

Table Density and weight statistics based on three collection dates for rainbow trout population,
Valley Creek, Minnesota.

Length- Mean density Mean weight Mean biomass
group (N

–
/ha) V(N

–
) (w–, g) V(w– ) (B

–
, g/ha)

1 260.2 2,653.5 3.2 0.2 832.6
2   281.7 1,491.4 6.9 0.1 1,943.7
3 144.9 182.5 12.6 0.1 1,825.7
4 88.8 145.9 27.9 1.4 2,477.5
5 67.7 49.5 49.9 5.1 3,378.2
6 43.1 19.5 75.7 45.0 3,262.7
7 55.9 601.4 109.5 24.8 6,121.0
8 26.9 61.2 158.6 11.8 4,266.3
9 19.8 104.2 196.0 39.9 3,880.8
10 15.0 0.2 260.8 13.1 3,912.0

To estimate annual production for the population, we follow equation (8.52), using 3 years for the
cohort production interval (CPI).

P
^

= 0.5(10)[3.2(260.2 – 281.7) + 6.9(260.2 – 144.9) + . . .  + 260.8(19.8 – 15.0)]/(1/3)
= 5(–68.80 + 795.57 + 2,430.54 + 2,153.88 + 2,280.43 + 893.26 + 1,773.90

+ 5,725.46 + 2,332.40 + 1,251.84)(0.333)
= 32,581.52 g/ha/year.

Variance of P
^

 is then estimated according to equation (8.53) as

V(P) = [0.5(10)2] {(3.2 + 6.9)2(2,653.5) + 0.2(260.2 – 281.7)2 + [(3.2 – 12.6)2(1,491.4) +
0.1(260.2 – 144.9)2] + 7 other summation terms + [(196.0 – 260.8)2(0.2) +
13.1(19.8 – 15.0)2] } (1/3)2

= 25(270,683.5 + 92.5 + 133,109.5 + 84,203.5 + 211,333.0 + 123,750.9 + 75,532.9
+ 4,139,575.9 + 473,291.6 + 1,094,002.6 + 1,141.6)0.11

= 18,168,473.1 g/ha/year.

To convert our production estimate to a standard mass unit (kg), we divide by 1,000:

 P
^

 = 32,581.52/1,000 = 32.582 kg/ha/year.

The variance is converted as

V(P) = 18,168,473.1/1,0002 = 18.168 kg/ha/year.

Thus, our annual production estimate ± approximate 95% intervals  [±1.96V(P)0.5] for this population
and year is 32.582 ± 8.354 kg/ha/year.
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Many assumptions and criteria for applying these methods have been defined
and should be considered with application (Waters 1977; Newman and Martin
1983). We suggest that subjective decisions encountered when estimating fish
production should be resolved to be conservative, so that the direction of error
will be clear, and estimates may be considered minimums. The biomass estimate
of age-0 fish, newly recruited into the population, at first sampling should be
considered a conservative estimate of production for that cohort during that in-
terval. Negative estimates of production, resulting from negative growth (i.e.,
weight loss), should be interpreted as no production (zero) for that cohort and
interval when using summation methods or the instantaneous growth rate method.
However, negative losses (i.e., increase in numbers between size-groups) should
be included in the sum when applying the size-frequency method.

Generally, the greater the number of fish population estimates (density and
biomass) that are integrated into an annual production estimate, the more accu-
rate that estimate will be. The minimum number of two population estimates will
yield a less accurate production estimate than will one based on more estimates
within the annual period. A reasonable, general approach to estimating popula-
tions over a 1-year period for an annual production estimate is to conduct one
estimate prior to spawning (e.g., spring for many temperate fishes), another near
the end of the primary growing season (e.g., fall for temperate areas), and a third
1 year after the first estimate (e.g., spring or fall).

Fish production estimates are valuable statistics for understanding population
dynamics and elucidating ecological relationships and have great potential for
improving fisheries management. Waters (1992) reviewed and proposed the ap-
plication of annual production, annual P/B

–
 ratio, and ecotrophic coefficient (an-

nual angler harvest/annual production) to management of stream-dwelling trout
fisheries. Incorporating production dynamics into fish assessment and monitor-
ing may provide a broader perspective on the dynamics of harvested fishes. Thus,
regulation and assessment of harvest as a proportion of fish tissue produced on
an annual basis provides an alternative to the standard approach, based solely on
fish density or biomass.

■ 8.8 FUTURE DIRECTIONS

In many studies of fish populations, information is often available beyond that
needed to apply the methods outlined in this chapter. In particular, information
on the age structure of the population is often collected. When the abundance of
a population is estimated on an annual basis, knowledge of the prior age compo-
sition is helpful in constraining estimates. As a simple example, the abundance of
a cohort cannot be larger than the abundance in the prior year (in a closed popu-
lation). The constraints imposed by age structure relationships can help improve
the precision and accuracy of population estimates. Application of auxiliary infor-
mation to population estimation opens up a diversity of models. Powerful statisti-
cal catch-at-age models (Hilborn and Walters 1992) are an example of a frame-
work that incorporates the extensive information that is often available on
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intensively studied fish populations. Because of the complexity of such models
and their intensive data needs, such methods are generally applied to marine fish
stocks and some stocks in large inland waters (e.g., Great Lakes) where the cost of
data collection and analysis is commensurate with the value of the fishery.

Even within the scope of the methods presented in this chapter, there are po-
tential gains to be made by combining data from different sources. In particular,
the combination of removal methods with marking fish holds promise for improv-
ing population estimates. The methods illustrated here for analyzing mark–re-
capture data do not make direct use of measures of sampling effort. Removal
methods, on the other hand, explicitly assume effort is constant or accommodate
changes in effort by standardizing catch to C/f.

The estimation of the variance and CIs for population estimates is an area
where substantial improvements need to be made. Although the likelihood meth-
ods presented here have a long history of use, and provide a strong statistical basis
for estimation, many of the formulae are strictly valid only for large sample sizes
or are approximations to the “full” formulae. In many applications, the target
population itself may be small (e.g., the number of fish in a 100-m stretch of
stream) or the number of marked or recaptured fish is small to moderate (i.e.,
less than 30). In situations like these, variance estimates and CIs should be inter-
preted with caution.

A trend we see emerging is the incorporation of a Bayesian approach to data
analysis. In many situations, researchers and managers have knowledge from prior
experience that is pertinent to the population being studied. Incorporating the
experience and beliefs of experts can improve population estimates in many cases
(Hilborn and Walters 1992). The Bayesian approach, however, presents several
practical concerns regarding how best to represent prior information.

■ 8.9 CONCLUSIONS

In this chapter, we illustrate several approaches for estimating fish abundance,
biomass, and production. A foundational concept is that additional information
beyond C/f is generally needed to provide accurate population estimates. The
incorporation of this information inevitably entails making assumptions about
the sampling regime and creating models of this idealized process. Therefore, it
is important to test assumptions, where possible, and apply models that best rep-
resent the data obtained. Some assumptions can be relaxed by applying alternate
models, but some are essential to obtain any valid estimate. The key to meeting
critical assumptions is often the judicious planning of the sampling program and
the careful application of field methods. Given the wide array of sampling chal-
lenges facing fisheries scientists, this chapter should be viewed as an entry into
some of the more common and basic methods. Every investigation poses its own
set of challenges, but often these problems are not unique. By building on the
base developed here, we hope to provide readers with the confidence to face the
diversity of situations they are likely to encounter in their professional work.
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Appendix Shortest 95% confidence interval (CI) for the population estimate N
(Reproduced from Chapman 1948).

Confidence intervals for sample sizes of 50 or less are based on the Poisson distribution. The number of
recaptures is denoted by m, and estimates of the CI for N are obtained by multiplying the table values by
the product of the number of fish caught in the first and second sample (i.e., n1 · n2).

CI CI

m  Lower limit Upper limit m Lower limit Upper limit

0 0.0885 26 0.02478 0.0563
1 0.0720 19.489 27 0.02408 0.0539
2 0.0767 2.821 28 0.02342 0.0516
3 0.0736 1.230 29 0.02279 0.0495
4 0.0690 0.738 30 0.02221 0.0475
5 0.0644 0.513 31 0.02165 0.0457
6 0.0600 0.388 32 0.02112 0.0440
7 0.0561 0.309 33 0.02061 0.0425
8 0.0526 0.256 34 0.02014 0.0410
9 0.0495 0.217 35 0.01968 0.0396
10 0.0468 0.188 36 0.01925 0.0384
11 0.0443 0.165 37 0.01883 0.0372
12 0.0420 0.147 38 0.01843 0.0360
13 0.0400 0.133 39 0.01805 0.0350
14 0.0382 0.121 40 0.01769 0.03396
15 0.0365 0.111 41 0.01733 0.03300
16 0.0350 0.1020 42 0.01700 0.03210
17 0.03362 0.0945 43 0.01668 0.03124
18 0.03233 0.0880 44 0.01636 0.03043
19 0.03114 0.0823 45 0.01606 0.02966
20 0.03004 0.0773 46 0.01578 0.02892
21 0.02901 0.0729 47 0.01550 0.02822
22 0.02806 0.0689 48 0.01523 0.02755
23 0.02716 0.0653 49 0.01498 0.02691
24 0.02632 0.0620 50 0.01475 0.02625
25 0.02552 0.0591



Size Structure
Robert M. Neumann and Micheal S. Allen

■ 9.1 INTRODUCTION

Size structure analysis is one of the most commonly used fisheries assessment
tools. The size structure of a fish population at any point in time can be consid-
ered a snapshot that reflects the interactions of the dynamic rates of recruitment,
growth, and mortality. Thus, length-frequency data provide valuable insight into
the dynamics of fish populations and help identify problems such as inconsistent
year-class strength, slow growth, or excessive mortality (Anderson and Neumann
1996). In most cases, a thorough interpretation of size structure data is comple-
mented by other population assessment tools, such as catch per unit effort (C/f),
age-and-growth analysis, recruitment analysis, mortality, and body condition.

Proper analysis and interpretation of size structure data should begin with a
clear understanding of how, when, and where data were collected. Specifically, a
fisheries scientist should know how size structure data are influenced by the sam-
pling gear, time of the year, and location where fish were sampled. The fisheries
scientist should also consider whether an appropriate sample size was obtained to
estimate size structure reliably.

Fisheries scientists use several techniques to analyze size structure data. In the
simplest case, a length-frequency histogram (see section 9.2) is constructed or a
size structure index is calculated. Oftentimes, the primary objective is to compare
size structure among samples. In these cases, a fisheries scientist may be inter-
ested in answering several questions. For example, does the size structure of white
crappie populations differ among water bodies? Did the size structure of a rain-
bow trout population change over time in response to a management action? Are
the size structures obtained from a channel catfish population different between
two or more sampling gears? What factors influence the size structure of walleye
populations?

■ 9.2 PRESENTATION OF SIZE STRUCTURE DATA

Three common measures of fish length include total, fork, and standard length.
Total length is measured from the anterior-most part of the fish to the tip of the
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longest caudal fin ray when the caudal fin is compressed. In this chapter, all lengths
are reported as total length. Fork length is measured from the anterior-most part
of the fish to the median caudal fin rays, which typically make up the concave
portion in a forked caudal fin. Standard length is measured from the anterior-
most part of the fish to the end of the caudal peduncle. Anderson and Neumann
(1996) described measurements of fish length in detail.

Size structure data are most commonly reported using length-frequency histo-
grams and stock density indices (Anderson and Neumann 1996). Length-frequency
histograms show the number or proportion of fish collected in various length
categories. The most commonly used length-frequency histogram is the abso-
lute length frequency, which shows the number of fish collected in various length
categories (Figure 9.1A). A relative-frequency distribution shows the propor-
tion of all fish that are represented in each length category (Figure 9.1B). For
example, in Figure 9.1A, 28 fish are in the 7–9-cm length-group (labeled 8 cm),
which represent about 10% of the total number of fish collected (Figure 9.1B).
Relative-frequency distributions are useful for comparing length categories that
contain different sample sizes, which may result from variable sampling effort
or population abundance. An alternative length-frequency distribution is based
on C/f (Figure 9.1C), which is used to indicate relative abundance of fish in
each length category (see Chapter 7 for treatment of C/f data).

Selection of interval widths is important for interpretation of length-frequency
histograms. Anderson and Neumann (1996) suggested using 1-cm intervals for
species that reach 30 cm, 2-cm intervals for 60-cm species, and 5-cm intervals for
150-cm species. Effects of interval width on the characteristics of a length-frequency
histogram are demonstrated in Figure 9.2. In Figure 9.2, a 1-cm length interval
shows more detail with a clear mode at 10 cm, which likely represents age-0 fish
collected during fall. The 2-cm interval width shows the mode of young fish less
clearly, and 4-cm interval widths mask the first mode completely.

Cumulative-frequency distributions provide an alternate view of length-fre-
quency histograms and are used in some statistical tests comparing two or more
distributions. In Figure 9.3, length-frequency histograms of age-0 walleye from
three populations are presented. The respective cumulative-frequency distribu-
tions are shown in Figure 9.4. Differences in the size structure of walleye among
populations are apparent in the length-frequency histograms and in the cumula-
tive-frequency distributions. In Island Lake, the cumulative-frequency line ap-
proaches 100% at a shorter length than does the cumulative-frequency line in
Lake Thompson because the Lake Thompson sample contains larger walleye (>200
mm) than does Island Lake. The cumulative-frequency lines clearly show that the
sample for Lake Mitchell contains longer walleye overall than do the other lakes,
but the maximum length of walleye is the same between Lake Mitchell and Lake
Thompson (i.e., the cumulative-frequency lines both approach 100% at 210 mm).
Another interpretation is that approximately 50% of the walleye in Island Lake
and Lake Thompson are shorter than 160 mm, whereas 50% of the walleye in
Lake Mitchell are shorter than 190 mm.
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Figure 9.1 Length-frequency histograms for black crappie collected from Lake Jeffords,
Florida. Data are displayed using (A) absolute length frequency, (B) relative length frequency,
and (C) catch per unit effort.
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Figure 9.2 Absolute- length-frequency histograms constructed with length interval widths of
1, 2, and 4 cm for black crappie from Lake Jeffords, Florida.
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Figure 9.3 Absolute-length-frequency histograms for age-0 walleye collected from three
South Dakota lakes (data courtesy of the South Dakota Department of Game, Fish and Parks).
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Stock density indices are used to describe size structure. A detailed review of
stock density indices and their calculation can be found in Anderson and Neumann
(1996). Proportional stock density (PSD) is calculated as

PSD =
Number of fish � quality length

Number of fish � stock length
× 100. (9.1)

Relative stock density (RSD) is expressed as

RSD =
Number of fish � specified length

Number of fish � stock length
× 100, (9.2)

where the specified length often refers to preferred, memorable, or trophy length.
Relative stock densities of preferred-, memorable-, and trophy-length fish are re-
ported as RSD-P, RSD-M, and RSD-T, respectively. The standard convention is to
report stock density index values to the nearest whole number without a percent

Figure 9.4 Cumulative-frequency distributions for age-0 walleye collected from three South
Dakota lakes (data courtesy of the South Dakota Department of Game, Fish and Parks). The
respective length-frequency distributions are shown in Figure 9.3.
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symbol. Minimum stock, quality, preferred, memorable, and trophy lengths for
many species are provided in Anderson and Neumann (1996) and Bister et al.
(2000). In traditional stock density index calculations, it is important to empha-
size that stock, quality, preferred, memorable, and trophy lengths are minimum
lengths. For example, stock and quality lengths for largemouth bass are 20 and 30
cm, respectively. Thus, in a sample of largemouth bass, all fish greater than 20 cm
are stock length, and all fish greater than 30 cm are quality length. Length-fre-
quency data can also be indexed using incremental stock density indices (Ander-
son and Neumann 1996).

The use of PSD alone to index size structure can often lead to loss of data
sensitivity. For example, two largemouth bass populations can have PSD values of
60, even though one population may be quite different from the other when the
length-frequency histograms are inspected. This is because quality length includes
all fish greater than or equal to quality, preferred, memorable, and trophy length.
Consider two populations that both have 30 quality-length fish. In one popula-
tion, all 30 quality-length fish may be between quality and preferred length, whereas
in the other, 20 may be between quality and preferred length, and 10 may be
between preferred and memorable length. This example illustrates the impor-
tance of calculating other stock density indices (e.g., RSD-P) to index size struc-
ture precisely. Fisheries scientists should calculate the stock density index for the
largest length category of interest, given an appropriate sample size.

Gustafson (1988) provided a formula and easy-to-use tables for determining
80% and 95% confidence intervals around stock density index values (Tables 9.1,
9.2). Confidence interval widths depend on sample size and the magnitude of the
stock density index value. Although confidence intervals provide a measure of
variation around stock density index values, they should not be used as a test for
determining statistically significant differences between two or more values, pri-
marily because confidence intervals for index values with unequal sample sizes
were derived from distributions with unequal variances. Trippel and Hubert (1990)
cautioned against the use of confidence interval overlap as a test for differences
between means unless variance is pooled. Statistical treatment of stock density
index values is presented in section 9.4.

■ 9.3 COLLECTION OF SIZE STRUCTURE DATA

In an ideal situation, the size structure of a fish population determined from
samples would be the same as the true size structure of the fish population. How-
ever, when fisheries scientists collect a sample of fish, the size structure obtained
from that sample is often different from the true size structure of the fish popula-
tion. Size structure from samples can be misrepresentative of the true population
because the lengths of fish collected may depend on the type of sampling gear
used, the season in which the fish were collected, and the location chosen to
collect the fish. To overcome these effects, fisheries scientists use standardized
sampling so that changes in size structure over time and comparisons of size struc-
ture among water bodies can be adequately assessed.
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9.3.1 Standardized Sampling for Size Structure Data

Willis and Murphy (1996) emphasized the importance of standardized sampling
methods because of the numerous gear-, season-, and location-related effects on
sampling data for many fishes. They recommended that standardized sampling
should consider the use of an effective gear for the fish species being sampled,
that the gear be used during an effective time of the year, and that gears be set in
standard locations from year to year. Thus, long-term data sets can be established,
and trends in sample variables can be monitored over time.

Many fishery management activities focus on the adult portion of a popula-
tion, whether the goal is to increase abundance of adult fish, increase size struc-
ture, or manipulate the adult stock to influence predator–prey dynamics. In cases
in which changes in the adult portion of a population are being investigated, the
use of a gear that effectively samples fishes that are stock length (see section 9.2)
and greater is recommended. Rarely does one gear type effectively sample all
lengths of fish in a population. Thus, investigations focusing on recruitment and
year-class strength, for which the capture of juvenile fishes is necessary, may re-
quire a gear different than that used to capture adult fish. Because each gear

Table 9.1 Approximate confidence intervals (plus or minus) for proportional stock densities
(PSD) as a function of sample size (N) of stock-length fish at the 80% confidence interval. Values
have been omitted when sample sizes are insufficient for a normal approximation to the
binomial distribution (from Gustafson 1988).

Estimated PSD

N 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

10 30
15 22 22 22 22 22 22 22
20 16 17 18 18 18 19 18 18 18 17 16
25 13 14 15 15 16 16 16 16 16 15 15 14 13
30 12 13 13 14 14 14 14 14 14 14 13 13 12
35 10 11 12 12 13 13 13 13 13 13 13 12 12 11 10
40 9 10 11 11 12 12 12 12 12 12 12 11 11 10 9
45 8 9 10 10 11 11 11 11 11 11 11 10 10 9 8
50 7 8 9 9 10 10 10 11 11 11 10 10 10 9 9 8 7
55 6 7 8 9 9 10 10 10 10 10 10 10 9 9 8 7 6
60 6 7 8 8 9 9 9 9 10 9 9 9 9 8 8 7 6
65 6 7 7 8 8 9 9 9 9 9 9 9 8 8 7 7 6
70 6 6 7 8 8 8 9 9 9 9 9 8 8 8 7 6 6
75 5 6 7 7 8 8 8 8 8 8 8 8 8 7 7 6 5
80 5 6 7 7 7 8 8 8 8 8 8 8 7 7 7 6 5
85 5 6 6 7 7 7 8 8 8 8 8 7 7 7 6 6 5
90 5 6 6 7 7 7 7 8 8 8 7 7 7 7 6 6 5
95 5 5 6 6 7 7 7 7 7 7 7 7 7 6 6 5 5
100 3 5 5 6 6 7 7 7 7 7 7 7 7 7 6 6 5 5 3
120 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 5 5 4 3
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type, and configurations within a specific gear type, may select for different sizes
of fish, combining data from several gears to determine size structure is not rec-
ommended. Rather, standard gears should be used that will allow for comparisons
of size structure over time or among water bodies.

9.3.2 Effects of Gear Type on Size Structure

Size selectivity of a particular gear can be related to the physical dimensions of a
mesh, reaction of fish to a gear, and the location in a water body where the gear is
used. Much research has been conducted to achieve a better understanding of
the size selectivity of various sampling gears. Hubert (1996) provided information
on the size and seasonal biases of many passive gears used in fisheries research.

With gill nets, only a limited range of lengths are sampled within a given mesh
size, with fish of a particular length being held most securely. Fisheries scientists
should be aware of mesh-size selectivity and mesh-size efficiency to interpret size
structure data collected with gill nets properly. Hubert (1996) provided a detailed
explanation of mesh-size efficiency and selectivity and referenced methods to
correct size structure data from gill nets. Experimental gill nets, which include

Table 9.2 Approximate confidence intervals (plus or minus) for PSD as a function of sample
size (N) of stock-length fish at the 95% confidence interval. Values have been omitted when
sample sizes are insufficient for a normal approximation to the binomial distribution (from
Gustafson 1988).

Estimated PSD

N 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

10 48
15 34 35 35 36 35 35 34
20 26 27 28 29 29 29 29 29 28 27 26
25 21 22 23 24 25 25 25 25 25 24 23 22 21
30 19 20 21 21 22 22 22 22 22 21 21 20 19
35 15 17 18 19 20 20 20 20 20 20 20 19 18 17 15
40 14 15 17 17 18 18 19 19 19 18 18 17 17 15 14
45 13 14 15 16 17 17 17 17 17 17 17 16 15 14 13
50 11 12 13 14 15 16 16 16 16 16 16 16 15 14 13 12 11
55 10 12 13 14 14 15 15 15 15 15 15 15 14 14 13 12 10
60   9 11 12 13 14 14 14 15 15 15 14 14 14 13 12 11   9
65   9 10 12 12 13 13 14 14 14 14 14 13 13 12 12 10   9
70   9 10 11 12 12 13 13 13 13 13 13 13 12 12 11 10   9
75   8 10 11 11 12 12 13 13 13 13 13 12 12 11 11 10   8
80   8   9 10 11 12 12 12 12 12 12 12 12 12 11 10   9   8
85   8   9 10 11 11 12 12 12 12 12 12 12 11 11 10   9   8
90   7   9 10 10 11 11 11 12 12 12 11 11 11 10 10   9   7
95   7   8   9 10 10 11 11 11 11 11 11 11 10 10   9   8   7
100   5   7   8   9 10 10 11 11 11 11 11 11 11 10 10   9   8   7   5
120   5   6   7   8   9   9   9 10 10 10 10 10   9   9   9   8   7   6   5
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several mesh sizes, are often used to sample a broad length range of the species
under consideration. The use of experimental gill nets does not ensure that the
size structure of the collected fish will be representative of the true size structure
of the fish population because mesh-size selectivity and efficiency may still influ-
ence the sample size structure. Size selectivity may be reduced when the mesh size
and twine diameter complement is carefully chosen and evaluated.

In gears such as gill nets, hoop nets, trap nets, and trawls, the mesh size will
determine the minimum length of fish captured (Hubert 1996). Other aspects of
net construction, such as mesh material, frame dimensions, and mouth size, also
influence size selectivity. Laarman and Ryckman (1982) found that trap nets were
selective for larger sizes of some fish species but not others. Holland and Peters
(1992) compared length distributions of channel catfish captured from the Platte
River, Nebraska, in hoop nets with three different mesh sizes and found that both
the minimum and maximum lengths of fish increased as mesh size increased.
The effects of mesh size on size selectivity for catfishes has been well documented,
and, in general, samples collected with larger mesh sizes produce larger mean
lengths (Vokoun and Rabeni 1999).

Electrofishing has also been shown to have size-selective properties. Reynolds
and Simpson (1978) demonstrated that in Midwestern ponds, electrofishing effi-
ciency increased as a function of total length for largemouth bass. For bluegill,
electrofishing efficiency was higher for 8–15-cm bluegills compared with bluegills
less than 8 cm or greater than 15 cm (Reynolds and Simpson 1978). Milewski and
Willis (1991) found that compared with trap nets, electrofishing resulted in smaller
size structure for smallmouth bass. Robinson (1994) found that large flathead
catfish (�75 mm) were rarely captured when pulsed DC electrofishing was used.
Santucci et al. (1999) determined that for channel catfish in a small impound-
ment, AC electrofishing selected for smaller fish in the population.

Size structure data collected by underwater observation (i.e., snorkel or scuba)
were shown to be overestimated because of underwater magnification (Griffith
1981). Mullner et al. (1998) found that length frequencies of three trout species
and their hybrids were significantly different between snorkeling and electrofishing
samples, and they used an underwater magnification factor of 1.25 to adjust length
frequencies. In contrast, Wildman and Neumann (2003) found that when broad
length categories were used, size structure estimated by snorkeling and
electrofishing were not substantially different for brook trout and brown trout in
Connecticut streams.

Size structure is underestimated for most species of fish captured in cove ro-
tenone samples (Hayne et al. 1967). Bayley and Austen (1990) tested the sam-
pling efficiency of rotenone in ponds and coves and found that efficiency was
high for large fish in warm water and low for small fish in cool water. Typically,
cove rotenone sampling is conducted during mid to late summer, when large
individuals of many species move offshore (Willis et al. 1993; Bettoli and Maceina
1996). Thus, summer cove rotenone samples may be selective for small fish.

The use of size structure data obtained from competitive fishing events and an-
gler diaries is becoming more common. As with any collection technique, caution
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must be given to how angler data are interpreted because angler data may be selec-
tive for larger fish compared with data from traditional sampling gears (Willis et al.
1993). Gabelhouse and Willis (1986) found that tournament anglers in Kansas se-
lected for larger sizes of largemouth bass than did electrofishing, and stock density
indices (see section 9.2) calculated from angler data were higher than those based
on electrofishing samples. Jacobs et al. (1995) found that in Connecticut lakes, the
proportion of largemouth bass greater than 38 cm was usually greater for
electrofishing samples compared with tournament samples. In contrast, smallmouth
bass greater than 38 cm tended to be underestimated in electrofishing samples
compared with tournament samples. Green et al. (1986) found differences in size
structure of largemouth bass and smallmouth bass based on data collected by an-
glers using diaries versus by electrofishing. They provided empirical adjustment
factors to predict the size structure of largemouth bass and smallmouth bass in
electrofishing samples from the length distribution of the angler catch. In contrast,
Ebbers (1987) found that largemouth bass size structure estimated from angler
diaries and electrofishing samples were similar in Minnesota. Thus, angler behavior
may vary by geographic location and affect data used to determine size structure.

9.3.3 Effects of Sampling Time on Size Structure

Size structure of samples can differ among seasons of the year even when a stan-
dard gear is being used. Seasonal changes in size structure occur because of size-
dependent changes in fish behavior and physiology throughout the year (Pope
and Willis 1996). For example, Carline et al. (1984) found that for largemouth
bass sampled by electrofishing in an Ohio impoundment, samples contained larger
fish in spring and fall compared to summer. Largemouth bass greater than 30 cm
apparently moved offshore after spawning and were not as vulnerable to capture
during summer; as water temperature cooled during the fall, large fish returned
to inshore areas. Gilliland (1987) and Bettross and Willis (1988) have reported
similar seasonal changes in size structure for largemouth bass.

Pope and Willis (1996) provided a review of several studies that documented
seasonal changes in size structure. Spring and fall peaks in size structure have
been observed for several species, including bluegill captured in trap nets (Bettross
and Willis 1988) and yellow perch (Lott and Willis 1991), walleye, and sauger
(Mero and Willis 1992) captured in experimental gill nets. Boxrucker and Ploskey
(1989) found that greater proportions of larger and older white crappies were
captured in trap nets during spring than fall in Oklahoma impoundments. Sea-
sonal patterns in size structure other than spring and fall peaks have also been
observed. In a South Dakota lake, size structure of northern pike sampled with
experimental gill nets was highest during winter and declined into the summer;
significant inverse correlations between size structure and water temperature were
observed (Neumann and Willis 1995).

Size structure has also been shown to differ even within a single season and
between day and night samples. Across a 1-month period during spring, size
structure of largemouth bass captured by electrofishing increased substantially,
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apparently due to a greater proportion of largemouth bass greater than 30 cm
moving to inshore areas in preparation for spawning (Carline et al. 1984).
Paragamian (1989) found that the size structure determined from samples of
smallmouth bass was higher at night than that during the day in an Iowa river.
In Oklahoma reservoirs, largemouth bass size structure was similar between day
and night electrofishing samples in spring, but during fall, day samples pro-
duced a narrower range of fish lengths and contained mostly smaller individu-
als (Gilliland 1987). Size structure of sauger captured by electrofishing during
the day in a turbid main-stem reservoir was consistently higher than at night,
and sauger greater than 51 cm were collected only during the day (Van Zee et
al. 1996).

9.3.4 Effects of Sample Location on Size Structure

Biologists often choose subjective sampling sites based on the likelihood of cap-
turing a large sample size of the target species (Willis et al. 1993). Hubbard and
Miranda (1988) found that the size structure of largemouth bass collected by
electrofishing from subjective sites was greater than was the size structure ob-
tained from random sites. King et al. (1981) compared sample parameters for
several fish species collected by electrofishing from fixed and random sites. They
found few statistical differences in population parameters between the two types
of sampling sites. However, the fixed sites they sampled over time were initially
chosen at random.

Sampling fish from fixed or random sites should depend on the experimental
design being used. Sampling at fixed sites is often used to track changes in popu-
lation characteristics within a single water body, whereas sampling at random sites
is more suitable for comparing population characteristics among water bodies.
The use of fixed or random sites may also depend on the need to continue stan-
dard sampling designs previously developed.

9.3.5 Sample Size Considerations

The sample size necessary to describe the size structure of a fish population ad-
equately is quite large. Anderson and Neumann (1996) recommended that for
general stock assessment purposes, at least 100 fish greater than stock length (see
section 9.2) should be sampled. Gilliland (1987) compared length frequencies
based on various sample sizes of largemouth bass that were sampled by
electrofishing in Oklahoma reservoirs and concluded that a sample size of 150
largemouth bass was adequate to estimate size structure, whereas a sample of 50
was not adequate. More recently, Vokoun et al. (2001) estimated the sample size
necessary to construct a length-frequency distribution with a given accuracy and
precision for bluegill and channel catfish. They compared the length frequency
histogram from a known sample to computer generated length frequency histo-
grams by means of bootstrapping methods. Their results demonstrated the im-
portance of using at least 300–400 individuals whenever possible.
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Weithman et al. (1980) developed a sequential sampling method that allows a
biologist to monitor continuously how many stock-length and quality-length fish
are necessary to obtain a reliable estimate of PSD while sampling is being con-
ducted. Miranda (1993) developed a method by which biologists can approxi-
mate the sample size required for estimating PSD before collection begins. These
sampling methods are further described in Anderson and Neumann (1996).
Sample size requirements discussed in this section are recommendations based
on existing information. Clearly, the sample size necessary to describe size struc-
ture reliably will depend on the species, population structure, sampling constraints,
and study objectives.

■ 9.4 STATISTICAL ANALYSES FOR SIZE STRUCTURE DATA

Analysis of size structure data should begin with an exploratory analysis by con-
structing length-frequency histograms or calculating stock density index values.
There are also many statistical tests available to analyze size structure data. In this
section, we review several statistical techniques commonly applied to size struc-
ture data. Experimental design considerations and statistical assumptions are re-
viewed in Chapters 2 and 3.

Fisheries scientists are often interested in comparing size structure between
two or more samples. For example, comparisons of size structure are often made
between different gear types, water bodies, or time periods. Consider the com-
parison of two hypothetical length-frequency data sets. Many commonly applied
statistical tests, such as t-tests and analysis of variance (ANOVA), assume that data
are normally distributed and, as such, are typically not appropriate for tests of
length-frequency data (Brown and Austen 1996). When a broad length range of
fish is sampled, length-frequency data are often multimodal, highly skewed, and
contain extreme observations. In these cases, nonparametric tests may be more
appropriate for comparing length-frequency distributions. Conditions favorable
for nonparametric statistics and cautions about their use are described in Brown
and Austen (1996) and Chapter 1. Given sufficient sample sizes, and when data
approximate a normal distribution, most commonly employed parametric tests
are sufficiently robust and can perform well (Zar 1996). Methods to evaluate
normality of data and considerations for data transformations are provided in
Chapter 3.

9.4.1 Parametric Tests

Assuming a normal distribution, size structure data are commonly compared be-
tween two samples using a t-test or by an ANOVA in the case of comparing more
than two samples. These tests are used to compare the estimated means (e.g., means
of length) to determine whether or not the samples come from the same popula-
tion (Koopmans 1987). The fisheries scientist may use these tests to determine if
mean lengths of samples are significantly different. An ANOVA is typically followed
by a multiple-comparison test to determine which means are significantly different
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from one another. An example of using an ANOVA to compare mean length among
three length-frequency samples is provided in Box 9.1.

9.4.2 Nonparametric Tests for Comparing Size Structure

Several nonparametric statistical tests are useful for comparing size structures from
two or more samples. Nonparametric tests are usually applied to length-frequency
data, primarily because of concerns regarding the distribution of the data. Non-
parametric tests commonly applied to length-frequency data include the
Kolmogorov–Smirnov two sample, Wilcoxon’s rank sum, Kruskal–Wallis,  and the
chi-square. The Kolmogorov–Smirnov two-sample test is used to determine whether
the distribution of a variable (e.g., length) is the same across different groups (e.g.,
lakes). The test statistic is calculated as the largest absolute distance between the
distribution functions (cumulative frequency distributions) associated with the
samples (Zar 1996; SAS 1999). This test is often used to determine whether length-
frequency distributions are different between samples (Box 9.2). Examples of the
application of the Kolmogorov–Smirnov test to examine differences among length-
frequency distributions can be found in Cornelius and Margenau (1999), Underwood
(2000), Unmuth et al. (2001), Isermann et al. (2002), and Tate et al. (2003).

When applying two-sample tests (such as the Kolmogorov–Smirnov), pairwise
tests are performed rather than multiple comparisons. Under these circumstances,
the significance level for comparisons should be adjusted using the Bonferroni
correction in order to maintain the predetermined experimentwise error rate
(Koopmans 1987). This can be achieved by setting the significance level for each
subtest equal to the experimentwise error rate divided by the number of subtests.
For example, if the experimentwise error rate was � = 0.05 and there were three
subtests performed, then the significance level for each subtest would be � =
0.05/3 = 0.017.

Wilcoxon’s rank-sum test for two samples and the Kruskal–Wallis test for sev-
eral samples are rank-testing procedures and sometimes are considered nonpara-
metric counterparts to the t-test and ANOVA, respectively. In fact, the Kruskal–
Wallis test is often called “ANOVA by ranks” (Zar 1996). For these tests, the
observations from all samples are combined, ordered, and assigned a rank value,
and the test statistic is calculated based on rank scores. These tests are used to test
for differences in location and scale based on rank scores. Fisheries scientists of-
ten use these tests to determine whether length-frequency distributions are dif-
ferent among samples (i.e., does one population tend to yield larger or smaller
values than the other). An example of the Kruskal–Wallis test applied to length-
frequency data is provided in Box 9.3; additional applications of the Kruskal–
Wallis test to length-frequency data can be found in Neumann et al. (1995) and
Neal et al. (1999). Several nonparametric multiple-comparison tests are available
for use with tests such as the Kruskal–Wallis test (Conover 1980; Zar 1996). Ex-
amples of multiple-comparison testing procedures are provided in Box 9.4.

According to Conover (1980), an advantage of the Kolmogorov–Smirnov two-
sample test over rank tests (e.g., Wilcoxon-s rank sum and Kruskal–Wallis) is that
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the Kolmogorov–Smirnov test is sensitive to detecting differences in location
(magnitude of observations) and shape (variance) between distribution functions.
Methods based on ranks are sensitive to differences in the magnitude of ranked
data among samples, but they may not detect differences in variances or shape of
the distributions. Thus, fisheries scientists should visually inspect length-frequency
histograms and use statistical tests cautiously when analyzing length-frequency data.

Chi-square tests are commonly used to test for differences in length frequency
among samples. Examples of the application of the chi-square test to length-fre-
quency data can be found in Michaletz et al. (1995), Van Den Avyle et al. (1995),
Roni and Fayram (2000), and Wildman and Neumann (2003). The chi-square
test is used to test that the frequencies of observations among length-groups is
independent of the treatment (e.g., water body, gear type, or time period). Chi-
square tests are often applied, but not limited to, length-frequency data for which
the length-groups are rather large. For example, length data are often catego-
rized using stock density index length categories rather than by more detailed
length intervals (Box 9.5)

When size structure is indexed using stock density indices, a fisheries scientist
may be interested in statistically comparing stock density index values between two
or more samples. Because stock density index values are frequently calculated from
a more detailed length-frequency histogram, statistical procedures (as described
above) can be applied to the raw length-frequency data, and the outcome of those
tests along with stock density index values can be reported. An alternate approach
may be to use a chi-square test (Box 9.5) in which stock density index length catego-
ries are used as length intervals. Fisheries scientists are often involved in studies in
which a treatment (e.g., an experimental harvest regulation) is applied to several
water bodies, and additional water bodies are used as a control group. In this case,
stock density indices can be calculated for each water body, and the fisheries scien-
tist can test for differences in the mean stock density index values (e.g., mean PSD)
between treatments. For example, Margenau and AveLallemant (2000) used two-
sample t-tests to compare mean stock density index values of muskellunge popula-
tions before and after a special harvest regulation was implemented. Proportions
(such as PSD) form a binomial distribution rather than a normal distribution (Zar
1996). Thus, PSD values may require a data transformation (e.g., arcsine-root) be-
fore analyses (see Chapter 3 for discussion of data transformations).

9.4.3 The Experimental Unit

In each of the examples presented in Boxes 9.1–9.5, catches of fish in each unit of
effort were pooled into a single sample, and statistical tests were performed on
pooled length-frequency data. By far, this is the most commonly used approach to
treating and testing size structure data. In some instances, performing tests on
pooled length-frequency data can result in tests with inflated power, resulting in
significant differences in length-frequency distributions even though there may
be only slight differences between distributions. This is especially the case when
large sample sizes are created by pooling length-frequency data. For example, in
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Box 9.1 Testing for Differences in Mean Length By Means of Analysis of Variance (ANOVA)

Age-0 walleye were sampled from three eastern South Dakota lakes (Island Lake, Lake Mitchell, and
Lake Thompson) by biologists from the South Dakota Department of Game, Fish and Parks in
September 2001. In each lake, six 20-min-standardized sites were sampled at night with an
electrofishing boat. Because the distributions of lengths in each sample were considered normal,
ANOVA was chosen to analyze these data. The analysis was performed using the general linear
model procedure (PROC GLM) in SAS (SAS 1999). The purpose of this analysis was to compare mean
length of age-0 walleyes among the three lakes. Differences in mean length of age-0 walleye
among lakes in fall should indicate differences in growth achieved during the first year of life. The
null hypothesis is that there is no difference in mean length among lakes.

Data
The length-frequency histograms for each population are presented in Figure 9.3. All walleye were
measured to the nearest millimeter.

Program
DATA ONE;

INPUT LAKE $ LENGTH;

CARDS;

ISLAND         122

ISLAND         126

ISLAND         129

[Data input continued]

MITCHELL       145

MITCHELL       152

MITCHELL       160

[Data input continued]

THOMPSON       123

THOMPSON       128

THOMPSON       129

[data input continued]

;

PROC SORT;

BY LAKE LENGTH;

PROC GLM;

CLASS LAKE;

MODEL LENGTH=LAKE;

RUN;

Output

Table General linear model (GLM) procedure for length of age-0 walleyes (dependent variable)
compared among three South Dakota lakes. The data included 360 observations.

Class Level Information

Class Levels Values

Lake 3 Island Mitchell Thompson

GLM Procedure

Source df Sum of squares Mean square F-value P > F

Model 2 49324.1151 24662.0575 81.73 <0.0001
Error 357 107724.5072 301.7493
Corrected total 359 157048.6222
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Results
Results of the ANOVA indicated that there was a significant (F = 81.73; P < 0.0001) difference in
mean length among lakes, leading to the rejection of the null hypothesis.

Next, a multiple-comparison test was performed to determine which mean lengths (lakes) were
different from one another. In this example, the Tukey’s multiple-comparison test was used; it  can be
invoked using the following code. The program also calls for calculation of mean length for each lake.

Program
PROC SORT;

BY LAKE LENGTH;

PROC GLM;

CLASS LAKE;

MODEL LENGTH=LAKE;

MEANS LAKE/TUKEY;

PROC MEANS;

BY LAKE;

VAR LENGTH;

RUN;

Output

Table The GLM procedure for Tukey’s studentized range (HSD) test for length. This test controls
the type I experimentwise error rate. Comparisons significant at the 0.05 level are indicated by ***.

Test Statistics

Alpha 0.05
Error df 357
Error mean square 301.7493
Critical value of studentized range 3.32840

Means Comparisons

Lake comparison Difference between means Simultaneous 95% confidence limits

Mitchell–Thompson 22.210 17.054 27.366***
Mitchell–Island 28.315 22.736 33.894***
Thompson–Mitchell –22.210 –27.366 –17.054***
Thompson–Island 6.105 0.852 11.359***
Island–Mitchell –28.315 –33.894 –22.736***
Island–Thompson –6.105 –11.359 –0.852***

The MEANS Procedure

Lake N Mean SD Minimum Maximum

Island 104 159.4326923 15.8853687 122.0000000 195.0000000
Mitchell 111 187.7477477 13.7136087 145.0000000 218.0000000
Thompson 145 165.5379310 20.5895809 123.0000000  216.0000000

Results
According to this test, all mean lengths are significantly (P � 0.05) different from one another. Mean
length is greatest in Lake Mitchell (188 mm) followed by Lake Thompson (166 mm) and Island Lake
(159 mm).
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Box 9.2 Testing for Differences among Length-Frequency Distributions by Means
of the Kolmogorov–Smirnov Two-Sample Test

The same walleye data analyzed in Box 9.1 (and shown in Figure 9.3) are used in this example. The
purpose of this analysis is to compare length-frequency distributions of walleyes among the three
lakes by means of a Kolmogorov–Smirnov two-sample test. The analysis was performed using the
NPAR1WAY procedure in SAS (SAS 1999). The null hypothesis is that there are no differences in
length-frequency distributions (i.e., distribution functions) among lakes. This is a popular nonpara-
metric method to determine differences in length frequencies, as length-frequency data
oftentimes deviate substantially from normal. Because this is a two-sample test, only two lakes can
be compared simultaneously. Thus, a total of three comparisons (between Mitchell and Thompson,
between Island and Thompson, and between Island and Mitchell) were made. In the SAS code
shown, Island Lake was deleted from the analysis for the comparison between Lake Mitchell and
Lake Thompson. To maintain an experimentwise error rate of � = 0.05, the significance level for
each comparison (P = 0.017) was established by dividing � (0.05) by the number of comparisons (3).

Data
See Box 9.1 and Figure 9.3.

Program
DATA ONE;

INPUT LAKE $ LENGTH;

CARDS;

ISLAND         122

ISLAND         126

ISLAND         129

[Data input continued]

MITCHELL       145

MITCHELL       152

MITCHELL       160

[Data input continued]

THOMPSON       123

THOMPSON       128

THOMPSON       129

[Data input continued]

;

DATA TWO; SET ONE;

IF LAKE = “ISLAND” THEN DELETE;

PROC SORT;

BY LAKE LENGTH;

RUN;

PROC NPAR1WAY;

CLASS LAKE;

VAR LENGTH;

RUN;

Output

Table Comparison of Lake Mitchell and Lake Thompson. Kolmogorov–Smirnov test for variable
LENGTH classified by variable LAKE. The EDF is the empirical distribution function; KS represents
the Kolmogorov–Smirnov statistic and KSa the asymptotic KS; D is the two-sample KS statistic; and
P > KSa is the asymptotic P-value of KSa, which equals P > D.

Kolmogorov–Smirnov Test

Lake N EDF at maximum Deviation from mean at maximum

Mitchell 111 0.090090 –3.166332
Thompson 145 0.620690 2.770345

Total 256 0.390625
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Maximum deviation occurred at observation 201
Value of LENGTH at maximum 169.0

Kolmogorov–Smirnov Two-Sample Test (Asymptotic)

KS 0.262950 D 0.530600
KSa 4.207193 P > KSa <0.0001

Table Comparison of Island Lake and Lake Thompson. Kolmogorov–Smirnov test for variable
LENGTH classified by variable LAKE.

Kolmogorov–Smirnov Test

Lake N EDF at maximum Deviation from mean at maximum

Island 104 0.846154 0.929386
Thompson 145 0.689655 –0.787098

Total 249 0.755020

Maximum deviation occurred at observation 204
Value of LENGTH at maximum 175.0

Kolmogorov–Smirnov Two-Sample Test (Asymptotic)

KS 0.077181 D 0.156499
KSa 1.217900 P > KSa 0.1029

Table Comparison of Island Lake and Lake Mitchell. Kolmogorov–Smirnov test for variable
LENGTH classified by variable LAKE.

Kolmogorov–Smirnov Test

Lake N EDF at maximum Deviation from mean at maximum

Island 104 0.875000 3.421086
Mitchell 111 0.225225 –3.311458

Total 215 0.539535

Maximum deviation occurred at observation 129
Value of LENGTH at maximum 176.0

Kolmogorov–Smirnov Two-Sample Test (Asymptotic)

KS 0.324715 D 0.649775
KSa 4.761259 P > KSa <0.0001

Results
Results of these tests indicate that differences in the length-frequency distributions (i.e., distribu-
tion functions) were found among the three lakes, leading to the rejection of the null hypothesis.
The length-frequency distribution of age-0 walleye in Lake Mitchell was significantly (P < 0.0001)
greater than that in Island Lake and Lake Thompson. No difference was observed between Island
Lake and Lake Thompson (P = 0.1037). Thus, the fisheries scientist may conclude that growth of
age-0 walleye was fastest in Lake Mitchell.
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Box 9.3 Testing for Differences among Length-Frequency Distributions by Means
of the Kruskal–Wallis test

A Kruskal–Wallis test was applied to the same walleye data used in Boxes 9.1 and 9.2. The objective
of this analysis was to test whether length-frequency distributions were different among samples
(i.e., does one population tend to yield larger or smaller values than the other) based on rank
scores. The null hypothesis was that there was no difference among the length-frequency distribu-
tions. The Kruskal–Wallis test is an extension of Wilcoxon’s rank-sum test for two samples. Results of
the Kruskal–Wallis and Wilcoxon’s rank-sum tests are provided in the output through execution of
the NPAR1WAY procedure in SAS (SAS 1999). The input data are the same as used in Box 9.1 and
presented in Figure 9.3.

Program
DATA ONE;

INPUT LAKE $ LENGTH;

CARDS;

[See data input in Box 9.1]

;

DATA TWO; SET ONE;

PROC SORT;

BY LAKE LENGTH;

RUN;

PROC NPAR1WAY;

CLASS LAKE;

VAR LENGTH;

RUN;

Output

Table Wilcoxon scores (rank sums) for the variable length classified by the variable lake.

Wilcoxon Scores

Lake N Sum of scores Expected under H0 SD under H0 Mean score

 Island 104 12969.00 18772.00 894.755226 124.701923
 Mitchell 111 29767.50 20035.50 911.651297 268.175676
 Thompson 145 22243.50 26172.50 968.212806 153.403448

Kruskal–Wallis Test

Chi-square 118.5671
df 2
P > chi-square <0.0001

Results
The output indicates that there is a significant (P < 0.0001) difference among the three length-
frequency distributions, and thus, the null hypothesis is rejected. The mean ranks for Island Lake
(124.7), Lake Mitchell (268.2), and Lake Thompson (153.4) are provided in the output under the
mean score column.

By default, the NPAR1WAY procedure in SAS provides approximated P-values based on asymptotic
methods (SAS 1999). Exact P-values can be calculated by using the EXACT statement in the
NPAR1WAY procedure. Asymptotic methods may not be valid when sample sizes are very small and
when data are sparse, skewed, or heavily tied (SAS 1999). When sample sizes are large, asymptotic
P-values approach exact P-values. The EXACT statement in SAS can be computationally time-
consuming depending on the sample size and the number of groups. Exact P-values for this
example can be obtained by using the following code.
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PROC NPAR1WAY;

CLASS LAKE;

VAR LENGTH;

EXACT;

RUN;

Program
In SAS, the Kruskal–Wallis test can also be performed by using a combination of the RANK and GLM
procedures (SAS 1990). The overall F-test is asymptotically equivalent to the Kruskal–Wallis test in
SAS. The program below will perform an ANOVA based on ranked data.

PROC RANK OUT=RANKS;

RANKS RLENGTH;

VAR LENGTH;

RUN;

PROC GLM DATA=RANKS;

CLASS LAKE;

MODEL RLENGTH=LAKE;

RUN;

Output

Table The GLM procedure for the dependent variable RLENGTH, the rank for the variable length.
Abbreviations are as follows: mean square error (MSE); coefficient of variation (CV); and sum of
squares (SS).

Analysis of Variance

Source df Sum of squares Mean square F-value P > F

Model 2 1283518.268 641759.134 88.03 <0.0001
Error 357 2602744.232 7290.600
Corrected total 359 3886262.500

R2 0.330271 Root MSE 85.38501
CV 47.30472 RLENGTH mean 180.5000

Source df Type I SS Mean square F-value P > F

Lake 2 1283518.268 641759.134 88.03 <0.0001

Source df Type III SS Mean square F-value P > F

Lake 2 1283518.268 641759.134 88.03 <0.0001

In this ANOVA, note that (n – 1)R2 = 118.57 and is the same as the chi-square statistic provided for
the Kruskal–Wallis test (SAS 1999). There is a significant (P < 0.0001) difference in mean ranked
length among the three lakes, leading to the rejection of the null hypothesis.
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Box 9.4 Performing Multiple Comparisons of Length-Frequency Data

In Box 9.3, three length-frequency distributions were compared using the Kruskal–Wallis test. The
distributions were found to be significantly different. Once the null hypothesis is rejected, the
fisheries scientist usually will want to determine between which of the samples the significant
differences exist. An example of a nonparametric multiple-comparison test (Zar 1996) based on the
walleye data presented in Box 9.3 is illustrated below. This particular multiple-comparison test is
appropriate in the case of several tied ranks and unequal sample sizes, which are typical character-
istics of length-frequency data, especially when fish are measured and reported to the nearest
length-group (e.g., centimeters). However, several other multiple-comparison tests are available,
depending on the characteristics of the data being analyzed (Conover 1980; Zar 1996). Information
in the summary table below can be found in the SAS output for the Kruskal–Wallis test in Box 9.3.

Parameter Island Thompson Mitchell
Mean rank (R

–
) 124.70 153.40 268.18

Sample size (n) 104 145 111

After the entire data set was rank ordered, the number of groups (lengths) with tied ranks (m)  was
determined to be 69. Next, calculate T, the tied-rank statistic,

T = �
i = 1

m

(ti – ti ) ,3

where t = the frequency of observations with tied ranks in the ith group (length). For example, if in
a data set there were two groups (lengths) with tied ranks (three 247-mm fish and two 248-mm
fish), T would equal (33 – 3) + (23 – 2) = 30. For the walleye example used in this box, there were
many ties, and T = 20,490.

Next, SEs are calculated for each comparison. The SE for the comparison of Lake Mitchell with Island
Lake is calculated as

SE =  T

12(N – 1)( N ( N  + 1)

12
– ) 1

nIsland( 1

nMitchell

+ )
=  20,490

12(359)( 360(361)

12
– ) 1

104( 1

111
+ ) =  14.20

For the comparison of Lake Mitchell and Lake Thompson, the SE = 13.12.
For the comparison of Lake Thompson and Lake Island Lake, the SE = 13.37.

The test statistic (Q) for each comparison is calculated as the difference in mean ranks divided by
the associated SE. Critical values for Q can be obtained from tables for nonparametric multiple
comparisons (e.g., Zar 1996). In this example, the critical value of Q at � = 0.05 for three samples is
2.394. For each comparison, the null hypothesis of no difference between length-frequency
distributions is rejected if the calculated Q exceeds the critical value of Q.
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Table Nonparametric multiple comparison among three lakes of length-frequency distributions
of walleye.

Comparison R
–

x – R
–

y SE Q Q0.05, 3 Conclusion

Mitchell and Island 268.18 – 124.70 = 143.48 14.20 10.10 2.394 Reject H0

Mitchell and Thompson 268.18 – 153.40 = 114.78 13.12 8.75 2.394 Reject H0

Thompson and Island 153.40 – 124.70 =   28.70 13.37 2.14 2.394 Accept H0

The fisheries scientist can conclude that the length-frequency distribution from Lake Mitchell is
significantly greater than that of Island Lake and Lake Thompson. Length-frequency distributions
were not significantly different between Lake Thompson and Island Lake.

Program
Currently, nonparametric multiple-comparison procedures are not available in SAS. However, some
of the required calculations such as a table of ranked lengths, a table of the frequency of observa-
tions with tied ranks in the ith group, and T can be obtained by invoking the following SAS
program.

PROC RANK OUT=RANKS;

RANKS RLENGTH;

VAR LENGTH;

RUN;

PROC FREQ; TABLES RLENGTH/OUT=FRANK;

RUN;

PROC PRINT DATA=FRANK;

RUN;

DATA CALCT; SET FRANK;

IF COUNT=1 THEN DELETE;

T=((COUNT*COUNT*COUNT)-COUNT);

PROC PRINT;

RUN;

PROC MEANS SUM;

VAR T;

RUN;

Multiple comparisons can also be accomplished on the ranked data in the GLM procedure in SAS.
The following SAS program performs an ANOVA on the ranked data (see Box 9.3) and uses a Tukey’s
multiple-range test to determine differences among the mean ranks.

PROC RANK OUT=RANKS;

RANKS RLENGTH;

VAR LENGTH;

RUN;

PROC GLM DATA=RANKS;

CLASS LAKE;

MODEL RLENGTH=LAKE;

MEANS LAKE/TUKEY;

RUN;

(Box continues)
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Output
The ANOVA output for this analysis is shown in Box 9.3. The results of the Tukey’s multiple-compari-
son test are shown below.

Table Tukey’s studentized range (HSD) test for RLENGTH (the rank for variable length). This test
controls the type I experimentwise error rate. Comparisons significant at the 0.05 level are indi-
cated by ***.

Test Statistics

Alpha 0.05
Error df 357
Error mean square 7290.6
Critical value of studentized range 3.32840

Means Comparisons

Lake comparison Difference between means Simultaneous 95% confidence limits

Mitchell–Thompson 114.77 89.43 140.12***
Mitchell–Island 143.47 116.05 170.90***
Thompson–Mitchell –114.77 –140.12  –89.43***
Thompson–Island 28.70 2.88 54.52***
Island–Mitchell –143.47 –170.90 –116.05***
Island–Thompson –28.70 –54.52 –2.88***

Results
These results show that there is a significant difference in mean ranked length among each of the
three lakes.

In these examples, the multiple-comparison-testing methods had different results. The nonpara-
metric multiple-range test was more conservative that the Tukey test. This clearly demonstrates
that different multiple-comparison tests can provide different results. The choice of a multiple-
comparison test should be made before the analysis is conducted rather than by searching for
significance by performing multiple tests.

Box 9.4 (continued)
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Box 9.5 Using Contingency Tables to Test for Differences in Length-Frequency
Distributions

The chi-square test is commonly used to test for differences in length-frequency distributions. In
this example, DC electrofishing at night was used to collect bluegill in 1996, 1998, and 2000 from a
private pond in Connecticut. Bluegills were classified into two length-groups: stock to quality
length (80–149 mm) and quality length (�150 mm). Proportional stock density (see section 9.3) was
also calculated for each year. The objective of this analysis was to determine whether length-
frequency distributions (summarized by PSD values) were different among years. The chi-square
analysis was performed using the frequency procedure (FREQ) in SAS (SAS 1999). The null hypoth-
esis is that the frequency of observations among length-groups (stock to quality length and quality
length) is independent of year.

Data

Table The number of bluegill collected in each length-group and proportional stock density (PSD).

Year

Size category and length index 1996 1998 2000

Stock to quality length (80–149 mm)   77 124 251
Quality length (�150 mm)   85  44   34
Total stock length (�80 mm) 162 168 285
PSD   52  26  12

Program
In the following SAS program, LCAT is the length category (S–Q = stock to quality length and Q =
greater than or equal to quality length) and NUM is the number of fish.

DATA ONE;

INPUT YEAR LCAT $ NUM;

CARDS;

1996 S-Q   77

1996   Q   85

1998 S-Q  124

1998   Q   44

2000 S-Q  251

2000   Q   34

;

PROC SORT;

BY YEAR LCAT NUM;

RUN;

DATA TWO;

SET ONE;

BY YEAR LCAT NUM;

IF FIRST.LCAT THEN DO;

DO I = 1 TO NUM;

LCAT = LCAT;

YEAR = YEAR;

OUTPUT;

END;

END;

RUN;

PROC FREQ;

TABLES YEAR*LCAT / CHISQ;

RUN;
(Box continues)
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Box 9.1 an F-test with 357 error degrees of freedom results in a high level of power
to detect differences among length-frequency distributions. Similarly, Kolmogorov–
Smirnov two-sample tests are often highly significant when sample sizes are large,
even though the distributions can appear similar. Caution should be applied when
using individual fish as experimental units, resulting in very high sample sizes.

An alternative approach to comparing length frequencies would be to treat
each group of fish caught in a unit of effort (e.g., trap net or electrofishing sta-
tion) as a sample. In other words, each unit of effort would be considered a sample
or “collection event,” and individual fish would be considered subsamples. Con-
sider sampling black crappies with 20 trap nets during a single sampling period in
a reservoir. If the 20 nets are set according to a particular sampling design, then
each net (location) may be adequate to use as an independent experimental unit.
Examples of using units of effort as samples to compare size structure are pro-
vided in Boxes 9.6 and 9.7.

Output

Table Summary statistics for chi-square analysis of length category (LCAT) by year. Sample size is 615.

Length category

Year and measure Q S–Q Total

1996
Frequency 85 77 162
Percent 13.82 12.52 26.34
Row % 52.47 47.53
Column % 52.15 17.04

1998
Frequency 44 124 168
Percent 7.15 20.16 27.32
Row % 26.19 73.81
Column % 26.99 27.43

2000
Frequency 34 251 285
Percent 5.53 40.81 46.34
Row % 11.93 88.07
Column % 20.86 55.53

Total
Frequency 163 452 615
Percent 26.50 73.50 100.00

Box 9.5 (continued)
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Table Chi-square statistics of length category  by year.

 Statistic df Value P

Chi-square 2 87.1540 <0.0001
Likelihood ratio chi-square 2 85.5173 <0.0001
Mantel–Haenszel chi-square 1 84.8020 <0.0001
Phi coefficient 0.3764
Contingency coefficient 0.3523
Cramer’s V 0.3764

Results
According to the chi-square test, there is a significant (�2 = 87.15, P < 0.0001) difference in the
frequency of observations between length-groups, leading to the rejection of the null hypothesis.
To test which years were significantly different from each other, a chi-square test was performed for
each combination of years (i.e., 1996 and 1998, 1998 and 2000, and 1996 and 2000) based on 2 × 2
contingency tables. Although the results for each comparison are not shown, all pairwise tests
showed significant differences (P < 0.0001) between years. To maintain an experimentwise error
rate of � = 0.05, the significance level for each comparison (P = 0.017) was established by dividing �
by the number of comparisons (3). Size structure declined from 1996 (PSD = 52) to 1998 (PSD = 26)
to 2000 (PSD = 12).

In this pond, the decrease in PSD of bluegills over the 3 years was probably due to the reduction in
density of chain pickerel in the pond. Mean C/f (number/h electrofishing) of chain pickerel declined
from 82 in 1996 to 39 in 2000. Declines in chain pickerel abundance probably lead to reduced
predation on bluegills, resulting in higher abundance and reduced growth of bluegills.

To test for differences in length-frequency data that are summarized using stock density indices
other than PSD (e.g., relative stock density preferred length [RSD-P] or quality-to-preferred length
[RSD-Q-P]), simply change the length categories in the analysis. For example, to test for differences
in length frequency summarized as RSD-P, test for differences in the frequency of occurrence of
stock-to-preferred-length fish and preferred-length fish among treatments.

9.4.4 Analysis of Repeated Measures

Fisheries scientists frequently assess changes in size structure on one population
through time (e.g., across years). One consideration is that many of the statistical
procedures mentioned above (e.g., chi-square test and Kruskal–Wallis) assume
the samples are independent. For example, in Box 9.5 bluegill PSD was tested
using samples collected at 2-year intervals, and the chi-square test assumes that
those samples are independent. Because samples were at 2-year intervals, this as-
sumption may be realistic. However, samples collected over a number of consecu-
tive years are likely not independent (Maceina et al. 1994) because catch rates or
size structure in 1 year may influence the size structure in subsequent years (i.e.,
the same year-classes are sampled over time).

Repeated-measures ANOVA provides a series of models that incorporate time
dependency of the data into the analysis (see also Chapter 7 for discussion of
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Box 9.6 Testing for Differences in Size Structure by Treating Groups of Fish Caught
in Each Unit of Effort as Samples

Fisheries scientists oftentimes evaluate the effectiveness of alternative sampling methods.
However, before alternative sampling methods are implemented into standard sampling programs,
the fisheries scientist should understand how data (e.g., size structure) collected by the new
sampling method compares to the method currently used. For example, the use of angler-collected
data in research and monitoring is becoming more popular due to reliability and reduced costs and
effort associated with data collection compared with more traditional methods such as
electrofishing.

In this example, size structure of largemouth bass obtained from two sampling methods is
compared. Largemouth bass were sampled from Mansfield Hollow Reservoir, Connecticut, in
spring 2002. Twelve stations along the lake perimeter were sampled at night by means of  DC
electrofishing, and size structure data were collected at 12 bass fishing tournaments over the same
time period. Individual fish were measured to the nearest centimeter total length at the end of
each electrofishing station and fishing tournament.

Catches from each electrofishing station and fishing tournament were considered independent
samples. Electrofishing stations did not overlap, and catches in one tournament were considered
independent of the others. The null hypothesis tested is that the ratio of the number of preferred-
length (i.e., �38 cm) fish to the number of quality-length (i.e., �30 cm) fish was not different
between the two sampling methods.

Data

Table Largemouth bass data from Mansfield Hollow Reservoir, Connecticut, in spring 2002. Catches
from each electrofishing station and fishing tournament were considered independent samples.

Number of fish
Electrofishing

Number of fish

Fishing tournament �30 cm �38 cm station �30 cm �38 cm

1 3 2 1 23 12
2 28 4 2 22 2
3 13 1 3 35 8
4 8 0 4 6 2
5 61 16 5 11 1
6 76 12 6 15 7
7 38 10 7 12 3
8 49 12 8 9 6
9 62 24 9 25 5
10 43 10 10 25 8
11 59 18 11 9 1
12 24 5 12 7 1

Program
Electrofishing (ELEC) and fishing tournaments (TOURN) are the sampling methods used, and QUAL
and PREF are the number of fish collected in each length category for each electrofishing station
and fishing tournament. The variable LOGIT was created, which is the ratio of the number of
preferred-length (�38 cm) fish to the number of quality-length (�30 cm) fish in each sample, after
a value of 0.5 was added to QUAL and PREF to remove zeros prior to log transformation. From a
parametric statistics standpoint, using LOGIT has an advantage over using a proportion because it
can exceed one and is more likely to be normally distributed.
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The GLM procedure (SAS 1999) was used to conduct a t-test to determine whether there was a
significant difference in mean LOGIT between the two sampling methods. The WEIGHT statement
weights each sample based on the number of fish collected in each sample.

DATA BASS;

INPUT METHOD $ QUAL PREF;

CARDS;

ELEC    23 12

ELEC    22  2

ELEC    35  8

ELEC     6  2

[Data input continued]

TOURN   28  4

TOURN   13  1

TOURN    8  0

TOURN   61 16

[Data input continued]

;

DATA BASS2; SET BASS;

LOGIT=LOG((PREF+0.5)/(QUAL+0.5));

PROC PRINT;

PROC SORT; BY METHOD;

PROC MEANS; BY METHOD; VAR LOGIT;

WEIGHT QUAL;

PROC GLM;

CLASS METHOD;

MODEL LOGIT=METHOD;

WEIGHT QUAL;

RUN;

Output

Table The number of fish collected in each length category for each sampling method. The
variable LOGIT is the ratio of the number of preferred-length (�38 cm) fish to the number of
quality-length (�30 cm) fish in each sample, after a value of 0.5 was added to QUAL and PREF.

Number of fish

Method and observation QUAL PREF LOGIT

TOURN
1 3 2 –0.33647
2 28 4 –1.84583
3 13 1 –2.19722
4 8 0 –2.83321
5 61 16 –1.31568
6 76 12 –1.81156
7 38 10 –1.29928
8 49 12 –1.37624
9 62 24 –0.93649
10 43 10 –1.42139
11 59 18 –1.16821
12 24 5 –1.49393

(Box continues)
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Number of fish

Method and observation QUAL PREF LOGIT

ELEC
13 23 12 –0.63127
14 22 2 –2.19722
15 35 8 –1.42947
16 6 2 –0.95551
17 11 1 –2.03688
18 15 7 –0.72594
19 12 3 –1.27297
20 9 6 –0.37949
21 25 5 –1.53393
22 25 8 –1.09861
23 9 1 –1.84583
24 7 1 –1.60944

Table Summary statistics (MEANS procedure) based on LOGIT values for two sampling methods.

Method N Mean SD Minimum Maximum

ELEC 12 –1.3281428 2.2037466      –2.1972246 –0.3794896
TOURN 12 –1.4280742 2.4069863 –2.8332133 –0.3364722

Table Result of GLM procedure to compare mean LOGIT (t-test) between the two sampling
methods. The WEIGHT statement weights each sample based on the total number of fish (QUAL)
collected in each sample. Analysis is based on 24 observations.

Class Level Information

Class Levels Values

METHOD 2 ELEC TOURN

GLM Procedure

Source df Sum of squares Mean square F-value P > F

Model 1 1.3907895 1.3907895 0.26 0.6144
Error 22 117.1509050 5.3250411
Corrected total 23 118.5416945

R2 0.011732 Root MSE 2.307605
CV –165.0553 LOGIT mean –1.398080

Results
At the top of the output, LOGIT values for each sample are provided by the PROC PRINT statement.
Sample LOGIT values are followed by the mean LOGIT for electrofishing (mean LOGIT = –1.33) and
fishing tournaments (mean LOGIT = –1.43) weighted by METHOD based on the number of fish in
each sample (QUAL). By calculating the inverse loge of these values, the mean ratio of the number
of preferred-length (i.e., �38 cm) fish to the number of quality-length (i.e., �30 cm) fish was 0.26 for
electrofishing and 0.24 for fishing tournaments. The output for the GLM procedure indicates that
there was not a significant difference (F = 0.26; P = 0.6144) in mean LOGIT between electrofishing
and fishing tournaments. The fisheries scientist fails to reject the null hypothesis that the ratio of
the number of preferred-length (i.e., �38 cm) fish to the number of quality-length (i.e., �30 cm)
fish was the same between the two sampling methods.

Box 9.6 (continued)
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Box 9.7 Using Repeated-Measures ANOVA to Test for Size Structure Differences
with Time-Dependent Data

Repeated-measures ANOVA is commonly used to test for differences in a population response when
samples are not independent, often because they are collected through time. In this example, we
assessed differences in the size structure of a largemouth bass population at Lake Jackson, Florida,
after implementation of a 330–431-mm protected-slot-length limit. Data were collected by Florida
Fish and Wildlife Conservation Commission biologists. The population had no size limit prior to 1991,
and the slot-length limit was enacted in July of 1990. Daytime electrofishing samples were collected
at 12 fixed sites during April from 1988 to 1996. Fixed sites in the analysis were treated as subjects
sampled through time. The size distribution of largemouth bass is likely to be dependent through
time (i.e., size structure of fish present in previous sampling influences size structure at later time
intervals). Thus, the analysis should consider that the size structure of fish at a given site is not
independent through time. In this example, we assessed whether the size structure of largemouth
bass differed before the slot-length limit (N = 3 years of data) compared with after the slot limit
(N = 6 years of data). Largemouth bass were classified into three groups (based on total length):
below 200 mm, 200–329 mm, and 330 mm and larger. The objective of this analysis was to test
whether the ratio of fish 330 mm and larger to fish between 200 and 329 mm differed before and
after the slot-length limit was enacted. Fish below 200 mm were removed from the analysis because
the slot limit was not expected to influence abundance of fish below 200 mm. The null hypothesis is
that the ratio of fish 330 mm and larger to subslot-size fish (i.e., fish > 200 mm but less than 330 mm)
was not different before and after the slot limit was enacted. The mixed-models procedure (PROC
MIXED; SAS 1999) was used to conduct the test.

Data: Part I
In the data table below, COUNT is the number of fish in each size-group, and size-groups are given as
UND (200–329 mm) and SLOT (330 mm and longer). A SITE was included if a fish was collected in at
least one size-group. However, sites that did not contain fish in either size-group were removed from
the analysis because collection of no fish provides no information about size structure (i.e., if both
the UND and SLOT size groups had a COUNT of zero, the site was not included in the analysis).

Table Size-group data for largemouth bass fishery in Lake Jackson, Florida, before and after
slot-length limit implementation.

Year and site Size-group Count

1988
1 UND 4
1 SLOT 1
2 UND 9
2 SLOT 2

[Data continued]

1996
11 UND 4
11 SLOT 4
12 UND 9
12 SLOT 4

[Data continued]

Program: Part I
In the following SAS program, the data were rearranged using PROC TRANSPOSE prior to creating
the dependent variable for the test. This procedure changes columns to rows or rows to columns. In
this example the column COUNT was changed to rows for both size-groups.

(Box continues)
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DATA A;

INPUT YEAR SITE    SIZEGRP $ COUNT;

CARDS;

1988        1        bund       4

1988        1        slot       1

1988        2        bund       9

1988        2        slot       2

[Data input continued]

;

DATA B; SET A;

IF YEAR LE 1990 THEN PERIOD = ‘APRE’;

IF YEAR GT 1990 THEN PERIOD = ‘BPOST’;

RUN;

PROC SORT;

BY PERIOD YEAR SITE;

PROC TRANSPOSE OUT=C;

BY PERIOD YEAR SITE;

VAR COUNT;

DATA D; SET C;

RENAME COL2 = UNDER;

RENAME COL3 = SLOT;

DATA E; SET D;

UNDERT=UNDER+0.5;

SLOTT = SLOT+0.5;

TOTAL =UNDERT+SLOTT;

LOGIT=LOG(SLOTT/(UNDERT));

In step DATA E, 0.5 was added to each count to remove zeros prior to the log transformation.

The variable TOTAL is used to weight each transect in PROC MIXED below. Remember that fish
shorter than 200 mm were removed, and the ratio of the number of fish greater than or equal to
330 mm to the number of fish between 200 and 329 mm was used.

The variable LOGIT is the log of the ratio of fish greater than or equal to 330 mm relative to fish
between 200 and 329 mm. It was predicted that after the slot limit is in place (i.e., anglers cannot
keep fish between 330 and 431 mm) the ratio, and thus, the LOGIT, would increase.

PROC PRINT;

VAR YEAR PERIOD SITE UNDER UNDERT SLOT SLOTT LOGIT;

RUN;

Data: Part II
From the above program, the final data set was created prior to analysis.

Table Final data set for analysis of largemouth bass fishery before and after slot-length limit
implementation. Size-groups are UNDER (200–329 mm), SLOT (330 mm and longer), and those two
categories transformed (UNDERT and SLOTT).

Period,  year, and observation Site UNDER UNDERT SLOT SLOTT LOGIT

Pre-slot limit
1988

1 1 4 4.5 1 1.5 –1.09861
2 2 9 9.5 2 2.5 –1.33500
3 3 11 11.5 1 1.5 –2.03688

Box 9.7 (continued)
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[Data continued]

Period,  year, and observation Site UNDER UNDERT SLOT SLOTT LOGIT

Post-slot limit
1996

1 10 4 4.5 2 2.5 –0.58779
2 11 4 4.5 4 4.5 0.00000
3 12  9 9.5 4 4.5 –0.74721

[Data continued]

Program: Part II

PROC UNIVARIATE PLOT NORMAL;

BY PERIOD;

VAR LOGIT;

The Wilk’s lambda in PROC UNIVARIATE, specified with the NORMAL option, was used to assess
whether the dependent variable (LOGIT) was normally distributed for each PERIOD (pre- versus post-
slot limit years). In this case the assumptions of normality were met (P > 0.05 for both PERIODS).

PROC MIXED;

CLASS PERIOD YEAR SITE;

MODEL LOGIT=PERIOD;

WEIGHT TOTAL;

RANDOM YEAR(PERIOD);

REPEATED YEAR/SUBJECT=SITE TYPE=AR(1);

LSMEANS PERIOD/PDIFF;

RUN;

The model tests whether the mean LOGIT differs significantly between periods (pre- versus post-
slot limit regulation). The WEIGHT statement weights each site based on the number of fish
collected (i.e., sites with large catch influence the test proportionally more). The RANDOM state-
ment assumes that among-year variation within each PERIOD was random. The REPEATED state-
ment indicates the consecutive years of sampling (i.e., time variable), and the SUBJECT statement
assigns each site as an individual station sampled through time. In this case, sites were not chosen
at random so sites are treated as a fixed effect in the model. In SAS, the TYPE statement allows the
researcher to investigate various covariance structures to model the time-dependence of the data
(discussed below). The LSMEANS statement is a means separation option that will give the overall
least-squares means for each period and their significance level (PDIFF).

Output

Table The following output is from the PROC MIXED statement presented above that tests whether
the mean LOGIT differs significantly between periods (PRE = pre-slot limit and POS = post-slot limit).

 Model Information

Data Set WORK.E
Dependent variable LOGIT
Weight variable TOTAL
Covariance structures Variance components, Autoregressive
Subject effect SITE
Estimation method REML
Residual variance method Profile

(Box continues)
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Fixed effects SE method Model-based
Degrees of freedom method Containment

Class Level Information

Class Levels Values

PERIOD 2 PRE POS
YEAR 9 1988 1989 1990 1991 1992 1993 1994 1995 1996
SITE 12 1 2 3 4 5 6 7 8 9 10 11 12

Dimensions

Covariance parameters 3
Columns in X 3
Columns in Z 9
Subjects 1
Maximum observations per subject 101
Observations used 101
Observations not used 0
Total observations 101

Iteration History

Iteration Evaluations –2Residual log likelihood Criteriona

0 1 269.51966315
1 2 268.00863114 0.00000795
 2 1 268.00828432 0.00000000

Covariance Parameter Estimates

Covariance parameter Subject Estimate

 Year (period) 0.04188
 AR(1) Transect 0.09518
 Residual 7.7798

Fit Statistics

–2Residual log likelihood 268.0
AIC (smaller is better) 274.0
AICc (smaller is better) 274.3
BIC (smaller is better) 274.6

Type III Test of Fixed Effects

Effect Numerator df    Denominator df F-value P > F

PERIOD 1 7 4.60 0.0691

Least Squares Means

Effect Period Estimate Standard error df t-value P > |t|

Box 9.7 (continued)
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PERIOD PRE –0.8506 0.1829 7 -4.65 0.0023
PERIOD POS –0.3602 0.1396 7 -2.58 0.0365

Differences of Least Squares Means

Effect Period Period Estimate SE df t-value P > |t|

PERIOD PRE POS –0.4905 0.2286 7 –2.15 0.0691

a The convergence criteria were met.

Results
The “Model Information” and “Class Level Information” output show the model configuration and
levels of each class going into the model. The “Iteration History” reveals whether the model
converged on a solution. The series of “Fit Statistics” allows one to compare various covariance
matrix structures to one’s data. The Akaike’s Information Criteria (AIC), small sample corrected AIC
(AICc), and Bayesian Information Criteria (BIC) are model fit statistics commonly used for many
ecological modeling applications (see Guthery et al. [2005] for a review and critique).  In this
example, the AIC statistic is used to assess how well the time-dependent structure of one’s data fit
the chosen TYPE covariance structure specified in the model (SAS 1999). In this case, TYPE = AR(1)
was used, which is the first-order autoregressive structure. The AR(1) structure models correlations
between time periods that are linear and decline with the distance in time that observations are
made (e.g., assumes years 1 and 2 are more closely related than years 1 and 4; Littell et al. 1996).
Littell et al. (1996) described various options for covariance structures in PROC MIXED, and the
investigator can choose the structure type with the lowest AIC score (i.e., lowest deviance between
the data and the specified structure type). The AR(1) structure is one option for data sampled at
regular time intervals, which in this example was appropriate because electrofishing occurred in
April of each year. The AR(1) model also obtained the lowest AIC score of several covariance
structures considered.

However, we note that the time dependency of the data were not strong based on covariance
parameter estimates of 0.095 for the AR(1) variable relative to a high residual value (7.78).  Analyses
showing strong time dependence typically exhibit covariance parameter estimates of equal or
greater magnitude compared with the residual values (authors, personal observation).  The lack of a
relationship between size structure data in successive years is not atypical given variation around
electrofishing data, and would be grounds to ignore time dependency and use a regular one-way
ANOVA to test for differences in LOGIT between PERIODS.  Thus, samples collected in successive
years do not automatically require repeated-measures analyses!  Here we’ll continue with the
output interpretation as an example of the analysis.

Results of this analysis showed that the LOGIT approached significance between pre- and post-size-
limit time periods (P = 0.069) at an � = 0.05. The LSMEANS procedure output the least-squares
means of the LOGIT (–0.85 and –0.36). By taking the inverse loge of these values, we find that the
ratio of fish 330 mm and larger to fish between 200 and 329 mm averaged 0.427 before the slot
limit and 0.698 after the slot limit was enacted. Thus, at an � level of 0.10, the ratio increased after
the slot was enacted, suggesting that the size structure increased. It is important to note that
although there is a significant difference, variables other than the slot limit (e.g., strong year-classes
or changes in large fish catchability) could have also influenced the result. This example shows how
time dependency in the data can be included in assessment of fish size structure.
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repeated-measures data). Maceina et al. (1994) described how a split-plot ANOVA
could be used to conduct repeated-measures tests. More recently, mixed-model
ANOVA provides multiple options to handle repeated-measures data. The advan-
tage of mixed models over split-plot analyses is that the split-plot ANOVA assumes
compound symmetry (Littell et al. 1996). Compound symmetry is defined as con-
stant dependence; in other words, each time period is assumed to be equally
related to all other time periods. Mixed-model ANOVA allows the investigator to
specify covariance matrix structures other than compound symmetry (Littell et al.
1996). For example, you might expect samples collected in consecutive years to
be more highly related than are samples collected 5 years apart. Box 9.7 provides
an example of using a repeated-measures ANOVA to test for size structure differ-
ences based on time-dependent data. When assessing population size structure
on one population through time, or across multiple populations sampled through
time, use of repeated-measures designs is recommended.

■ 9.5 INTERPRETATION OF SIZE STRUCTURE

9.5.1 Length-Frequency Distributions

Length-frequency distributions reflect an interaction of the rates of recruitment,
growth, and mortality of a fish population. Length-frequency data can provide
insight into the dynamics of fish populations and identify problems such as incon-
sistent year-class strength, slow growth, and excessive mortality (Anderson and
Neumann 1996). In most instances, a thorough assessment of a fish population
requires other population assessment tools, such as C/f, age and growth, or body
condition, in addition to length-frequency data.

Length-frequency data for black crappie collected with a trawl from two Florida
lakes are presented in Figure 9.5. Based on the length-frequency distribution for
Lake Jackson, a fisheries scientist may conclude that the black crappie population
is balanced. A balanced population is one that has moderate rates of recruitment,
growth, and mortality compared with what is expected for populations in the
same geographic region. A length-frequency histogram from a balanced fish popu-
lation will have a stable decline from the shorter to longer lengths, reflecting a
stable age structure produced by consistent recruitment and consistent, moder-
ate rates of mortality among successive age-classes. In exploited populations, the
term balance has also been referred to a population that produces sustainable
yields of harvestable-size fish. However, balanced populations can also occur in
unexploited water bodies (Anderson and Neumann 1996).

The length-frequency histogram for Alligator Lake (Figure 9.5) may indicate
that this population is unbalanced. The most striking difference between Lake
Jackson and Alligator Lake is that Alligator Lake does not show a stable decline in
the numbers of fish with increasing length. Instead, the length-frequency histo-
gram is “interrupted” by length-groups with many individuals bounded by length-
groups with fewer individuals. If the strong and weak interruptions corresponded
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Figure 9.5 Relative-frequency histograms for black crappie from Lake Jackson and Alligator
Lake, Florida, collected by means of a trawl. Data were provided by the Florida Fish and Wildlife
Conservation Commission.
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to age-groups, and if all lengths represented were vulnerable to the sampling
gear, then a fisheries scientist might conclude that year-class strength at Alligator
Lake is inconsistent compared with Jackson Lake. However, the clearest indication
of variable year-class strength would be determined from age-frequency analysis
(see Chapter 4).

The length-frequency distribution for largemouth bass collected by means of
night electrofishing in a South Dakota pond is presented in Figure 9.6. Note that
all largemouth bass sampled were less than quality length; thus PSD = 0. Mortality
in this population possibly is high, demonstrated by the lack of largemouth bass
greater than quality length. When examining the size structure, a fisheries scientist
might arrive at one of several conclusions about the status of this population: (1)
low recruitment, slow growth, and moderate to high mortality due to poor habitat;
(2) overharvest of largemouth bass greater than quality length; or (3) high den-
sity of small, slow-growing largemouth bass due to excessive recruitment. The last
condition is often referred to as stunting. In this example, length-frequency infor-
mation alone could not be interpreted to arrive at the cause for the poor popula-
tion structure. Other information such as C/f, growth, or body condition assess-
ment would be necessary. In Knox Pond, C/f was 306 stock-length largemouth

Figure 9.6 Absolute-length-frequency histogram of stock-length (�20 cm) largemouth bass
sampled by electrofishing from Knox Pond, South Dakota.
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bass per hour of electrofishing (Neumann et al. 1994), which was high compared
with other populations in the state. Mean relative weight (Wr) was 77, and growth
rate was well below the state average. Thus, this population represented condi-
tion 3 listed above. Condition 1 might be confirmed if C/f was low, growth was
slow, and poor habitat was documented. Condition 2 might be confirmed if growth
was moderate to fast, habitat conditions were favorable, and creel statistics showed
a high harvest of quality-length fish. This example also demonstrates the value of
statewide or regional summaries of sampling data for comparative purposes.

9.5.2 Stock Density Indices

The use of stock density indices in size structure assessment should be thought of
as a complement, and not a replacement, to other methods of length-frequency
analysis. Any size structure assessment should begin with a thorough inspection of
length-frequency histograms, as they can provide detail that may be lost when
length data are summarized in wide length categories or by an index. A benefit of
calculating stock density indices is that the index values can be used to test corre-
lations between size structure and other factors. An appropriate question con-
cerning the use of stock density indices is whether the index value (i.e., size struc-
ture) reflects density and dynamics of fish populations (Willis et al. 1993). As the
density of a population increases, PSD tends to decrease; declines in size structure
can be attributed to slowing of growth and increased mortality as resources be-
come scarce. However, a low PSD value may also occur at low population densities
due to overharvest or poor habitat. Negative correlations between PSD and den-
sity, C/f, or biomass have been observed for many species, including largemouth
bass (Reynolds and Babb 1978; Gabelhouse 1984a; Boxrucker 1987; Guy and Willis
1990; Saffel et al. 1990; Hill and Willis 1993), black crappie (RSD-P; Guy and
Willis 1995), black bullhead (Brown et al. 1999), and brook trout (Johnson et al.
1992). Such negative correlations are more likely in small water bodies with simple
fish communities.

As growth increases, there is a tendency for PSD to increase. Low density may
result in fast growth, whereas high density may result in slow growth. Correlations
between stock density indices and growth have been observed for largemouth
bass (Miranda 1983; Jacobs and O’Donnell 1996), smallmouth bass (Jacobs and
O’Donnell 1996), bluegill (Novinger and Legler 1978; Paukert and Willis 2000),
northern pike (Willis and Scalet 1989), yellow perch (Willis et al. 1991; Paukert
and Willis 2000; Paukert et al. 2002), and black crappie (Guy and Willis 1995;
Paukert and Willis 2000; Paukert et al. 2002).

Several studies have demonstrated that body condition is positively correlated
to growth rate (see Chapter 10). Individuals from low-density populations in which
PSD is high tend to have high body condition values, and individuals from high-
density populations in which PSD is low tend to have low body condition values.
Positive correlations between PSD and Wr for species such as largemouth bass
(Wege and Anderson 1978), white crappie and black crappie (Gabelhouse 1984a),
northern pike (Willis and Scalet 1989), walleye (Murphy et al. 1990), sauger (Guy
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et al. 1990), yellow perch (Willis et al. 1991), and brook trout (Johnson et al.
1992) have been observed. However, body condition is an instantaneous mea-
sure, and slow-growing fish may exhibit high body condition at times of the year
when food is abundant or when gonads are mature during the spawning period.

As total annual mortality increases, there is a tendency for PSD to decrease. In
situations in which recruitment is high, as in the Knox Pond example (Figure
9.6), mortality tends to be high and PSD tends to be low. High mortality due to
overharvest and poor habitat also results in low PSD values. Negative correlations
between PSD and mortality have been observed in largemouth bass (Reynolds
and Babb 1978; Miranda 1983; Jacobs and O’Donnell 1996) and smallmouth bass
(Jacobs and O’Donnell 1996).

Correlations between stock density indices and density or  dynamic rate func-
tions are often moderate in strength, and there is a wide variability in the strength
of correlations observed among studies. One reason for this may be that stock
density indices may lack sensitivity in some cases; two populations can have the
same stock density index value and actually have different length-frequency distri-
butions. Variations in factors such as productivity and growing season can affect
establishment of a clear relationship between stock density indices and popula-
tion parameters (Willis et al. 1993). Additionally, variability in PSD may be related
to water body size. For example, largemouth bass in small impoundments may be
more recruitment driven than recruitment limited. Jakes (1987) found that size
structure of largemouth bass increased in three impoundments ranging in size
from 9 to 1,100 ha. Stock density indices also provide more interpretive informa-
tion when populations are relatively steady state, (i.e., when recruitment, growth,
and mortality remain somewhat constant) (Willis et al. 1993). For example, PSD
will provide little interpretive information for populations with highly variable
recruitment. Willis et al. (1993) provided an example in which the PSD of a black
crappie population increased from 3 in spring to 100 in fall. This was the result of
a single cohort of black crappies growing over the course of one season. Allen and
Pine (2000) found that PSD would often not change significantly in response to
minimum length limits if recruitment was highly variable (e.g., coefficients of
variation in recruits to age 1 that are greater than 70–90%).

Correlations between predator and prey stock density index values are listed in
Table 9.3. Because largemouth bass is a common predator in ponds and small
impoundments, most examples listed deal with largemouth bass as the predator,
although several examples of prey are listed. In ponds and small impoundments,
predator PSD tends to decline as predator density increases. As predator density
increases, prey fish density decreases. Thus, prey PSD tends to increase as preda-
tor density increases, resulting in an inverse correlation between predator PSD
and prey PSD (Willis et al. 1993).

The likelihood of an inverse relationship between predator PSD and prey PSD
tends to decline in large water bodies. Carline et al. (1984) suggested that in Ohio
impoundments, inverse relationships between size structure of largemouth bass
and bluegills may not be expected in impoundments greater than 15 ha in size. In
some instances, inverse relationships have been observed in impoundments larger
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than 15 ha (Gabelhouse 1984b; Boxrucker 1987; Guy and Willis 1991; Paukert
and Willis 2000; Paukert et al. 2002).

Stock density indices are useful tools not only to report size structure but also
to reflect density and population dynamics in certain situations. However, because
of the variability in correlations and confounding factors, stock density indices
should be used in association with other assessment tools to evaluate fish popula-
tions properly.

■ 9.6 CONCLUSIONS

Factors influencing the accuracy and precision of size structure data such as gear
selectivity and time of collection should be considered prior to data analysis and
interpretation. Standardized sampling that allows for relative comparisons through
time or across water bodies provides the most powerful inferences, and planning
the study design prior to data collection is imperative. Traditionally, fisheries sci-
entists pool individual fish data from multiple collection events (e.g., electrofishing
runs or nets) to develop and test length-frequency histograms. In this chapter, we
provided alternative analysis methods that consider the collection event as the
experimental unit rather than individual fish. Using the collection event as the
experimental unit has advantages because the analysis considers among-sample
variation in size structure rather than among-individual-fish variation. Addition-
ally, using individual fish as the experimental unit often causes the error degrees
of freedom to be very high, resulting in significant differences when distributions

Table 9.3 Summary of correlation coefficients (r) between stock density indices of predator
and prey species and other parameters. Parameters compared are  proportional stock density
(PSD); relative stock density of preferred-length fish (RSD-P); and catch-per-unit-effort (C/f).

Predator Parameter Prey Parameter r Reference

Largemouth bass PSD Black bullhead Mean length –0.81 Saffel et al. (1990)
C/f Bluegill PSD  0.71 Guy and Willis (1990)
PSD PSD –0.83 Guy and Willis (1990)
RSD-P Growth –0.64 Guy and Willis (1990)
PSD PSD –0.49 Paukert and Willis (2000)
C/f PSD  0.52 Paukert and Willis (2000)
PSD Crappiea PSD –0.85 Gabelhouse (1984a)
RSD-P PSD –0.84 Gabelhouse (1984a)
PSD C/f  0.73 Boxrucker (1987)
RSD-P C/f  0.88 Boxrucker (1987)
C/f PSD  0.56 Boxrucker (1987)
PSD PSD –0.56 Boxrucker (1987)
C/f Yellow perch PSD  0.81 Guy and Willis (1991)
PSD PSD –0.82 Guy and Willis (1991)
PSD Growth –0.95 Guy and Willis (1991)
C/f PSD  0.82 Paukert and Willis (2000)

Northern pike C/f Black bullhead PSD –0.54 Brown et al. (1999)
a Includes white crappie and black crappie.
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appear quite similar (e.g., Kolmogorov–Smirnov two-sample test). Thus, the use
of collection events as the experimental unit results in a more conservative test of
size structure differences, and we recommend these methods when possible. The
fisheries scientist should understand the advantages of various statistical tests and
match analysis methods as best as possible to design experiments properly. Size
structure data can be analyzed as categorical (e.g., chi-square), proportional (e.g.,
PSD), or continuous (e.g., LOGIT) data, depending on the study design and
sample size. Examples in this chapter provide guidance for comparisons across
systems,  through time, or both, depending on the study objectives. Experimental
design and hypothesis testing methods for analyses of length-frequency data will
continue to improve.
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Condition
Kevin L. Pope and Carter G. Kruse

■ 10.1 INTRODUCTION

The analysis of fish condition has become a standard practice in the management
of fish populations as a measure of both individual and cohort (e.g., age- or size-
group) wellness. Condition has been generically described as the well-being or
robustness of an individual fish (Le Cren 1951; Bulow et al. 1981; Blackwell et al.
2000). It has typically been estimated by comparing an individual fish weight to a
standard weight for a given length and assuming that larger ratios (condition
index) reflect a healthier physiological state (Bolger and Connolly 1989; Murphy
et al. 1991) or by directly measuring physiological parameters related to the en-
ergy stores, such as tissue lipid content (Craig 1977; Fechhelm et al. 1995). All
methods of calculating condition share the common goal of controlling for or
removing the confounding effects of absolute body size when comparing body
mass or other measures of nutritional state (Jakob et al. 1996). This is particularly
important for organisms with indeterminate growth, such as fishes (Reist 1985).

Measures of condition are generally intended to be an indicator of tissue en-
ergy reserves, with the expectation that a fish in good condition should demon-
strate faster growth rates, greater reproductive potential, and higher survival than
will a lesser-conditioned counterpart, given comparable environmental conditions.
Subsequently, fish condition is of keen interest to fisheries scientists, and numer-
ous studies have investigated the relationship between measures of fish condition
and parameters such as growth, fecundity, population structure, life history adap-
tations, environmental conditions, or management actions such as stocking (Cone
1989; Brown and Murphy 1991; Gabelhouse 1991; Blackwell et al. 2000). Although
measures of condition in fish can be sensitive or related to factors that might
logically affect energy storage or fitness in an individual, there is commonly sub-
stantial interspecies, seasonal, environmental, and spatial variation that influences
our ability to interpret changes in fish condition.

Fisheries scientists often must assess population status, effects of manage-
ment actions, and anthropogenic influences on the resource they are managing
(Brown and Austin 1996). Fish condition, if appropriately interpreted, may char-
acterize components of the environment in which the fish exists (e.g., habitat,
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prey availability, and competition) and provide insights into ecological and physi-
ological processes (e.g., overwintering mortality, seasonal storage of lipids, and
maturation). Thus, measures or indices of fish condition can be valuable compo-
nents of a fisheries scientist’s assessment over multiple ecological scales. A critical
component for interpreting fish condition data in a useful and applicable man-
ner is the correct application of statistical methodologies when collecting and
analyzing data. The objective of this chapter is to provide a brief overview of fish
condition measures, focusing on condition indices, and illustrate commonly used
techniques to analyze, summarize, and interpret condition data.

■ 10.2 WEIGHT–LENGTH RELATIONSHIPS

Anderson and Neumann (1996) noted that length and weight statistics are cor-
nerstones in the foundation of fisheries management and research. Weight–length
data have generally been used either to describe mathematically the relationship
between weight and length (Keys 1928) for purposes of conversion from one to
the other or to measure individual variation from an expected weight at a given
length as an indicator of condition (Le Cren 1951; Bolger and Connolly 1989). It
is often advantageous to describe the weight–length relationship of a population
to discern changes in body form. The power function,

W = aLb , (10.1)

generally describes the weight–length relationship of most fishes, where W is
weight, L is length, a is a constant, and b is an exponent usually between 2.5 and
4.0 (a fish growing isometrically or maintaining the same shape across length
categories has an exponent of 3.0). The functional exponent b, which describes
the curve of the relationship, is generally different among species and can be
sensitive to biotic and abiotic influences, leading to different values of b between
sexes or localities, even within the same species.

10.2.1 Regression of Weight –Length Data

Because body form typically changes with increasing length (i.e., allometric growth;
b � 3.0), untransformed weight–length data are related in a curvilinear fashion
(Figure 10.1A). Although a curve can be fitted to the weight–length relationship
for estimation of the power function coefficients (nonlinear regression), these
types of data are more easily analyzed by linear regression after logarithmically
transforming the data (Figure 10.1B). Based on the ordinary least-squares regres-
sion model (yi = �0 + �1xi + �), equation (10.1) becomes

log10(W) = a + b(log10L), (10.2)

where W (corresponding to the response or dependent yi ) and L (independent
xi ) are weight and length, respectively, a (�0) is the y-intercept (log10 scaling), and
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b (�1) the slope of the line. The error (�) associated with estimating yi (W) from a
regression line is implicit in equation (10.2).

The regression assumptions of linearity, normality, homoscedasticity (equal
variance of y at each level of x), and independence (no changes in y at a given x
due to an influence such as sampling over time) must be met for meaningful
interpretation of the regression coefficients (Neter et al. 1989). If a population
(i.e., group or cohort of interest) is randomly sampled over a relatively short pe-
riod, logarithmically transformed weight–length data generally conform to the
basic assumptions and are related in a highly significant linear fashion. Biases can
be introduced into weight–length data by, among other things, introducing mea-
surement error, combining temporally or spatially separated samples for which
physiological or environmental changes may have affected body form (e.g., pre-
and postspawn or lotic and lentic individuals), or by incompletely and nonrandomly
sampling the entire size structure of the population (e.g., presence or absence of
a resource-limited size category). Suspected transgression of the linearity, vari-
ance, and independence assumptions can be initially assessed with residual analy-
ses, where residuals (the difference between the observed weight and the corre-
sponding weight predicted by the regression line) or the error associated with
using the regression model are plotted against the independent variable (length)
or the predicted value of y. Graphically, residuals should appear as a constant
band around zero, with no obvious patterns (Figure 10.1C, D, E, and F). Most
statistical packages will provide an option for these analyses. The transformed
weight–length data generally approximate a normal distribution and small de-
partures from normality do not create serious problems; however, data normal-
ity should not be assumed, especially when using the regression coefficients as
indices of population condition or the residuals as an index to individual condi-
tion. A normal probability plot is a general test to ensure normality of the data
(Figure 10.1G).

A linear relation can be a reasonably good approximation for nonlinear data
provided the values of the independent variable do not cover a wide range (Steel
and Torrie 1980), such as comparisons of individuals in a relatively narrow subset
of all lengths sampled (e.g., a small section of the curve). Furthermore, simple
linear regression often statistically provides an adequate fit to untransformed
weight–length data when assessing statistics such as r2; however, better results can
be obtained with transformation or nonlinear analysis. Thus, it is unadvisable to
fit a linear model to curvilinear data. The logarithmic transformation enhances
the relationship by accounting for more of the variation in weight (demonstrated
by an increased r2) and minimizing overall model error, or the distance of indi-
vidual points from the regression line. The logarithmic transformation enhances
our ability to predict weight from length and to interpret the slope and intercept
of the relationship. A power function (nonlinear regression or curve fitting) of
the untransformed data provides the same explanatory power as linear regression
of the transformed variables; however, the exponential nature of the relationship
makes interpretation and comparison of weight–length relationships more diffi-
cult (Box 10.1).
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Figure 10.1 Graphical depiction of the curvilinear relationship of (A) untransformed length–
weight data from the low-elevation stream Yellowstone cutthroat trout population described in
Box 10.1 versus (B) the linear nature of the same data after log10 transformation. (C) A typical
diagnostic residual plot clearly illustrates the nonlinearity of the untransformed data, whereas
(D) more evenly distributed residuals exist for the transformed data, a pattern that is indicative
of linear, homoscedastic, and independent data. (E) The funnel-shaped residual pattern from a
separate data set demonstrates unequal variances in the dependent variable (weight), as might
be typical when sexually mature fish are collected in pre- and postspawning condition. (F) The
up and down pattern of residuals when graphed by sampling time indicate that the data may
not be independent but rather influenced by season (1 = prespawn, 2 = postspawn, and 3 = late
summer). Normal probability plots can be built or graphed in several ways; here, (G) a normal
probability plot of the ranked observed residuals (x) versus their paired standardized residual (y;
calculated assuming a normal distribution) demonstrates the linear relationship indicative of
normal weight–length data. A nonlinear relationship would indicate nonnormality or skewness
of the data. Other plots, such as a box-plot, can also be used to check data normality.
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Box 10.1 Transformation and Regression Analyses of Weight–Length Data—
Comparing the Condition of Two Populations

Table Presented are total length (TL; mm), weight (WT; g), and body fat as a percentage of overall
wet weight for samples of Yellowstone cutthroat trout collected in midsummer from three locations
that could influence individual weight at length: a lower-elevation stream (1,810 m elevation), a lower-
elevation lake (1,785 m), and a higher-elevation lake (2,610 m). Fat values were randomly generated
for example only. Fish samples were collected via electroshocking, gill nets, and angling.

Low-elevation stream (A) Low-elevation lake (B) High-elevation lake (C)

TL WT Fat (%)  TL WT Fat (%)  TL WT Fat (%)

129 20 5.91 254 181 10.59 180 63 8.32
130 25 12.88 262 186 9.08 191 77 4.78
132 22 7.67 272 136 1.38 198 54 0.6
132 24 11.29 274 191 2.64 203 73 2.63
134 20 2.27 282 245 7.32 231 100 0.99
134 25 11.57 287 236 6.68 234 104 1.21
138 26 6.63 290 168 1.39 236 109 5.91
140 28 11.04 297 263 6.81 239 118 2.55
143 28 9.45 302 290 9.1 239 127 5.37
144 30 9.86 305 290 7.97 241 127 2.87
147 36 8.79 328 327 5.9 244 141 4.97
151 38 13.78 330 354 2.47 244 141 5.51
163 56 11.69 333 363 5.16 244 154 8.21
171 52 6.46 333 390 9.29 246 141 4.37
182 60 8.83 338 372 3.64 246 150 6.27
182 61 8.93 340 417 12.98 246 168 8.44
184 63 8.97 340 417 9.92 249 145 2.34
190 75 11.71 343 399 5.36 249 145 4.51
191 55 4.73 345 408 5.39 249 154 6.44
192 73 7.35 345 445 10.37 249 159 7.88
197 90 12.88 351 463 10.24 251 145 2.99
206 83 4.52 353 390 5.78 251 145 3.04
215 103 9.1 353 390 1.75 251 145 3.57
220 105 6.41 356 467 8.51 254 150 7.98
237 121 3.06 356 472 8.66 254 150 3.64
238 133 6.52 358 408 1.87 254 154 4.63
240 126 3.42 361 545 1.99 254 159 2.95
248 161 9.81 361 472 9.61 254 163 5.94
249 182 12.24 363 481 6.19 257 154 3.73
253 153 7.34 363 508 8.87 257 159 3.11
253 161 11.11 366 481 4.62 257 168 5.98
254 154 4.25 368 476 2.69 257 172 7.38
262 213 12.33 373 544 11.45 257 172 7.83
262 215 12.53 378 526 4.29 259 154 1.23
265 234 12.9 381 535 3.12 259 159 3.93
266 202 10.44 381 535 3.37 259 159 4
268 242 13.04 384 608 9.99 259 172 6.19
269 189 4.27 386 572 5.84 259 181 7.9
270 190 4.29 389 562 7.05 262 181 7.25
273 243 12.66 391 590 4.86 262 181 6.31
279 215 9.63 394 635 3.9 264 159 1.87

(Box continues)
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283 228 6.83 396 590 2.48 267 191 6.74
283 233 8.62 399 581 2.43 269 136 3.45
300 270 5.45 401 603 2.43 272 163 0.73
306 290 7.62 406 703 7.24 282 195 2.28
331 429 11.87 411 703 6.36 284 231 9.7
342 440 10.71 414 676 2.51 284 245 10.89
349 460 9.82 425 752 4.33 290 231 4.8
354 460 7.63 433 780 3.05 290 231 4.81
360 518 10.77 462 1170 9.99 290 240 5.74

Program
The following SAS program is configured to provide two regression analyses—linear regression of
the weight–length data after log10 transformation on sample data from both the low-elevation
stream (A) and lake (B) Yellowstone cutthroat trout populations and nonlinear regression of the
untransformed data from the stream (A) sample. Only output relevant to the following discussion
is provided. Hereinafter, all references to weight–length data transformations refer to a log10

transformation.

OPTIONS PS=54 LS=75;
DATA TROUT;
INPUT POP $ TL WT;
LOGTL=LOG10(TL);
LOGWT=LOG10(WT);
CARDS;
A 129 20
B 254 181
[Input complete data set];
PROC SORT; BY POP;
PROC REG; BY POP; MODEL LOGWT=LOGTL/CLB;
PROC NLIN; BY POP; PARMS A=0.000001 B=3; MODEL WT=A*(TL**B);

RUN;

Output

Table Linear regression of transformed weight–length data for population A. The dependent
variable is log10WT (LOGWT). Abbreviations are sum of squares (SS), coefficient of variation (CV),
mean square error (MSE), and log10TL (LOGTL).

Analysis of Variance

Source df SS Mean square F-value P > F

Model 1 8.54267 8.54267 4545.72 <0.0001
Error 48 0.09021 0.00188
Corrected total 49 8.63287

r 2 0.9896 Root MSE 0.04335
Adjusted r 2 0.9893 Dependent mean 2.01073
CV 2.15597

Box 10.1 (continued)

Table (continued)

Low-elevation stream (A) Low-elevation lake (B) High-elevation lake (C)

TL WT Fat (%)  TL WT Fat (%)  TL WT Fat (%)
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Parameter Estimates

Parameter
Variable df estimate SE t-value P > |t |

Intercept 1 –5.14432 0.10630 –48.39 <0.0001
LOGTL 1 3.06874 0.04552 67.42 <0.0001

Variable df 95% Confidence limits

Intercept 1 –5.35805 –4.93059
LOGTL 1 2.97722 3.16025

Table Nonlinear regression of weight–length data for population A. The dependent variable is WT,
which is modeled as a constant (A) times TL raised to a power (B). The convergence criterion was
met. An intercept was not specified for this model.

 Iteration A B SS

0 1·10-6 3.0000 1656903
1 1.832·10-6 3.2801 58540.3
2 2.141·10-6 3.2545 53615.7
3 2.686·10-6 3.2164 49075.3
4 3.413·10-6 3.1775 41355.6
5 4.911·10-6 3.1183 31198.0
6 5.801·10-6 3.1049 11611.2
7 5.868·10-6 3.1056 11159.7
8 5.869·10-6 3.1056 11159.7

Estimation Summary

Method Gauss-Newton

Iterations 8
Subiterations 7
Average Subiterations 0.875
R 2.223·10-7

PPC(A) 6.674·10-8

RPC(A) 0.000045
Object 5.848·10-8

Objective 11159.7
Observations Read 50
Observations Used 50
Observations Missing 0

Regression Model

Approximate
Source df SS Mean square F-value P > F

Regression 2 2001114 1000557 4303.59 <0.0001
Residual 48 11159.7 232.5
Uncorrected total 50 2012274
Corrected Total 49 838762

(Box continues)
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Table (continued)

Parameter Estimates

Variable df Approximate SE Approximate 95% confidence limits

A 5.869·10–6 2.215·10–6 1.416·10–6 0.000010
B 3.1056 0.0659 2.9731 3.2381

Approximate Correlation Matrix

A B

A 1.0000000 –0.9995920
B –0.9995920 1.0000000

Table Linear regression of transformed weight–length data for population B. The dependent
variable is log10WT.

Analysis of Variance

Source df SS Mean square F-value P > F

Model 1 1.66271 1.66271 914.86 <0.0001
Error 48 0.08724 0.00182
Corrected total 49 1.74995

r 2 0.9501 Root MSE 0.04263
Adjusted r 2 0.9491 Dependent mean 2.63145
CV 1.62008

Parameter Estimates

Parameter
Variable df estimate SE t-value P > |t |

Intercept 1 –5.36936 0.26459 –20.29 <0.0001
LOGTL 1 3.14307 0.10391 30.25 <0.0001

Variable df 95% confidence limits

 Intercept 1 –5.90135 –4.83737
 LOGTL 1 2.93413 3.35200

Interpretation
Regression of the transformed weight–length data from sample (A) shows a highly significant
relationship (P < 0.0001) that explains 99% of the variation in weight (r2). Regression of the
transformed data provides a more precise estimation of fish weight than can be obtained by linear
regression of the untransformed data and is a useful tool for inferring changes in overall condition
(weight) temporally within or spatially across populations. Often a linear equation fitted to the
entire range of untransformed data predicts that a fish must be of substantial size before the

Box 10.1 (continued)



Condition 431

weight exceeds zero, overestimates weights for mid-length fish, and underestimates the weight of
larger fish—thus, the equation is not biologically relevant. Here, the transformed equation (log10WT
= –5.144 + 3.069log10TL) estimates that individuals incrementally gain mass once they exceed 1
mm in length and demonstrates a strong linear relationship between weight and length.

The nonlinear regression of the untransformed data (equation [10.1]) provides the power function
WT = 0.000005869(TL)3.1056 and predicts weights very similar to the linear regression (equation
[10.2]) based on the transformed data (e.g., a 300-mm cutthroat trout is predicted to weigh 287 g
with the transformed equation and 289 g with the power function). In fact, equations (10.1) and
(10.2) are the exact same model (bequation [10.1] = bequation [10.2] and aequation [10.1] = 10a equation [10.2]). In our
example, the coefficients have slightly different values and they provide slightly different predic-
tions because the power function assumed homoscedastic error variances when, in reality, the
larger fish had more variance in weight than did the smaller ones. Even with these similarities,
interpretation and comparison among populations based on nonlinear regression is intuitively and
statistically more difficult, and transformation to a linear equation is the preferred approach.

Often a primary question is whether differences in condition exist between or within specific
populations or groups of fish across space and time. Comparisons of the regression coefficients
associated with a given set of weight–length data can be used to determine whether a population
(or group) of fish is significantly heavier and, by extension, in better condition at a given length. An
interesting comparison might be whether Yellowstone cutthroat trout from a lake habitat are
better conditioned than are stream-dwelling individuals found at similar elevations because a lake
environment could be perceived as energetically favorable (e.g., no current or warmer). The
estimated slope and intercept for the sample of transformed weight–length data from the stream
population (A) are, respectively, 3.069 and –5.144 compared with 3.143 and –5.369 for the lake
population (B). These equations suggest that average fish of 250 mm and 450 mm in length would
weigh 164 g and 997 g, respectively, in the stream environment and 147 g and 933 g, respectively, in
the lake environment. The regression results seem to indicate that stream fish are heavier at a given
length than are their lake counterparts, at least in the sampled locations. However, in order to make
meaningful statements regarding this relationship, we need to determine whether these popula-
tions are significantly different, given natural variation in weight at length.

Confidence intervals (CIs) around the estimated parameter (slope in this example) can be used as
an initial assessment of differences in condition, if any, between populations. Using equation (10.2)
(or the values provided by the SAS output) one can calculate the CIs around the parameter
estimates. For example, the 95% CI around the estimated slopes (the actual parameter estimate is
parenthetically enclosed) are 2.977–(3.069)–3.160 for stream fish and 2.934–(3.143)–3.352 for the
lake population. These CIs overlap almost completely, and at least one interval encompasses the
slope estimate of the other (in this case both intervals encompass the other slope estimate—the
slope of the stream fish falls within the CI for the lake fish, and vice versa), indicating that the slopes
are not significantly different, or that weight gain as the fish grows (body form) is similar between
these two sites. Similar analyses show that the intercepts of these two populations are not signifi-
cantly different. Thus we conclude that although the respective transformed equations predict
different average weights, neither population is significantly heavier or better conditioned than is
the other, contrary to our a prior expectation. If the CIs for the two slope estimates had not
overlapped, it would have been an indication that the two values were indeed significantly
different.

(Box continues)
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The least-squares regression coefficients estimated from the log-transformed
data can be used to compare relative condition differences among populations
or to assess temporal changes in condition within a population (Cone 1989).
Bolger and Connolly (1989) indicated that the regression coefficients can sug-
gest significant differences among populations but that estimates of intercept
and slope should be considered together to provide a valid interpretation. If
the regression slopes of two populations are similar, a larger intercept could
indicate a population in better overall condition, or at least heavier fish at a
given length. Likewise, a steeper slope would indicate increasingly (with length)
better condition if population intercepts were similar. Intersecting regression
lines (one population having a greater slope but lesser intercept than another)
could indicate general differences in condition among small and large individu-
als. Carlander (1969) suggested that slopes less than 3.0 might indicate popula-
tions in crowded or stunted condition. However, Murphy et al. (1991) cautioned
that coefficient analysis should be used to compare only the general form of
specific populations because it tends to average out differences in condition
between size-classes, an important component of condition analysis if, for ex-
ample, a fisheries scientist were assessing the effect of prey abundance on dif-
ferent size-classes of fish (e.g., Marwitz and Hubert 1997).

Differences in weight–length regression lines can be cursorily assessed by com-
paring confidence interval (CI) overlap around the coefficients generated by the
regression analysis. However, more precise statistical contrast includes determin-
ing the CI around the difference between two like coefficients or conducting
analysis of covariance (ANCOVA). A CI, or the range of values within which the

A clearer comparison that provides a relevant level of precision, and one that must be performed if
intervals overlap but neither one encloses the slope estimate of the other, is a CI around the
difference between the slopes. For example suppose there are two populations with slopes 3.6 (SE
= 0.2) and 3.0 (SE = 0.15). Based on a sample of 62 (60 df ) individuals from each and a 95% confi-
dence level, intervals for these slopes overlap but do not encompass the other slope estimate. The
SE of the difference between these two slope values is

= SE1
2 + SE2

2 0.22 + 0.152 = 0.25,

and the CI for the difference is 0.6 ± 1.98(0.25), where 0.6 is the difference between the slopes of
the two populations and 1.98 is the t-value for an � =  0.05 with 120 df (equation [10.4]). This
interval does not include zero, which is indicative of significantly different slopes. Completing this
calculation for the Yellowstone cutthroat trout example above reveals that the CI around the
differences in slopes (0.074 ± 2.013[0.113], based on 48 df ) includes zero, which indicates that the
slopes are not different (as was previously concluded).

Box 10.1 (continued)
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regression coefficient is likely to fall over 1 – � percent of all samples from the
population of interest, is calculated by

g ± t(1 – �/2; n – 2) • s(g), (10.3)

where g is the coefficient estimate, s(g) is the standard error of g, and t is the t-
value for a given confidence level (�) and df (n – 2). A quick assessment, with no
relevant statistical precision, is to calculate interval overlap. If CIs around two
linear regression slopes (or some other coefficient) developed from independent
samples do not overlap, then they are significantly different. Furthermore, if the
CI from one slope encloses the estimated value of the other then the two are not
significantly different. A comparison that does provide statistical precision, and
one that is required if CIs overlap (but neither encloses the estimated slope of the
other), is determination of whether the interval around the difference in slopes
contains zero; if so, the difference between the two estimated coefficients is statis-
tically nonsignificant. The interval around the difference in slopes is given by

(RS1 – RS2) ± t(1 – �/2; df ) •   SE1 + SE2  ,
2 2 (10.4)

where RS1 is the first regression slope, RS2 is the second regression slope, SE1 is
the standard error of the first slope, and SE2 is the standard error of the second
slope. The df is equal to the sum of (n1 – 2) and (n2 – 2). Box 10.1 compares CIs of
regression coefficients from samples of lake and stream Yellowstone cutthroat
trout populations, where one might expect differences in population condition
resulting from environmental influences. Interval analyses are relatively simplis-
tic tests of regression line differences but are adequate for contrasting samples
where sample size (n) and distribution (length categories of individuals captured)
are similar, especially if the latter approach of testing the difference between co-
efficients is employed, or for preliminary analyses for general discussion purposes
(interval overlap comparison). When the size-ranges of fish captured become
uneven (e.g., larger fish in one sample but not the other), a test such as ANCOVA
(section 10.2.2) that controls for size differences across time or habitat is more
appropriate.

10.2.2 Analysis of Covariance to Test Differences in Regression Lines

Comparisons of weight-at-length (condition) data across multiple populations are
often an important consideration, but the length range of individuals sampled
often varies in space and time, and different-sized groups of fish may be in better
or worse condition. The ANCOVA can control for the effects of differing size ranges
(length as the covariate) and is a more powerful test for homogeneity of regres-
sion coefficients (i.e., test for differences in slopes between two or more lines with
the null hypothesis that coefficients are equal; Zar 1984) where spatial (e.g., el-
evation) or temporal (e.g., season) effects might influence inferences regarding
population wellness, as modeled by weight. Simply because the length variable is
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not statistically significantly different between or among the populations of inter-
est using a means comparison test (t-test or analysis of variance [ANOVA]) does
not mean length will not confound a comparison of population condition. Rather
it is the strength of the covariates’ association to both the treatment and response
variables together that determines the covariates’ influence on our inference re-
garding condition. On the other hand, ANCOVA should be used with caution
when length distributions are completely disparate, as interpretation of the re-
sults may become more speculative than meaningful (Agresti and Finlay 1986).

The general assumptions of ANCOVA when applied to weight–length data are
(1) that length measurements are fixed, measured without error, and indepen-
dent of treatments; (2) the regression of weight on length disregarding the treat-
ment is linear (linearity of within-group regressions); (3) there is homogeneity of
within-group regressions, and (4) the residuals are normally and independently
distributed with zero mean and common variance. The ANCOVA is an inappro-
priate tool when heterogeneity of regression coefficients and residual variances
exists. Assumption two is regularly achieved by some sort of data transformation.
Similarly, weight is typically normally distributed and, furthermore, data transfor-
mation has a normalizing effect. Assumption three requires that the regression
lines associated with the treatment groups have a common slope or parallelism;
slope discrepancies will result in a conservative ANCOVA F-test, for which the
likelihood of type I error (rejecting a true null hypothesis) is actually lower than
the nominal alpha. Heterogeneity of error variances is of most concern when
sample sizes among groups differ and will result in a conservative F-test if the
larger and smaller samples sizes are associated with the larger and smaller vari-
ances, respectively. If the opposite is true, then the test becomes liberal (i.e., the
true alpha is greater than then the nominal alpha) (Vila-Gispert and Moreno-
Amich 2001).

We initially want to determine slope similarity. Building on equation (10.2),
the complete ANCOVA model contains the response variable (weight, W), an
intercept (�0), two independent variables, the covariate (length, L) and a dummy
variable that represents potential effects on weight that are of interest (X; for
example, habitat effects are coded 1 for low-elevation stream and 0 for low-eleva-
tion lake), and an interaction term (length � habitat code, LiXi ) in the form

Wi = �0 + �1Li + �2Xi + �3Li Xi + �i , (10.5)

where weight and length are log10 transformed. The relationship can be modeled
using a general linear model (GLM) approach or using regression. If the two
slopes differ, the interaction term will be significant in the model, indicating that
the regression lines intersect at some point (note that point may be outside the
range of data collected) and the trend lines are different. This type of result
suggests that individual fish in the two populations gain weight at different rates
as they increase in length and may indicate, among other things, resource limita-
tions (or availability) for different size categories within (temporal comparisons) or
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between (spatial comparisons) populations. If the slopes are statistically different
(i.e., we know the lines are different), further testing of intercept differences is
difficult to interpret and often of little interest because magnitude of treatment
effect varies depending on length and the intercept of a weight–length relation-
ship (length = 0) is generally not relevant.

If fish from two populations maintain similar incremental weight gains with
increasing length, then the slopes will not be significantly different; however, one
population could be significantly heavier or better conditioned at a given length
than another. Thus, we generally want to determine the magnitude of the
elevational difference between the lines by assessing the y-intercepts. In other
words, are the lines truly the same or are they separated in regression space with
similar slopes? Here equation (10.5) is reduced to the form

Wi = �0 + �1Li + �2Xi + �i (10.6)

by removing the interaction term from the analysis. Separate lines or intercept
differences are noted by a significant test of the dummy variable (X) in the model.

In its simplest form, ANCOVA is used, as described above, to control for length
differences between two populations or categories of treatment (e.g., a habitat
treatment of lotic and lentic environments); however, it can be used to assess
multiple populations and multiple treatments by simply adding additional dummy
variables and the associated interaction terms to equation (10.4). In Box 10.2, we
provide an example of ANCOVA based on the two populations of Yellowstone
cutthroat trout analyzed in Box 10.1. Both the CI comparisons in Box 10.1 and
ANCOVA in Box 10.2 provide results that indicate the slopes of the two lines are
not significantly different. However, contrary to interval comparison, the ANCOVA
analysis suggests that the intercepts are different. This discrepancy is likely due to
two factors. First, the length distributions of the samples are not similar, an impor-
tant consideration with interval comparison. Second, ANCOVA, which controls
for length, and interval comparison ask slightly different questions—the latter
asks whether the intercepts of two lines are different when the lines are allowed to
float freely or have their own slopes, whereas the ANCOVA test asks whether the
intercepts are different when lines are forced to have a common slope.

10.2.3 Weight–Length Regression Line Residual Analyses

Most commonly weight–length regression coefficients are used to describe the
relationship between length and weight or to compare differences in body form
(condition) at a population level. However, Fechhelm et al. (1995) and Sutton et
al. (2000) used magnitude and sign of the individual residuals as an indicator of
fish condition (a larger negative residual indicated poorer relative condition) to
summarize seasonal and sex-related patterns in condition. This type of analysis is
synonymous with condition indices but can overcome some of the limitations as-
sociated with testing ratio data.
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Box 10.2 Analysis of Covariance (ANCOVA)

The ANCOVA can be used to test for differences between regression parameters (i.e., slopes and
intercepts) and is especially appropriate when the length ranges sampled in the populations to be
compared are generally unequal. Here, the following SAS program provides results for both the
complete (equation [10.5]) and reduced (equation [10.6]) models used to analyze differences in the
log10 transformed weight–length regression equations from the low-elevation stream (A) and low-
elevation lake (B) Yellowstone cutthroat trout populations presented in Box 10.1.

Program

OPTIONS PS=54 LS=75;

DATA TROUT;

INPUT POP $ TL WT;

LOGTL=LOG10(TL);

LOGWT=LOG10(WT);

CARDS;

A 129 20

B 254 181

[Input complete data set];

PROC SORT; BY POP;

PROC GLM; CLASS POP; MODEL LOGWT=POP|LOGTL/SS3;

PROC GLM; CLASS POP; MODEL LOGWT=POP LOGTL/SS3 SOLUTION;

RUN;

Output

Table The ANCOVA to test for slope differences (n = 100). The dependent variable is LOGWT for
the two populations (POP).

Source df SS Mean square F-value P > F

Model 3 19.83785325 6.61261775 3577.54 <0.0001
Error 96 0.17744331 0.00184837
Corrected total 99 20.01529656

R2 0.991135 Root MSE 0.042993
CV 1.852261 LOGWT mean 2.321090

Source df Type III SS Mean square F-value P > F

POP 1 0.00113727 0.00113727 0.62 0.4347
LOGTL 1 5.47809028 5.47809028 2963.74 <0.0001
LOGTL*POP 1 0.00078440 0.00078440 0.42 0.5163



Condition 437

Table The ANCOVA to test for intercept differences.  The dependent variable is LOGWT (n = 100).

Class Level Information

Class Levels Values

POP 2 A B

Analysis of Covariance

Source df SS Mean square F-value P > F

Model 2 19.83706885 9.91853443 5398.14 <0.0001
Error 97 0.17822771 0.00183740
Corrected total 99 20.01529656

R 2 0.991095 Root MSE 0.042865
CV 1.846757 LOGWT mean 2.321090

Source df Type III SS Mean square F-value P > F

POP 1 0.01778497 0.01778497 9.68 0.0024
LOGTL 1 10.20459461 10.20459461 5553.83 <0.0001

Parameter Estimates

Variable Estimatea SE t-value P > |t |

Intercept –5.209761011 z 0.10539178 –49.43 <0.0001
POP   A 0.038319477 z 0.01231671 3.11 0.0024
POP   B 0.000000000 z
LOGTL 3.080368006 0.04133391 74.52 <0.0001

a The X’X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations.
Terms whose estimates are followed by the letter z are not uniquely estimable.

Interpretation
For modeling purposes, the dummy variable (treatment variable POP) value for each fish from the
stream and lake samples was 1 and 0, respectively, and the interaction term was calculated as
LOGTL times the dummy variable. Thus the interaction term is equal to LOGTL (dummy code *
LOGTL) for stream fish and zero for the lake samples. The LOGWT was then regressed against all the
independent variables in the complete model (dummy POP, covariate LOGTL, and interaction
LOGTL*POP). Of interest is the significance of the interaction term, which indicates whether or not
the slopes of the two populations, when controlling for length, are significantly different—in this
case they are not (interaction P = 0.516). If the slopes had been different, we would have concluded
that these two populations had different trends in weight (condition) relative to length (i.e.,
incremental weight gain for a given increase in length is different) and we would have stopped
with our analysis. Further, if we had found a difference between slopes, it would be appropriate to
model LOGWT as a function of POP and LOGTL(POP) (length nested in populations).

(Box continues)
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The residualized weights are the error terms associated with equation (10.2)
and can be calculated as the observed transformed weight of an individual fish
minus the predicted transformed weight, or

ei = log10(Wi) – log10(a) – b log10(Li), (10.7)

where ei is the residual value and can be negative; Wi is the weight of fish i; Li is the
length of fish i; and a and b are the regression parameter values for the equation
developed from the group of fish of interest (population).

Residual condition uses the weight–length relationship of a discrete, sampled
population; thus inferences regarding any individual or group of individuals from
that population are relative only to other individuals within the overall sample
used to develop the weight–length regression. Larger-scale comparisons of popu-
lation level residual condition variation would require a single equation devel-
oped from all populations under consideration, with the assumption that all indi-
vidual population weight–length relationships have similar slopes (Jakob et al.
1996; Sutton et al. 2000).

Residual analysis is very similar to the condition indices discussed in the follow-
ing section (10.3), and the two are often highly correlated, but Fechhelm et al.
(1995) suggested that in some cases residuals can be normally distributed in data
sets in which condition indices are not, or vice versa. Thus, this technique can
provide parametric options that might not otherwise be available with condition
indices. Patterson (1992) suggested that in comparing condition to other vari-
ables it is inappropriate to use the residuals from a weight–length regression as an
index to condition because the residuals are not unbiased estimators of the un-
derlying error of a regression model. Rather, a more complete regression model
including all factors that might affect weight should be fitted prior to analyzing
residuals (see equation [10.12]).

Because the slopes were not different, we remove the interaction term from the model and regress
LOGWT against the remaining independent variables (POP and LOGTL). In this example the
adjustment for the dummy or treatment (POP) variable is significantly different from 0 (P = 0.002),
and we conclude that the intercepts are different. Overall these results suggest that the two
populations gain weight incrementally in a similar fashion, but trout in population A are consis-
tently heavier at a given length than are trout in population B.

In the output from the reduced model (i.e., interaction term removed), the coefficient for the
dummy variable (POP) is 0.0383. This value represents the magnitude of the difference in intercepts
of the linear regressions for the transformed data. Because the lake sample was coded as 0, the
population is represented by slope 3.080 for the parameter estimate for LOGTL and intercept
–5.210 (see reduced model output), whereas the stream population is represented by slope 3.080
and intercept (–5.2097 + 0.0383) or –5.171.

Box 10.2 (continued)
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Raw or standardized residuals can be generated by most statistical software. For
example, SAS (SAS Institute 1998) calculates residuals for regression analysis; these
values are stored in the variable name RESIDUAL and can be treated like any
other SAS variable. Adding the SAS command PLOT RESIDUAL*TL (within the
regression procedure command [PROC REG]) to the weight–length regression
exercise will produce a plot of residuals as a function of total length (TL); an
evident trend in residuals may suggest a lack of fit of the regression model. The
residuals can also be used as variables in other common statistical tests, such as
mean comparisons, to assess condition level and trends.

■ 10.3 CONDITION INDICES

Condition indices are widely used to assess many facets of fish populations, in-
cluding the general health of fish stocks, the effects of management actions, com-
munity structure, or environmental influences (Bolger and Connolly 1989; Ney
1993; Neumann and Willis 1995; Ward and Zimmerman 1999; Blackwell et al.
2000). Condition indices are intended to estimate physiological condition (e.g.,
lipid stores) indirectly based on the premise that a fish of a given species and
length should weigh as much as a standard or average for its length, and varia-
tions from the standard are taken as an indication of the relative wellness of an
individual. Measures of fish condition based on a standard weight have been avail-
able since the early 1900s and have undergone an evolution in methodology
(Murphy et al. 1991) as well as rigorous reviews regarding their correlation with
physiological parameters and statistical merit (e.g., Bolger and Connolly 1989;
Patterson 1992; Blackwell et al. 2000; Vila-Gispert and Moreno-Amich 2001;
Brenden et al. 2003). They remain popular tools because they are simplistic and
noninvasive (only weight–length data needed) and are more easily compared than
are the regression parameters in weight–length relationships. Murphy et al. (1990)
indicated that an ideal condition index should be consistent, that is, maintain
similar statistical properties and meaning across length and species; tractable,
that is, analyzable by standard statistics; robust, that is, insensitive to data collec-
tion and analysis variations; and efficient, that is, provide precision from relatively
small sample sizes. Anderson and Neumann (1996) and Blackwell et al. (2000)
provided thorough reviews of the history of condition factors, and here we only
briefly describe their history and development.

10.3.1 Fulton’s Condition Factor

Traditionally, one of the ways to relate fish length to weight was simply to cube the
length of the fish (Spencer 1898; Wootton 1990). However, this basic equation is
imprecise because it fails to account for allometric growth (i.e., b � 3; equation
[10.1]; Fulton 1904; Martin 1949). Nonetheless, this basic physical principle has
been used extensively in fisheries science and is still used today (e.g., Ratz and
Lloret 2003; Stone et al. 2003). For example, Fulton’s condition factor (Anderson
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and Neumann 1996) is calculated as the ratio between observed and expected
weight for a fish of given length:

K = (W/L3) • 100,000, (10.8)

where W is the weight (g), L is length (mm), and 100,000 is a scaling constant. In
application, body form changes with length (b > 3) and species (b1 � b2), which
results in condition factors that are often length and species dependent (Murphy et
al. 1991; Jakob et al. 1996; Blackwell et al. 2000). Thus K increases with increasing
length, limiting its application to fish of similar length within the same species.

10.3.2 Relative Condition Factor

Le Cren (1951) attempted to solve the deficiencies of K by comparing the actual
weight to a standard predicted by the weight–length regression based on the popu-
lation from which the fish was sampled. Relative condition is calculated as

Kn = (W/W �) • 100, (10.9)

where W is individual fish weight and W � is the predicted length-specific weight
based on log10 transformed data. Average fish of all lengths and species have an
average Kn value of 100; however, because weight–length relationships can vary
among populations and geographic sites, comparisons of Kn must be confined to
those populations with homogenous weight–length parameters. Swingle and Shell
(1971) indicated that Kn could be useful as an indicator of physiological stress on
a population and expanded the concept by establishing species-specific weight–
length relationships across a broader geographical range, which allowed compari-
sons of condition across populations. This broadened application of condition
analyses from a population level to regional scale; however, regional differences
still existed, making comparison and communication difficult.

10.3.3 Relative Weight

Relative weight (Wr) was proposed by Wege and Anderson (1978) as a condition
analysis tool for largemouth bass and represents further evolution of the Kn con-
cept by allowing comparisons of condition across the geographical occurrence of
a species, as well as among species. The Wr index is calculated as

Wr = (W/Ws) • 100, (10.10)

where W is individual fish weight and Ws is a length-specific standard weight pre-
dicted from a weight–length regression developed to represent the body form of
the species across its geographical range (see Blackwell et al. 2000 for a list of
developed standard weight equations). The Wr index uses 100 (or a range, 95–
105) as a benchmark for a fish in good condition—a readily identifiable standard
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for fisheries scientists. Fish greater than the target are considered in relatively
better condition than a standard fish, whereas those less than the target are con-
sidered in worse condition with severity depending on the distance from the bench-
mark. For example, condition values exceeding 105 may indicate abundant prey
and favorable environmental conditions (e.g., Marwitz and Hubert 1997; Porath
and Peters 1997).

The estimation of a and b in the standard weight equation (note equation
[10.2]),

log10(Ws) = a + b(log10L), (10.11)

has undergone several iterations and review of statistical validity (see Anderson
and Neumann 1996). The currently accepted technique for development of Ws

equations is the 75th regression-line–percentile (RLP) technique proposed by
Murphy et al. (1990), which has consistently provided Ws equations with little or
no length-related biases, allowing for comparisons within and across species. Gerow
et al. (2004), however, suggested this bias has been incorrectly assessed in the past
and may be greater than originally reported for most standard Ws equations. Be-
cause standard weight equations are developed based on weight–length relation-
ships across the range of the species, comparison and communications of condi-
tion analyses are consistent across the species range. Herein lays the value of Wr

relative to other condition indices. Whereas a single Ws equation for each species
has generally proven adequate, and is preferred for simplicity, differences in body
forms between broad habitat types (e.g., lotic versus lentic habitats) has required
maintaining multiple standard weight equations or target goals (i.e., something
other than 100) for some species (e.g., burbot, Fisher et al. 1996; inland cutthroat
trout, Kruse and Hubert 1997).

It is logical that both environmental and genetic factors influence body form
and weight, and, by extension, condition as well. Furthermore, it is possible for an
individual to increase energetic fitness without a change in body weight (Booth
and Keast 1986). Thus, questions remain whether Wr , or any weight to length
ratio, is both a valid and interpretable indicator of the physiological condition in
fish or a metric sensitive and relevant enough to assess the effects of changed
management or environment on fish condition. Numerous studies have investi-
gated the practical limits in the application of Wr . Liao et al. (1995) and Gutreuter
and Childress (1990) found Wr a weak indicator of growth, a relationship that
seems intuitive based on the assumption that a fish in better condition can devote
more energy to growth. Conversely, Brown and Murphy (1991) and Neumann
and Murphy (1992) found Wr was correlated with fat composition in the body, an
indication that Wr can be a relative measure of individual energy stores. Blackwell
et al. (2000) provided excellent discussion regarding the relationships, or in some
cases the lack thereof, between Wr and body composition, growth, and reproduc-
tive potential, among other things. Brenden et al. (2003) suggested that the lack
of clear relationships in some studies attempting to relate Wr to variables that
seem intuitively related to individual condition might be the result of an index
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that, in most cases, does not satisfy the theoretical assumptions on which the sta-
tistical test is founded.

Most analyses of Wr are either mean comparisons among different populations
or length categories (e.g., t-test, ANOVA, or nonparametric equivalents) or an
assessment of the correlation and regression relationship among condition and
other independent variables that might influence fitness (e.g., prey density as a
good predictor of condition for a given population or size-class of fish). Sections
10.3.4 and 10.6 describe some of the common statistical procedures used to analyze
and compare individual and population level condition as measured by an index.

10.3.4 Application and Common Statistical Analysis of Relative Weight

10.3.4.1 Statistical Analysis of Relative Weight Data

The application of Wr has increased over the last decade and is now commonly
used as a condition assessment tool in the majority of the USA (Blackwell et al.
2000); thus, we focus our discussion of statistical analyses on Wr. The appropriate-
ness of Wr, which is a ratio, as a variable in statistical testing has been the subject of
several reviews. Numerous authors have recommended against the use of ratios to
scale biological data because analyses of ratios may point to treatment effects that
do not exist or they may fail to detect major differences that do exist (e.g., Tanner
1949; Atchley et al. 1976; Anderson and Lydic 1977; Atchley 1978; Atchley and
Anderson 1978; Reist 1985; Packard and Boardman 1988). Bolgor and Connolly
(1989) indicated that the potential for greater variability and nonnormal distribu-
tions of ratio data such as Wr might make parametric testing of Wr inappropriate.
Furthermore, they indicated that ratio data commonly exhibit heteroscedasticity,
skewness, and leptokurtosis (a taller distribution with fatter tails as compared with
normal), all of which violate the assumptions of common statistical tests (e.g.,
regression and ANOVA) and weaken the power of these comparisons. Thus, Hyatt
and Hubert (2001) concluded that normality for Wr data cannot be assumed and
should be assessed before applying parametric tests. Murphy et al. (1990), when
evaluating Wr frequencies in walleye populations, suggested that the use of para-
metric tests to compare differences in Wr data yields conservative results, which
Blackwell et al. (2000) interpreted as a greater probability of type II error (failure
to reject the null hypothesis when the alternative is true). Contrarily, Bolger and
Connolly (1989) stated that while skewness has minimal effect on significance or
power, significant leptokurtosis could lead to greater nominal significance values.
Sokal and Rohlf (1981) indicated that a nonnormal distribution is only a minor
violation of the assumptions for parametric statistics, thus parametric mean-com-
parison tests are generally robust to departures from normality. If there is con-
cern over violation of assumptions for parametric tests, an alternative is to use a
nonparametric test such as Wilcoxon’s rank-sum test or Kruskal–Wallis test for
comparison.

Patterson (1992) also recognized the problems of skewed distributions of ra-
tios and suggested, as summarized in section 10.2.3, that it is inappropriate to use
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weight–length regression residuals because they are biased estimators of regres-
sion error. Likewise, Jakob et al. (1996) noted that residuals from the residual
index for condition are not comparable across populations. This is germane be-
cause individual values of Wr are essentially the de-transformed residuals. As a
solution, Patterson (1992) proposed that all variables assumed to affect weight be
directly included in the analyses at the same time as length and the coefficient of
each parameter used to assess its effect on condition. For example, when testing
for mean monthly differences in condition, include month as a variable in the
model:

log10(Wi) = �(0) + �(m) + �1[log10(Li)] + ei , (10.12)

where �(0) is the overall intercept and �(m) are monthly adjustments to the over-
all intercept. Each parameter coefficient is used to measure the effect on fish
condition. This is essentially an extension of the ANCOVA analysis.

More recently, based on a derivation of the statistical properties of the index,
Brenden et al. (2003) argued that Wr data are not independent and identically
distributed, as required by both parametric and nonparametric tests, because the
properties are conditionally dependent on fish length. Conventional tests that
assume independence and identical distributions increase the likelihood of a type
I error (rejecting the null hypothesis when there is no difference) when applied
to Wr data. To alleviate this risk, they proposed an R-test as the most appropriate
and conservative way to test relative weight data (see Brenden et al. [2003] for a
more thorough discussion). Of concern is the relative difficulty of computing the
R-statistic and its associated significance value, especially when the improvement
in testing power is moderate. The application of this recently proposed test is
probably greatest for researchers attempting to make definitive conclusions re-
garding patterns in condition but of less utility for management decisions that
might include condition as only one component in a decision-making process.

Given these arguments, it is apparent that care should be taken when statisti-
cally analyzing Wr values, and the data should be analyzed to ensure that the as-
sumptions of a chosen statistical test are not violated or that the test is robust
enough to handle a violation of the assumptions. Transformations to normalize
Wr data and homogenize the variances (e.g., Box–Cox transformation; Box and
Cox 1964) have generally proven to be of little value (Murphy et al. 1990; Brenden
et al. 2003). Alternatively, nonparametric tests can be used if the data will result in
misapplication of parametric tests. However, as mentioned, Brenden et al. (2003)
argue that their R-test is the most appropriate for testing Wr data. Undoubtedly
the statistical merit of Wr comparisons will continue to be debated, leading to a
better understanding of the statistical properties of this index, as well as a clearer
picture of the potential shortcomings and strengths of using established paramet-
ric and nonparametric tests and alternative tests for comparisons. We suggest that
mean comparisons (t-test, ANOVA, Mann–Whitney, and Kruskal–Wallis) and re-
gression relationships can continue to be adequate methods for testing Wr data, as
long as the discussion of comparative results includes reference to the potential
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shortcomings of the test in relation to the distribution of the data. Results likely
can be clarified and strengthened by comparing the results of multiple tests.

10.3.4.2  Length-Related Patterns in Relative Weight Data

Because environmentally dependent trends in condition across lengths can be
averaged out, mean population condition should not be compared unless it can
be demonstrated that length-related patterns or differences are absent in the popu-
lation. Plotting individual or length-group mean Wr values allows a visual assess-
ment of potential or important patterns such as size-related condition trends re-
sulting from, for example, differences in prey availability, gonad maturity, or
density. Murphy et al. (1991) suggested that condition data should be summa-
rized by length-group based on Gabelhouse’s (1984) five-cell model (stock-, qual-
ity-, preferred-, memorable- and trophy-length fish); others have suggested that
this model may not be ecologically relevant depending on the relationship being
explored and have summarized Wr differently (e.g., 50-cm length-groups; Porath
and Peters 1997). Once Wr values have been classified in a fashion relevant to the
question of interest (note that this does not preclude the use of individual fish
condition as the unit of interest), individuals or groups can be compared with
each other to determine whether one is poorer conditioned than another or
whether condition as measured by Wr (as the dependent variable) is statistically
related to another variable or suite of variables, such as a habitat attribute. Box
10.3 provides examples of tests comparing Wr among multiple populations.

10.3.4.3 Relationship of Relative Weight to Physiological and Environmental Measures

As surrogate indicators of physiological well being, condition index values such as
Wr should reflect proximate body composition of individual fish (e.g., lipid con-
tent, protein content, or caloric content; Murphy et al. 1991). Strange and Pelton
(1987) found a weak relationship between mean condition factor (K) and fat per-
centage in composite samples of prey fishes. However, more recent physiological
assessments of Wr have found correlations between Wr and tissue energy content
in walleye (Rose 1989), white crappie (Neumann and Murphy 1991), and striped
bass and hybrid striped bass (Brown and Murphy 1991). Brown and Murphy (1991)
suggested that Wr provided a better estimate of reserve energy than did measures
such as the liver–somatic index. Thus, Wr appears to be a reliable index of energy
reserves in these species and, as such, might be a good indicator of short-term
growth potential or potential for resistance to nutritional stress (Murphy et al.
1991). However, complications such as volume replacement of lipid (fat) reserves
by water may confound the relationship between Wr and proximate components
(Novinger and Martinez Del Rio 1999).

On the other hand, assessments of relationships between Wr and characteris-
tics that would seem a logical expression of energy use, such as growth, which
represents the ultimate expression of individual fitness (Bolger and Connolly 1989),
have had mixed results. A common notion is that Wr and other condition indices
can be used as indicators of growth: poor condition indicates poor growth and
vice versa (e.g., Busacker et al. 1990; Ney 1993). Positive correlations between Wr
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Box 10.3 Comparisons of Mean Relative Weight

Murphy et al. (1990) provided a formula for computation of the 95% CI around a mean relative
weight (W

—
r ) value:

CI = Wr   n
—

 ±  t • (SD/ ) , (10.13)

where t is the t-value that corresponds to an �-value (usually 0.05) with n – 1 df and W
—

r  is the mean
measure of condition for a specific group (population). The overlap in CIs for mean values from
different populations or length-groups can be compared to determine whether they are statisti-
cally similar or not. For example, a simple mean calculation for the stream population of
Yellowstone cutthroat trout presented in Box 10.1 provides a  W

—
r  of 94.7 (SD = 9.47), whereas the

low-elevation lake population has a W
—

r  of 92.9 (SD = 8.45). Thus, the respective CIs would be 94.7 ±
2.69 and 92.9 ± 2.32. Both intervals include the mean value of the other population (see discussion
in Box 10.1), indicating that individuals in these two populations are similarly conditioned, but this
tells us little about whether there are length-specific differences between populations.

Mean comparison tests such as the two-sample t-test (or the nonparametric equivalent, Mann–
Whitney test) or multiple-comparison tests such as ANOVA (or the nonparametric Kruskal–Wallis
test) can be used to examine length-related or inter-population trends in Wr . Herein, we discuss
how one might test for difference in condition, as indexed by Wr , among length-groups from the
same population or among populations. For the Yellowstone cutthroat trout data presented in Box
10.1 the question of interest is whether macro-scale habitat type (stream versus lake and low
versus high elevation) has any significant influence on fish condition.

Relative weights were calculated for the three populations described in Box 10.1 based on the lotic
(log10Ws = –5.189 + 3.099·log10[TL]) and lentic (log10Ws = –5.192 + 3.086·log10 [TL]) standard-weight
equations for cutthroat trout (Kruse and Hubert 1997). An important first step is to assess the
distribution of the Wr data to determine whether a parametric or nonparametric test is more
appropriate. This can be completed with typical assessments of normality, such as a histogram or
box-plot of the data (not shown). In this case, the data appears generally normal, but there is some
skewness and outliers for all three populations. It is important to assess whether the outliers (or
individuals with extreme values when compared to the mean) are biologically relevant or errors
due to measurement or data entry. We retained the outliers in this assessment.

Prior to comparing overall population means, it is prudent to check for length-related patterns in
condition within each population (Murphy et al. 1990, 1991; Blackwell et al. 2000). For example,
changes in Wr with increasing length for cutthroat trout from the low-elevation stream population
can be assessed by grouping cutthroat trout in 50-mm length categories (e.g., group one is 100–
149-mm fish and group five is 300–349-mm fish plus the two largest fish). Another way to group
the fish is to use the five-cell model (Gabelhouse 1984) for stock- to trophy-length fish (see
cutthroat trout length categories in Anderson and Neumann [1996]). The following SAS program
calculates Wr values for individual fish and assigns each fish to a length-group for testing differ-
ences in W

—
r  among length-groups by means of ANOVA, a test that is robust to small departures

from normality.

(Box continues)
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Program

OPTIONS PS=54 LS=75;

DATA TROUT;

INPUT POP $ TL WT;

LOGTL=LOG10(TL);

LOGWT=LOG10(WT);

WS=10**(-5.189+(3.099*LOGTL));

WR=(WT/WS)*100;

IF TL>99 AND TL<150 THEN GRP=1;

IF TL>149 AND TL<200 THEN GRP=2;

IF TL>199 AND TL<250 THEN GRP=3;

IF TL>249 AND TL<300 THEN GRP=4;

IF TL>299 THEN GRP=5;

CARDS;

A 129 20

A 130 25

[Input complete data set];

PROC ANOVA; CLASS GRP; MODEL WR=GRP;

RUN;

Output

Table The ANOVA procedure for comparing differences in W
—

r  among length-groups (GRP) in a
population of low-elevation stream-dwelling Yellowstone cutthroat trout (n = 50).

Class Level Information

Class Levels Values

GRP 5 1 2 3 4 5

Analysis of Variance

Source df SS Mean square F-value P > F

Model 4 254.915000 63.728750 0.69 0.6005
Error 45 4136.534097 91.922980
Corrected total 49 4391.449097

R2 0.058048 Root MSE 9.587647
CV 10.12727 W

—
r 94.67155

Source df SS Mean square F-value P > F

Group 4 254.9150003 63.7287501 0.69 0.6005

Interpretation
It does appear, if one calculates the means of each 50-mm length-group, that there are some
differences in condition. For example, 150–199-mm fish have an average Wr value of 97.5, whereas
200–249-mm fish average only 90.3. This might indicate that the smaller fish have a better prey
base than do larger individuals who may be using another food source. However, given the
variability in Wr values among individuals within each group, and the differences in sample sizes,

Box 10.3 (continued)
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are these mean values significantly different? The test of equality of  W
—

r  values in each 50-mm
length-group (i.e., no differences in means among groups would indicate no length-related
patterns) is based on a comparison of two types of variability—within groups (variability of
individuals in each category around the mean for that category) and between groups (variability of
the mean of each category around the overall mean for the population). The F-test value reported
in the SAS output is based on the ratio of the variability between groups to the variability within
groups. Mean Wr values among length-groups were not different. Thus, there does not appear to be
an environmental influence such as prey or habitat selection differentially influencing the condi-
tion of Yellowstone cutthroat trout in this population, at least on a length-dependent basis (based
on the length-groups we selected). Thus, it may be appropriate to calculate a population-wide W

—
r

value for this Yellowstone cutthroat trout population.

For comparison sake, and because the data were somewhat nonnormal, we also provide the SAS
program and output for a Kruskal–Wallis test.

Program

OPTIONS PS=54 LS=75;

DATA TROUT;

INPUT POP $ TL WT;

LOGTL=LOG10(TL);

LOGWT=LOG10(WT);

WS=10**(-5.189+(3.099*LOGTL));

WR=(WT/WS)*100;

IF TL>99 AND TL<150 THEN GRP=1;

IF TL>149 AND TL<200 THEN GRP=2;

IF TL>199 AND TL<250 THEN GRP=3;

IF TL>249 AND TL<300 THEN GRP=4;

IF TL>299 THEN GRP=5;

CARDS;

A 129 20

A 130 25

[Input complete data set];

PROC NPAR1WAY WILCOXON; CLASS GRP; VAR WR;

RUN;

Output

Table The NPAR1WAY procedure of SAS for Wilcoxon scores (rank sums) for the variable W
—

r

classified by length-group.

Group N Sum of scores Expected under H0 SD under H0 Mean score

1 11 314.0 280.50 42.699532 28.545455
2 10 307.0 255.00 41.231056 30.700000
3 8 142.0 204.00 37.788887 17.750000
4 14 342.0 357.00 46.281746 24.428571
5 7 170.0 178.50 35.766605 24.285714

(Box continues)
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Kruskal–Wallis Test

Chi-square 4.1380
df 4
P > chi-square 0.3877

Interpretation
The Kruskal–Wallis test indicates similar results as the ANOVA. The mean ranks suggest that the
150–199-mm fish are slightly better conditioned than are the other length-categories, and the 200–
249-mm fish are poorer conditioned; however, the test for differences among length categories is
nonsignificant (P = 0.39).

Similar to the stream population, there were no length-related patterns in Wr in either of the two
lake Yellowstone cutthroat trout populations (results not shown); thus, we can use an ANOVA to
determine if there are any differences in fish condition among populations.

Program

OPTIONS PS=54 LS=75;

DATA TROUTA;

INPUT POP $ TL WT;

LOGTL=LOG10(TL);

LOGWT=LOG10(WT);

WS=10**(-5.189+(3.099*LOGTL));

WR=(WT/WS)*100;

CARDS;

A 129 20

A 130 25

[Input complete data set for population A];

DATA TROUTB;

INPUT POP $ TL WT;

LOGTL=LOG10(TL);

LOGWT=LOG10(WT);

WS=10**(-5.192+(3.086*LOGTL));

WR=(WT/WS)*100;

CARDS;

B 254 181

B 262 186

[Input complete data set for populations B and C];

DATA TROUT; SET TROUTA TROUTB;

PROC SORT; BY POP;

PROC ANOVA; CLASS POP; MODEL WR=POP; MEANS POP;

RUN;

Box 10.3 (continued)
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Output

Table The ANOVA procedure to compare W
—

r  for three populations of Yellowstone cutthroat trout
(n = 150).

Class Level Information

Class Levels Values

POP 3 A B C

Analysis of Variance

Source df SS Mean square F-value P > F

Model 2 276.39380 138.19690 1.75 0.1773
Error 147 11604.08875 78.93938
Corrected total 149 11880.48255

R2 0.023265 Root MSE 8.884784
CV 9.542586 W

—
r 93.10667

Source df SS Mean square F-value P > F

POP 2 276.3938029 138.1969014 1.75 0.1773

Population Estimates

Relative weight

Population N Mean SD

A 50 94.6715459 9.46685852
B 50 93.2871930 8.45707184
C 50 91.3612615 8.69911855

Interpretation
Mean Wr values for Yellowstone cutthroat trout in the low-elevation stream population (A), the low-
elevation lake (B), and the high-elevation lake (C) were 94.7, 93.3, and 91.4, respectively. Even
though we might have expected differences either on an elevation gradient or by habitat type,
there was no significant difference in W

—
r  for these three populations (P = 0.18). Thus, on average an

individual fish of a given length from these three populations appears to be similarly conditioned.
A Kruskal–Wallis test on these data provides similar results (P = 0. 35). It is important to note that
this example included fish from only one of each habitat type; thus, it is inappropriate to conclude
that Yellowstone cutthroat trout condition does not vary as a function of elevation or habitat type.
To explore the relationship between condition and elevation or habitat type, a different design is
needed (i.e., samples of fish are required from multiple low-elevation streams, low-elevation lakes,
and high-elevation lakes) because individual water bodies would be the experimental unit of
interest, not individual fish within a water body.
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and growth have been reported for largemouth bass (Wege and Anderson 1978),
northern pike (Willis 1989), yellow perch (Willis et al. 1991), and juvenile striped
bass and hybrid striped bass (Brown and Murphy 1991). However, other evidence
contradicts the notion that Wr is consistently correlated with growth (Gutreuter
and Childress 1990; Gabelhouse 1991). Furthermore, Liao et al. (1995) found no
evidence that growth and Wr were correlated for pumpkinseed or golden shiner.
Relative weight may reflect growth of some species under certain circumstances,
but uncritical use of Wr as a predictor of growth could lead to substantial errors in
population assessments.

Another factor commonly linked with Wr is prey availability (Anderson and
Gutreuter 1983; Busacker et al. 1990; Flickinger and Bulow 1993; Ney 1993). Poor
condition is assumed to reflect prey scarcity, whereas good condition is assumed
to reflect an abundance of prey, and both these patterns can be found among
size-classes of fish within the same population. Kohler and Kelly (1991) indicated
that a quick and cost-effective method for evaluating prey supply was to assess
condition of their predators. Porath and Peters (1997) believed that walleye Wr

values from standardized fall surveys offer a cost-effective method of detecting
prey deficiencies in reservoirs. Small Wr values were reported for lake trout in
oligotrophic Wyoming lakes with sparse zooplankton; larger Wr values were found
for lake trout in two Wyoming mesotrophic lakes, and the largest Wr values were
reported from Flaming Gorge Reservoir, the most productive reservoir in the study
(Hubert et al. 1994). Prey availability and Wr values were correlated for pumpkin-
seed but not for golden shiner; differences in these two species may be related to
differences in food habits, with golden shiner having a more flexible and omnivo-
rous diet (Liao et al. 1995). Relative weight may be a good predictor of prey avail-
ability especially for species with relatively narrow or specialized diets.

Most of these relationships have been examined through the use of group
mean comparisons, bivariate correlations, or linear regression analyses. In Box
10.4 some of these common techniques are applied to the relationship between
Yellowstone cutthroat trout Wr and whole-body fat composition.

■ 10.4 PHYSIOLOGICAL MEASURES OF CONDITION

Whereas condition indices attempt to approximate indirectly energetic well-being
based on individual whole-body mass, other measures of condition relate directly
to the physiological composition of body tissues, thereby providing a more precise
measure of actual fitness in terms of stored energy. Physiological measures of
condition have used either an index (ratio) of tissue weights or direct measures of
tissues such as lipid or protein content. These include the liver–somatic index
(hepatosomatic index or ratio of liver weight to body weight minus gonads),
body water content, visceral–somatic index, percent composition of body tissues
(e.g., percent lipid or fat), and RNA/DNA ratios (Elliott 1976; Heidinger and
Crawford 1977; Jensen 1979; Bulow et al. 1981; Adams and McLean 1985; Håkanson
1989; Shackley et al. 1994). These types of measures are typically invasive, lethal,
and more costly and time consuming than are indices based on weight–length
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information, which has typically been the impetus for developing indexes such as
Wr. Statistical procedures and limitations associated with the use of physiological
measures of condition are similar to those described above for weight–length rela-
tionships and Wr. Physiological information summarized in ratio form (e.g., liver–
somatic index) has the same problems of nonnormality, nonindependence, and
heteroscedasticity as does Wr. Measures of tissues composition based on percentage
body weight vary in synchrony (colinearity or highly related independent variables)
by their very nature. For example, if the percentage of fat based on overall body
weight increases, than the percentage of another tissue component (e.g., protein
or water) must decrease because the total cannot exceed 100%.

Many fisheries scientists simply use these measures in a graphical form to de-
scribe the trend in fish condition as measured by tissue weight or composition
over time. Others have used simple correlation analysis to relate one measure to
another or to some environmental variable. Adams and McLean (1985) used the
liver–somatic index as a variable in a regression analysis to predict largemouth
bass growth, whereas Delahunty and de Vlaming (1980) determined the organ
weight–body weight relationship of goldfish by means of linear regression, tested
the seasonal variation of the relationship using ANCOVA, and used ANOVA to
determine if lipid values varied by month (see Box 10.4).

■ 10.5 ADDITIONAL MORPHOMETRIC MEASURES OF CONDITION

Morphometric assessments of condition estimate individual fitness based on mea-
surement of body form. Condition indices are a type of morphometric index that
measure body form along a single axis, which is used to calculate an average or
standard weight for a given length. Instead of the progression of condition indi-
ces from K to Kn to Wr, as described in section 10.3, Jones et al. (1999) proposed
an alternative condition factor (B) based on two dimensions of fish body form,
length and height, in association with weight (building on equation [10.8]) in an
attempt to eliminate some of the length and species-related biases associated with
Fulton’s condition factor (K) :

B = M/(H • L2), (10.14)

where M is body mass or weight, H represents body height, and L is body length.
The premise is that mass is related to body density and form in three dimensions
(length, height, and thickness). Jones et al. (1999) suggested that the third di-
mension, thickness or girth, could be reasonably approximated by length (i.e.,
thickness is linearly related to length) and reduce regression variability while elimi-
nating substantial handling and measurement time required to assess girth or
thickness. Richter et al. (2000) argued that the assumption of a linear relation-
ship between thickness and length was false in most cases and that the effects of
allometric growth could be better minimized by the equation

B�= M/(H 2 • L). (10.15)
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Box 10.4 Analysis of Fat Composition Data

In Box 10.3, we tested for differences in Wr within and among populations. Here we examine
whether those Wr values are related to whole-body fat content in individual fish and then test
whether population mean fat content differs among populations. Fat composition, a direct
measure of individual wellness or energy stores, was estimated for the Yellowstone cutthroat trout
sampled in stream and lake habitats (see Box 10.1 for data). We compared fat composition to Wr by
means of correlation and regression analyses. The question of interest is whether Wr is a good
indicator of individual physiological fitness as referenced by tissue fat content.  Additionally, we
want to know if using fat as the indicator of individual fitness results in a different conclusion
regarding the population-level effects that elevation (a surrogate for environmental conditions
such as temperature, growing season, and food supply) might have on fish condition. Please note
that in this example we did not check for length-related biases (e.g., potential differences among
length categories) within each population. The following SAS program regresses wet weight fat
percentage against individual Wr (all populations combined into one data set) and compares mean
percent fat composition among the three Yellowstone cutthroat trout populations by means of
ANOVA.

Program

OPTIONS PS=54 LS=75;

DATA TROUTA;

INPUT POP $ TL WT FAT;

LOGTL=LOG10(TL);

LOGWT=LOG10(WT);

WS=10**(-5.189+(3.099*LOGTL));

WR=(WT/WS)*100;

CARDS;

A 129 20 5.91

A 130 25 12.88

[Input complete data set for population A];

DATA TROUTB;

INPUT POP $ TL WT FAT;

LOGTL=LOG10(TL);

LOGWT=LOG10(WT);

WS=10**(-5.192+(3.086*LOGTL));

WR=(WT/WS)*100;

CARDS;

B 254 181 10.59

B 262 186 9.08

[Input complete data set for populations B and C];

DATA TROUT; SET TROUTA TROUTB;

PROC SORT; BY POP;

PROC REG; MODEL FAT=WR;

PROC ANOVA; CLASS POP; MODEL FAT=POP; MEANS POP/TUKEY;

RUN;
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Output

Table Linear regression of wet weight fat percentage against individual Wr .

Analysis of Variance

Source df SS Mean square F-value P > F

Model 1 857.46498 857.46498 158.72 <0.0001
Error 148 799.53931 5.40229
Corrected total 149 1657.00428

r 2 0.5175 Root MSE 2.32428
Adjusted r 2 0.5142 Dependent mean 6.57033
CV 35.37542

Parameter Estimates

Variable df Parameter estimate SE t-value P > |t |

Intercept 1 –18.44302 1.99447 –9.25 <0.0001
Relative weight 1 0.26865 0.02132 12.60 <0.0001

Interpretation
Fat composition and Wr are significantly correlated with each other (r = 0.719, P < 0.001) and the
regression F-test (P < 0.0001) indicates that the slope (0.27) of the relationship between these
variables is significantly greater than zero. Thus, it is apparent that Wr  does reflect whole-body fat
content (as a percentage of whole body weight) in individual fish to some degree. However, the
coefficient of determination (r2), or the proportion of the variability in percent fat explained by the
linear relationship with Wr , is 0.52, suggesting only moderate explanatory power and providing
evidence that other factors are influencing the weight and ultimately Wr of individual Yellowstone
cutthroat trout.

Additional Output

Table Comparison of percent fat among populations (n = 150). The Tukey’s studentized range
(HSD) test controls the type I experimentwise error rate, but it generally has a higher type II error
rate than the Ryan–Einot–Gabriel–Welsch multiple-range test.

Class Level Information

Class Levels Values

POP 3 A B C

Analysis of Variance

Source df SS Mean square F-value P > F

Model 2 414.859585 207.429793 24.55 <0.0001
Error 147 1242.144698 8.449964
Corrected total 149 1657.004283

R2 0.250367 Root MSE 2.906882
CV 44.24254 Fat mean 6.570333 (Box continues)
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Source df SS Mean square F-value P > F

POP 2 414.8595853 207.4297927 24.55 <0.0001

Tukey’s Studentized Range (HSD) Test for Fat

Alpha 0.05
Error df 147
Error mean square 8.449964
Critical value of studentized range 3.34848
Minimum significant difference 1.3765

Tukey groupinga Mean fat N Population

A 8.8376 50 A
B 5.9782 50 B
B 4.8952 50 C

a Means with the same letter are not significantly different.

Interpretation
When comparing percent fat scores among populations, the F-test for the ANOVA was significant
(P < 0.0001), indicating that at least one of the populations had significantly different overall mean
percent fat. However, the ANOVA does not provide information regarding which or how many
populations are significantly different; thus, a post hoc multiple-comparisons test is needed. There
are several post hoc multiple comparisons that can be used to determine which group mean(s) are
statistically different, such as Tukey’s studentized range test, Duncan’s multiple-range test, least
significant differences, and Scheffé’s statistic. Carmer and Swanson (1973) provide a good decision
tree regarding which multiple-comparison test is most appropriate.

In this case, we used Tukey’s test to determine which populations were different. The Tukey’s
grouping shows that Yellowstone cutthroat trout in both lake populations (B and C) had signifi-
cantly lower percent body fat than did Yellowstone cutthroat trout in the low-elevation stream
population (A). Further, percent body fat for Yellowstone cutthroat trout in the two lakes are not
significantly different from each other (either there are no real differences or there was enough
uncertainty or variance in the percent fat values that the multiple-comparison test could not
differentiate B from C). These results seem different than those of the similar ANOVA we ran in Box
10.3, which indicated that mean population condition as measured by Wr was not statistically
different among populations. However, we must remember that Wr estimates were calculated using
different Ws equations, which were designed to account for general body-form differences between
cutthroat trout in lotic and lentic systems. Even so, there is some question, as illustrated by both the
linear regression relationship between Wr and fat in this example and the ANOVA in the previous
example (Box 10.3), as to whether Wr provides a true reflection of fish condition in these
Yellowstone cutthroat trout populations, at least as measured by fat reserves in the body.

Box 10.4 (continued)
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Both B and B� provide improvement over K when comparing the regression rela-
tionship between actual body mass and the body mass back-calculated from the
condition factors (Jones et al. 1999; Richter et al. 2000). These are an appropriate
modification to the condition factor concept, allowing broader condition com-
parisons across size ranges and populations, especially for those species for which
Ws equations have not been developed. Statistical tests similar to those discussed
for condition indices in section 10.3 can be applied to B or B� to provide rigorous
comparisons.

Similarly, measurements of body form dimensions other than length, such as
distances between anatomical landmarks, can be used in lieu of weight to assess
condition. This approach may be especially useful when individual measurements
of weight are highly imprecise, such as with small fish. Box 10.5 describes an ex-
ample of condition assessment in juvenile largemouth bass based on body depth
(height) and length in an ANCOVA. The use of one or two anatomical distances
to assess condition is a simplistic form of truss analysis.

Truss analysis has been in use for several decades (Humphries et al. 1981; Strauss
and Bookstein 1982) but primarily for morphometric comparisons of differences
in body form among different types or stocks of fish. This type of analysis involves
systematic measurement between multiple pairs of landmarks across the body in
order to differentiate body shapes computationally. These measurements, often
based on discrete juxtapositions such as fin insertion points (Fitzgerald et al. 2002),
form polygons across the body, which give rise to the term truss analysis. Fitzgerald
et al. (2002) applied truss analysis to quantify changes in fish condition by using a
10-point truss system to assess the effect of differing feed rations. Eigenvector
coefficients from principle component analysis (PCA), a multivariate data reduc-
tion technique, were successful in demonstrating that key truss measurements
change as condition changes and can be used to describe differences in body
form between groups of better- and lesser-conditioned fish. The PCA approach is
a common analytical tool for truss comparisons (Toline and Baker 1993; Moore
and Bronte 2001).

Truss analysis can be used to compare the condition of fish among groups
(populations), habitats, or sampling time. Fitzgerald et al. (2002) argued that
although truss measurements may currently be more time and cost consuming
than traditional condition indices, they provide a much clearer picture of the
effect condition, or lack thereof, has on body form and allow for precise compari-
sons over time. Truss comparisons may prove to be more ecologically, morpho-
logically, genetically, and physiologically revealing than are more popular and
traditional numerical constructs of fish condition. As digital imaging techniques
and computer analytical software continue to evolve and advance, truss analysis
likely will become a common technique for analyzing fish condition.

■ 10.6 FACTORS AFFECTING CONDITION DATA

Seasonal changes occur in fish condition due to changes in fish behavior and
physiology that are influenced by many factors (e.g., changes in temperature,
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Box 10.5 Morphological Assessment of Juvenile Condition

The following data are used to assess effects of starvation on body condition of largemouth bass
juveniles. For most fishes, standard condition indices (e.g., Wr ) are applicable to only adults and
large juveniles because weight measurements are imprecise for small fish. A controlled experiment
was conducted to determine if simple morphological measurements could be used to determine
condition of juvenile largemouth bass (partial data set from Smith et al. [2005]). Hatchery-reared
largemouth bass were raised until completion of fin development and then divided into two
experimental groups of fed and unfed fish. Differences in body morphology existed after only 3 d
of food deprivation, and a simple bivariate ratio of body depth at the anus to standard length was
almost as efficient and robust at classifying fed and unfed largemouth bass as a multivariate index
based on 23 morphometric characters. Here we provide an assessment of differences in the body
depth after 6 d of food deprivation.

Table Standard length (SL; mm) and body depth (BD; mm) of juvenile largemouth bass. Fed
largemouth bass were provided brine shrimp; unfed largemouth bass were deprived food for 6 d.

Fed Unfed

SL BD SL BD

9.237 1.706 11.934 2.427
9.267 1.730 10.482 2.164
9.500 1.895 10.605 1.907
9.291 1.811 10.604 1.903
9.291 1.814 13.024 2.811

12.296 2.680 12.215 2.390
12.575 2.585 12.660 2.324
12.296 2.388 12.984 2.419
12.707 2.495 11.047 1.875
11.329 2.328 11.853 2.259
12.659 2.489 11.531 2.296

9.842 2.148 12.136 2.390
10.237 1.981 11.651 2.196

8.818 1.791 11.167 2.032
8.500 1.707 12.216 2.358

10.105 2.129 12.054 2.229
11.344 2.530 12.821 2.290

8.053 1.454 12.581 2.194
8.474 1.621 11.653 1.969
9.503 2.105 12.342 2.196

10.422 2.127 11.540 2.103
9.212 1.961 13.638 2.583

10.848 2.425 11.168 1.872
8.369 1.537 11.490 2.003

10.925 2.316 11.651 1.907
12.448 2.674 11.697 2.097
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Program
The following SAS program tests for differences among the body depth of fed and unfed large-
mouth bass by means of ANCOVA to remove the confounding effect of fish size.

OPTIONS PS=54 LS=75;

DATA LMB;INPUT FOOD $ SL BD @@;CARDS;

F 9.237 1.706 U11.9342.427

F 9.267 1.730 U10.4822.164

[Input complete data set];

PROC SORT; BY FOOD;

PROC GLM; CLASS FOOD; MODEL BD=FOOD|SL/SS3;PROC GLM; CLASS FOOD; MODEL

BD=FOOD SL/SS3 SOLUTION;RUN;

Output

Table An ANCOVA to test for slope differences in body depth (BD) of fed and unfed fish (n = 52).

Source df SS Mean square F-value P > F

Model 3 4.06177300 1.35392433 73.52 <0.0001
Error 48 0.88395183 0.01841566
 Corrected total 51 4.94572483

R2 0.821270 Root MSE 0.135704
CV 6.321951 BD mean 2.146558

Source df Type III SS Mean square F-value P > F

FOOD 1 0.00498644 0.00498644 0.27 0.6052
SL 1 2.64331777 2.64331777 143.54 <0.0001
SL*FOOD 1 0.00007687 0.00007687 0.00 0.9488

Table An ANCOVA to test for intercept differences in BD of fed and unfed fish (n = 52).

Class Level Information

Class Levels Values

Food 2 F U

Analysis of Variance

Source df SS Mean square F-value P > F

Model 2 4.06169612 2.03084806 112.57 <0.0001
Error 49 0.88402870 0.01804140
Corrected total 51 4.94572483

R2 0.821254 Root MSE 0.134318
CV 6.257381 BD mean 2.146558

(Box continues)
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Source df Type III SS Mean square F-value P > F

FOOD 1 0.61792239 0.61792239 34.25 <0.0001
SL 1 3.91445980 3.91445980 216.97 <0.0001

Parameter Estimates

Variable Estimatea SE t-value P > |t |

Intercept –0.5671680765 z 0.18968254 –2.99 0.0044
FOOD-FED 0.2627719497 z 0.04490009 5.85 <0.0001
FOOD-UNFED 0.0000000000 z
SL 0.2330097751 0.01581879 14.73 <0.0001

a The X’X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations.
Terms whose estimates are followed by the letter z are not uniquely estimable.

Interpretation
Differences existed in the body depth between fed and unfed largemouth bass (slopes were not
different [P = 0.95]; intercepts were different [P < 0.0001]; see discussion in Box 10.2), with greater
body depth for fed fish (see figure below). Thus, body morphology is related to nutritional status in
juvenile largemouth bass. Therefore, distances between anatomical landmarks or trusses (see
Strauss and Bookstein [1982] for a discussion of trusses) may be used in some instances to quantify
fish condition. This approach may be especially useful for assessing condition of larval and juvenile
fishes; however, careful consideration must be given to ontogenetic stage, size, and species
(Suthers 1992; Ferron and Leggett 1994). In addition, changes in fish condition in response to
changes in food availability is likely greatest at intermediate abundances of prey (Ferron and
Leggett 1994). That is, no change in condition will occur with an increase in prey abundance if a
larval fish is already consuming the biological maximum amount of food (i.e., food intake is limited
by handling and digestion). Likewise, little change in condition is expected for a starved larval fish
that is provided a small amount of food, especially if the fish is near the threshold for irreversible
starvation (also called the point-of-no-return). Thus, our statistical ability to detect differences in
fish condition will vary as a function of food abundance and period of assessment.

Box 10.5 (continued)

turbidity, food supplies, and photoperiod; Pope and Willis 1996). Condition is a
short-term indicator of fish health status and is primarily influenced by resource
availability and gonadal growth. Typically with spring spawners, fish condition is
greatest in the spring just before spawning, declines immediately after spawning,
and then increases through the summer and into the fall. Obviously, the seasonal
trend in condition for fish species that spawn in the summer (e.g., bluegill) or
fall (e.g., brook and brown trout) should be different than spring spawners. Fur-
thermore, differences in gonadal development between males and females may
show gender differences in seasonal condition trends. Finally, fish size may also
affect the seasonal trend in fish condition (see Pope and Willis 1996 for detailed
examples of related studies). Le Cren (1951) noted that seasonal changes in
condition of mature fish are often due to changes in gonad weight. However,
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Figure Body depth (mm) as a function of size (standard length; mm) for fed (solid circles) and
unfed (open circles) juvenile largemouth bass.
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seasonal changes in the condition of immature fish may be attributable to feeding
conditions throughout the winter and spring. For example, Brown (1993) reported
that smaller (125–300-mm TL) largemouth bass in Aquilla Lake, Texas, came out
of the winter with a low Wr (i.e., 85), and condition remained low until late spring–
early summer, when Wr increased (i.e., 105). Gabelhouse (1991) found that small
white crappies (130–199-mm TL) in Melvern Reservoir, Kansas, exhibited the great-
est Wr in July and that Wr continued to decline throughout the fall and winter. He
speculated that the summer peak condition of small white crappies reflected the
feeding conditions associated with peak spawning of gizzard shad in mid to late
May. Thus, it is inappropriate to combine condition data across seasons. Further-
more, condition data should be reported separately for mature and immature
fish and may need to be separated by gender for mature individuals. Generally, Ws
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equations are reported for combined sexes; however, Neumann and Willis (1994)
provided separate Ws equations for male and female muskellunge (slopes of these
two equations were different).

Although general seasonal trends in condition of fish are observed, more spe-
cific spatial and temporal patterns of variation in Wr also exist. For example, Liao
et al. (1995) observed spatial and temporal differences among lakes for pumpkin-
seed and golden shiner. Temporal variations in condition have been reported for
black crappie (Gabelhouse 1991; Guy and Willis 1991), burbot (Pulliainen and
Korhonen 1990), northern pike (Guy and Willis 1991), walleye (Guy and Willis
1991), and yellow perch (Le Cren 1951; Guy and Willis 1991). Many of these
studies have resulted in the common practice of sampling during “standard” peri-
ods for assessing condition of fishes. However, the temporal asynchrony of pump-
kinseed and golden shiner Wr suggests that standard sampling periods might not
be as comparable among lakes or among years as previously believed (Liao et al.
1995). This temporal asynchrony illustrates some of the biotic and abiotic vari-
ability that fisheries scientists must deal with when assessing fisheries.

Fisheries scientists primarily use condition assessments as a measure of the
quality of fish populations, ideally with respect to local environmental and cli-
matic conditions and species potential, and as a means of measuring changes in
population quality resulting from management practices (Childress 1991). Thus,
comparisons of condition are made on many different scales. Comparisons can
be made within populations to assess differences across length-groups or to con-
duct spatiotemporal comparisons. Theoretically, data on the condition of various
sizes of fish within a population can be accumulated over many years to establish
a norm for a specific water body. Any deviation from the norm would indicate
some fluctuation within the population or some physical or chemical condition
interacting with a segment of the population (Swingle and Shell 1971). Compari-
sons can also be made among populations to evaluate temporal and spatial differ-
ences or to evaluate influences of factors (such as parasites) that affect portions of
populations (in effect, creating two populations: a population of affected indi-
viduals and a population of unaffected individuals; Box 10.6). Prentice (1987)
used ANCOVA to test differences in species-specific weight–length relations among
river systems and ecological regions within the state of Texas. He found differ-
ences among river systems and ecological regions for all species assessed. He also
found differences between genders for many of the species he assessed. If a com-
mon currency is used to assess condition (such as Wr), comparisons can also be
made among species. Condition indices can also indicate changes in environ-
ment and ecological processes (e.g., Gabelhouse 1991; Hubert et al. 1994; Liao et
al. 1995). Finally, condition assessments are often important in manipulative stud-
ies to determine if treatments affect condition.

■ 10.7 CONCLUSION

Condition data have been and will continue to be an important component of
ecological assessment in aquatic systems. When combined with other information
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Box 10.6 Use of Fulton’s Condition to Assess the Effects of Parasites

Parasites may negatively affect the condition of fish. Here we determine if condition of Arkansas
River shiners (29–60 mm TL) is reduced when fish are parasitized by anchor worm, a cosmopolitan
cyclopoid copepod. Arkansas River shiners were captured with a seine (see Hayes et al. [1996] for a
discussion of this gear), measured (TL; mm), weighed (0.1 g), and inspected to determine the
presence of the parasite (partial data set from Durham et al. 2002). Differences in condition among
fish with and without the parasite were assessed using ANOVA to test differences in Fulton’s
condition (K ), an appropriate assessment metric as the fish are from a single population over
identical size ranges. Individual fish from this experiment were treated as the experimental unit
because our research question asked if differences in condition existed between two populations
of Arkansas River shiners (population PRESENT contained parasites and population ABSENT
contained no parasites).

Table Total length (TL; mm) and weight (WT; g) of Arkansas River shiners with and without
anchor worm.

With parasite Without parasite

TL WT TL WT TL WT TL WT

29 0.210 46 0.707 29 0.175 45 0.654
29 0.187 46 0.656 31 0.254 45 0.710
34 0.286 47 0.810 31 0.228 46 0.757
35 0.356 48 0.813 31 0.201 46 0.828
38 0.420 48 0.697 31 0.219 47 0.788
38 0.460 48 0.624 32 0.269 47 0.833
39 0.448 49 0.962 33 0.278 48 0.940
39 0.252 49 0.778 35 0.356 49 0.986
40 0.514 51 1.136 36 0.356 51 1.097
42 0.555 52 1.216 39 0.478 51 1.105
43 0.412 53 0.903 39 0.505 51 1.063
44 0.589 53 1.388 40 0.505 52 1.158
44 0.664 55 0.996 40 0.604 52 1.273
45 0.739 56 1.065 41 0.535 57 1.573
45 0.646 60 1.081 43 0.610 60 1.686

Program
The following SAS program provides output to compute length and weight summary statistics.
Differences in condition were tested using ANOVA to test differences in Fulton’s condition (K ).

OPTIONS PS=54 LS=75;

PROC FORMAT;

VALUE PARACODE 0=’ABSENT’ 1=’PRESENT’;

DATA PARASITE;

INPUT TL WT PARASITE @@;

LOGTL=LOG10(TL);

LOGWT=LOG10(WT);

K=(WT/(TL*TL*TL))*100000;

FORMAT PARASITE PARACODE.;

CARDS;

(Box continues)
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29 0.21  1 290.175 0

29 0.187 1 310.254 0

[Input complete data set];

PROC SORT; BY PARASITE;

PROC MEANS MEAN STDERR; BY PARASITE; VAR TL WT K;

PROC REG; BY PARASITE; MODEL LOGWT=LOGTL;

PROC ANOVA; CLASS PARASITE; MODEL TL=PARASITE;

PROC ANOVA; CLASS PARASITE; MODEL WT=PARASITE;

PROC ANOVA; CLASS PARASITE; MODEL K=PARASITE;

RUN;

Output

Table Descriptive statistics.

Parasite absent   Parasite present

Variable   Mean SE Mean SE

TL 42.6000000 1.5585139 44.8333333 1.3838837
WT 0.7008000 0.0747452 0.6857133 0.0566121
K 0.8020460 0.0102421 0.7195553 0.0220817

Table Regression analysis of log10 transformed weight (LOGWT) on log10 transformed length
(LOGTL) in the absence of parasite.

Analysis of Variance

Source df SS Mean square F-value P > F

Model 1 2.27177 2.27177 2782.11 <0.0001
Error 28 0.02286 0.00081656
Corrected total 29 2.29463

r 2 0.9900 Root MSE 0.02858
Adjusted r 2 0.9897 Dependent mean –0.23476
CV –12.17232

Parameter Estimates

Variable df Parameter estimate SE t-value P > |t |

Intercept 1 –5.30889 0.09634 –55.11 <0.0001
LOGTL 1 3.13084 0.05936 52.75 <0.0001

Box 10.6 (continued)
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Table Regression analysis of LOGWT on LOGTL in the presence of parasite.

Analysis of Variance

Source df SS Mean square F-value P > F

Model 1 1.29852 1.29852 215.29 <0.0001
Error 28 0.16888 0.00603
Corrected total 29 1.46740
r 2 0.8849 Root MSE 0.07766
Adjusted r 2 0.8808 Dependent mean –0.21406
CV –36.28050

Parameter Estimates

Variable df Parameter estimate SE t-value P > |t |

Intercept 1 –4.69465 0.30570 –15.36 <0.0001
LOGTL 1 2.72350 0.18562 14.67 <0.0001

Table An ANOVA to test for differences in TL, WT, and K in the presence versus absence of the
parasite (n = 60).

Class Level Information

Class Levels Values

PARASITE 2 ABSENT PRESENT

ANOVA for Total Length

Source df SS Mean square F-value P > F

Model 1 74.816667 74.816667 1.15 0.2884
Error 58 3779.366667 65.161494
Corrected total 59 3854.183333

R2 0.019412 Root MSE 8.072267
CV 18.46496 TL mean 43.71667

Source df SS Mean square F-value P > F

 Parasite 1 74.81666667 74.81666667 1.15 0.2884

(Box continues)
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ANOVA for Weight

Source df SS Mean square F-value P > F

Model 1 0.00341411 0.00341411 0.03 0.8727
Error 58 7.64884655 0.13187666
Corrected total 59 7.65226067

R2 0.000446 Root MSE 0.363148
CV 52.38295 WT mean 0.693257

Source df SS Mean square F-value P > F

Parasite 1 0.00341411 0.00341411 0.03 0.8727

ANOVA for K

Source df SS Mean square F-value P > F

Model 1 0.10207080 0.10207080 11.48 0.0013
Error 58 0.51547644 0.00888752
Corrected total 59 0.61754724

R2 0.165284 Root MSE 0.094274
CV 12.39138 K mean 0.760801

Source df SS Mean square F-value P > F

Parasite 1 0.10207080 0.10207080 11.48 0.0013

Interpretation
Mean ± SE TL, WT, and K values for Arkansas River shiners (20–60 mm TL) not parasitized were 42.6 ±
1.6, 0.70 ± 0.07, and 0.80 ± 0.01, respectively. Mean ± SE total TL, WT, and K values for Arkansas River
shiners (20–60 mm TL) parasitized by anchor worm were 44.8 ± 1.4, 0.69 ± 0.06, and 0.72 ± 0.02,
respectively. When analyzed separately (ANOVA), no differences were found in length (P = 0.29) or
weight (P = 0.87) of Arkansas River shiners with and without anchor worm (P > 0.28). However,
differences (P = 0.001) were noted when K was assessed. Thus, it appears that parasitism by anchor
worm causes condition to decrease in Arkansas River shiners. Note that visual examination of data
(see figure below) suggests that about one-third of Arkansas River shiners parasitized by anchor
worm have suppressed condition values, suggesting to us that about one-third of the Arkansas
River shiners collected with anchor worm had been parasitized for a relatively long period (long
enough to decrease condition), whereas the other two-thirds had been recently parasitized. This
interpretation is not possible from the statistical assessment and illustrates the need to examine
data visually.

Box 10.6 (continued)
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Figure Graphical depiction of relationship between weight and length (top panel), log10 trans-
formed weight and log10 transformed length (middle panel), and Fulton’s condition (K ) and length
(bottom panel) for Arkansas River shiners with and without anchor worm Lernaea cyprinacea.
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(e.g., density, prey availability, size structure, community composition, and exploi-
tation), condition data provide fisheries scientists a more complete understand-
ing of population dynamics (recruitment, growth, and mortality) and environ-
mental influences. Several techniques have been used to assess fish condition,
and it is clear that there is much debate regarding the most appropriate way to
analyze and present condition data, mostly centered on statistical shortcomings
of analysis techniques. Appropriately, analytical techniques continue to evolve, as
demonstrated by the most recent critique of Wr provided by Brenden et al. (2003).

Because of the relative ease of computation and use, the popularity of condi-
tion indices will continue to increase. Condition indices offer fisheries scientists a
tool to evaluate effects of various management strategies and, indirectly, ecologi-
cal interactions in fish populations and communities (Murphy and Willis 1991).
More research is necessary to determine both the statistical appropriateness and
relativity (to proximate factors and other expressions of fitness) of the condition
measure. However, it is apparent that condition indices are useful for assessing
fish condition (Blackwell et al. 2000).

Given the limitations discussed herein, controversy about assessment of condi-
tion will likely continue as fisheries scientists attempt to separate effects of fish
condition from effects of fish size. Detailed assessments of various measures of
fish condition that are tested with multiple statistical analyses will provide a clearer
picture of relationships among measures of condition and help clarify the useful-
ness and shortcomings of various techniques. In the meantime, morphometric
assessments of condition can be assessed appropriately using graphical display of
data in a bivariate plot and ANCOVA with length as a covariate. Further, ratios can
be used for descriptive purposes.
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■ 11.1 INTRODUCTION

Quantitative assessment of food habits is an important aspect of fisheries manage-
ment. Successful management of sport fishes often hinges on our ability to man-
age prey resources (Noble 1981; DeVries and Stein 1990). As a result, knowledge
of prey resources can help guide management efforts aimed at increasing fish
production. Accurate description of fish diets and feeding habits also provides
the basis for understanding trophic interactions in aquatic food webs (Garvey et
al. 1998a; Vander Zanden et al. 2000). Diet composition analysis or other tech-
niques, such as stable isotope analysis, can be used to evaluate effects of ontogeny,
habitat, or the establishment of exotic species.

Diets of fishes represent an integration of many ecological components that
include behavior, condition, habitat use, energy intake and inter- and intraspe-
cific interactions. As a result, food habit studies can be incorporated in a variety of
different research objectives. In the simplest case, a food habits study might be
conducted to determine the most frequently consumed prey or determine whether
a particular food category is present in the stomach of fishes. In other instances,
we may be interested in more complex questions, such as (1) determining the
relative importance of different food types to fish nutrition, (2) quantifying the
consumption rate of individual prey types (Chapter 12), or (3) understanding
foraging trade-offs associated with predator avoidance (Chapter 16). Each of these
questions requires information on fish diets but necessitates different approaches
in how we collect and analyze data. In this chapter, we outline quantitative tech-
niques used to describe food habits and feeding patterns of fishes.

■ 11.2 QUANTIFYING DIET COMPOSITION

11.2.1 Sampling and Identifying Stomach Contents

Most studies of fish diets rely on examination of stomach contents to quantify prey
abundance. This information characterizes foraging choices made over a relatively
short time scale (e.g., usually <24 h). Hence, time of day, sampling location, prey
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availability, and even the type of collecting gear used need to be considered before
initiating a diet study or analyzing diet data. Investigators using historical diet samples
or processed data must be aware of the sampling protocols, laboratory procedures,
and preservation techniques used. Failure to understand how diet data were col-
lected may preclude accurate interpretation of foraging patterns.

Stomach contents can be collected from live fish by means of the lavage tech-
nique (Seaburg 1957), whereby food items are flushed from the stomachs by use
of pressurized water. Similarly, emetics can be used to induce regurgitation in live
fish (Jernejcic 1969; see Bowen 1996 for review). Regardless of the method, inves-
tigators should ensure that the removal technique effectively samples all items in
the gut. Otherwise, data will be skewed toward items that are more easily dis-
placed from the stomach. Alternatively, fish can be sacrificed and stomach con-
tents removed for analysis. If fish are to be sacrificed, they should be preserved
immediately either by freezing or by fixing in formalin (Bowen 1996). Stomach
contents will continue to digest, rendering rapid preservation of the fish or re-
moved contents necessary to prevent loss of resolution. Various taxa digest at dif-
ferent rates (Sutela and Huusko 2000; Kim and DeVries 2001). As such, recently
consumed taxa may be present in the foregut, but only resistant items remain in
the hindgut. Investigators must consider the relative digestibility of prey when
deciding on the section of the alimentary tract to sample. To avoid bias when both
easily digested prey and resistant prey are present, only the immediate foregut
(i.e., stomach) should be sampled (Sutela and Huusko 2000).

Prey items in fish stomachs are often not intact. Otoliths or other relatively
indigestible hard parts, such as scales, pharyngeal teeth, cleithra, or backbones,
have diagnostic, species-specific characteristics useful for identifying prey (Garman
1982; Holland-Bartels et al. 1990). Alternatively, partially digested prey may be
identified using biochemical signatures, such as allozyme electrophoresis (Hartman
and Garton 1992), immunoassays (Feller 1992; Schultz and Clarke 1995), or prom-
ising new techniques based on fatty acid analysis (Raclot et al. 1998).

Hard structures are often used to determine lengths or weights of prey items
by regressing the dimension of an indigestible hard part (e.g., head capsule of an
insect) against whole-body length or mass (least-squares regression models; Trippel
and Beamish 1987; Scharf et al. 1997). Combining back-calculated estimates in
this fashion may compound error in estimates of total prey weight (or volume).
Thus, it is imperative that biometric relationships and measurements of hard parts
used to reconstruct diet items are precise and not biased.

The proper taxonomic resolution for identifying stomach contents largely de-
pends on the research question. Coarse taxonomic resolution is appropriate when
quantifying ontogenetic changes in diet composition. Presence of fish in the diet
may prove adequate for determining the size or time at which fish switch to
piscivory. In other instances, finer taxonomic resolution may be needed, such as
determining seasonal or spatial differences in diet composition or comparing
percent composition of native versus exotic species.

Often, it is pragmatic to reduce the number of variables involved in the analysis
by pooling diet items into categories based on taxonomy or habitat. Three types
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of data pooling can be considered for prey items in fish stomachs: (1) necessary,
(2) intuitive, and (3) statistical (Crow 1979). Necessary pooling occurs when uni-
dentified prey are present in stomachs. If three categories of fish prey and one
category of unidentified fish prey arise, then we should consider either pooling
fish prey or dropping the unidentified category. An analysis with both identified
and unidentified fish may be misleading because we do not know what propor-
tion of unidentified fish were components of items we could successfully identify
(Crow 1979). Intuitive pooling is based on taxonomic or  ecological similarities
among prey. Three species of calanoid copepods might be pooled into a single
category (e.g., copepods) given similar morphological and behavioral character-
istics. Similarly, we could pool species by habitat so that categories represent benthic,
pelagic, or littoral prey. Finally, statistical pooling uses quantitative statistical pro-
cedures as a basis for pooling prey categories. Here, the investigator hypothesizes
that two or more prey categories act as a single resource (Crow 1979). This hy-
pothesis is tested using a 2 × 2 contingency table to identify whether prey are
either positively or negatively associated (Box 11.1). Positive association implies
that prey are acting as a single resource and may be pooled (Crow 1979).

11.2.2 Designing Appropriate Sampling Designs

11.2.2.1 Conducting Field Studies

Feeding patterns of fishes may be quantified in the field or with carefully de-
signed experiments. In either case, the sampling design should be well consid-
ered before data are collected. As with other field studies, appropriate sampling
designs for diet analysis include (1) simple random sampling, (2) stratified ran-
dom sampling, (3) systematic sampling, and (4) multistage sampling (see Chap-
ter 3). The choice of a particular sampling design depends on a variety of factors
that include the research question, logistics, accessibility, and costs.

Prior to collecting diet data, attention should be given to factors that influence
the quantity and quality of stomach contents. One important consideration in
diet studies is that foraging behavior of fishes often varies with time of day (Shepard
and Mills 1996). Hence, sampling plans should incorporate a diel component to
determine how stomach contents change through time. Failure to standardize
measurement times among sites or lakes may lead to erroneous conclusions about
foraging patterns (see section 11.3.4).

Moreover, sampling approaches, such as electrofishing or gillnetting, may cause
loss of stomach contents through regurgitation (Bowen 1996). Similarly, high-
speed tow nets can eviscerate larval fish resulting in a loss of information (K.
Arend, Ohio State University, personal communication). The use of active or pas-
sive gear types can also affect inferences about stomach fullness. Fish collected
with passive gears can have more food in their stomachs than do fishes collected
with active gears because passive gears often collect actively feeding fish (Hay-
ward et al. 1989). Careful consideration should be given to sampling time and
gear type to help reduce variability among samples.
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Box 11.1 Pooling Prey Items as a Single Resource

Prey items in fish stomachs can sometimes be pooled prior to analysis. To determine whether two
(or more) prey items act as a single resource, we can use chi-square contingency table analysis. In
the example below, we are interested in whether prey i and prey j can be pooled prior to analysis.

We construct a 2 × 2 contingency table by totaling the number of fish that contain both prey types,
either prey i or prey j , or neither prey type in the diet. In this example, the diets of 70 fish have been
examined for prey i and prey j .

Prey j present Prey j absent Total

Prey i present 18 9 27
Prey i absent 18 25 43

Total 36 34 70

Resulting output was obtained using the PROC FREQ procedure in SAS (SAS Institute1999). Here,
the likelihood ratio chi-square value (G-statistic), 4.145, is larger than the critical value of a chi-
square distribution (i.e., 1 df, P = 0.041), implying that the prey are either positively or negatively
associated. Prey can be pooled only if they are positively associated. To determine association (A),
we calculate the cross-product ratio of the contingency table as

A = (cell 11)(cell 22)/(cell 12)(cell 21)
= (18)(25)/(18)(9) = 2.8.

If A is greater than 1, then prey types are positively associated, implying that they are acting as a
single resource and can be pooled (Crow 1979).  If A were less than 1, then prey types would be
negatively associated and should not be pooled.

Before initiating a field study, it is desirable to know how many samples are needed
to describe the diet. Cumulative prey curves are useful for determining when a
sufficient number of stomachs have been sampled. In this approach, the cumula-
tive number of prey types is plotted against the cumulative number of pooled stom-
achs (Cortés 1997). The point at which the curve becomes asymptotic provides a
minimum number of stomachs needed to characterize prey composition.

It is not uncommon to find empty stomachs. However, investigators must be
cautious about how increasing sampling effort to find fish containing food affects
their estimates. To our knowledge, the impact of this practice remains unexplored.
Presumably, greater sample sizes arising when empty guts are frequent would af-
fect variance estimates relative to other samples. Often, investigators restrict their
analyses to the subset of individuals containing diet items (i.e., dropping individu-
als with empty guts) to explore diet preference (see section 11.3.7). This practice
also must be approached cautiously. Diet characteristics of fish populations for
which empty stomachs were frequent may be quite different than those for which
empty stomachs were rare.
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When sampling diets in the field, large numbers of fish are typically encoun-
tered, requiring subsampling across sizes. Stratifying samples as a function of body
size is important because size often affects both the quantity and composition of
items within diets (Schael et al. 1991; Bremigan and Stein 1994). The number of
subsamples taken can be stratified by the relative proportion of individuals within
each size-class or as some set number of individuals per size-class. Subsamples
taken randomly in proportion to the actual number within each size-class reason-
ably reflect size-based patterns within the whole sample (Kimura 1977). However,
this sampling design may poorly represent the diets of the largest individuals within
the population, which are infrequently encountered. To remedy this, many sam-
pling designs incorporate the set number per size-class approach. In a similar
example with length-at-age data, Bettoli and Miranda (2001) demonstrated how
simply pooling data from such a stratified sampling distribution poorly reflects
the distribution within the overall sample. As such, extrapolating diet patterns
within each size-class to that of the whole sample requires weighting the stratified
diet data by the relative proportion of individuals within each size-class.

11.2.2.2 Conducting Experimental Studies

Food can be a limiting resource to fish populations. As a result, we are often
interested in how competition for prey affects foraging success. Field data on
stomach contents are inadequate to address competition questions. Rather,
competition studies are generally performed under controlled experimental set-
tings. Several approaches can be used to determine whether one species affects
the foraging behavior of another. In all cases, it is important that densities of
species be manipulated within the range of those in the environment to deter-
mine how variation in abundance affects competition. Three approaches are gen-
erally recognized in competition experiments: (1) substitutive, (2) density-gradi-
ent, and (3) response surface experiments (Goldberg and Scheiner 2001). The
substitutive experimental approach involves varying treatment levels by substitut-
ing individuals of one species with an equal number of the other (Figure 11.1A).
Total density is kept constant across all treatments. This approach tests for only
the relative strengths of intra- and interspecific competition. The absolute magni-
tude of interspecific competitive effects is not isolated. A density-gradient approach
involves holding the density of one focal species constant while varying that of
another (Figure 11.1B). A problem with this approach is that foraging responses
of the focal species are potentially confounded by an increase in frequency of the
competitor and an overall increase in density (see Welker et al. 1994). A response
surface experiment, which includes all density combinations of both competitors,
avoids potential confounding effects but requires a large number of treatment
combinations (Figure 11.1C). Clearly, designing an experiment to determine how
competition affects foraging requires foresight about potential responses. The
design of any experiment in which diet is a response variable requires careful
consideration of the hypotheses being tested.

Field-derived patterns of foraging preference are by nature correlative. Only ex-
periments definitively show how changes in food quality or quantity affect dietary



478 Chapter 11

Figure 11.1 Three potential designs for competition experiments in which the impact of
species 1 on the diet composition of species 2 is assessed. These experiments are (A) substitu-
tive, (B) density gradient, and (C) response surface. Each point represents a single experimental
treatment (adapted from Goldberg and Scheiner 2001).
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choice. Size-dependent selection by larval fish for zooplankton prey in reservoirs
(Bremigan and Stein 1997), selection of spot by piscivorous southern flounder  in
marine estuaries (Wright et al. 1993), and foraging preference for snails by pump-
kinseed sunfish in natural lakes (Mittelbach et al. 1999) are examples of carefully
designed experiments that provided insight into field dietary patterns. The out-
come of foraging experiments such as these can be affected by many conditions.
Using the same prey or predators across experimental trials may influence learn-
ing, which may cause foraging patterns to change through time (Reiriz et al. 1998).
Using naïve consumers and prey in each replicate will remedy this confounding
problem. Interactions among prey items within experimental units may cause dif-
ferent patterns of vulnerability relative to prey being exposed to consumers inde-
pendently (Huang and Sih 1991). Similarly, changes in prey frequency as indi-
viduals are removed may influence their relative conspicuousness, thereby affecting
selection patterns through time (Werner and Hall 1974). Hence, investigators
may replenish prey throughout an experiment to keep densities as constant as
feasible. Hunger levels of the consumer and prey and the size and realism of the
experimental arena also may alter responses. In summary, foraging experiments
can be insightful but also greatly misleading. Their design and interpretation must
be carefully considered.

■ 11.3 ANALYZING FOOD HABITS DATA

11.3.1 Selecting a Diet Index

A variety of measures have been used to quantify diet composition of fishes (Bowen
1996). Selecting an appropriate diet measure is strongly dependent on the research
question; no single index is likely to provide a useful measure of prey importance
under all conditions (Bowen 1996). For questions regarding the seasonal use of a
prey resource, simple indices, such as frequency of occurrence, are usually ad-
equate. Alternatively, we may want to quantify the energetic contribution of dif-
ferent prey types—a process that requires data on the abundance, weight, and
caloric content of prey.

Traditional indices used for stomach content analysis include percent compo-
sition by number (Ni), percent composition by weight (Wi), and frequency of prey
occurrence (Oi) (Bowen 1996; Table 11.1). It is important to recognize that each
index emphasizes different information about the diet of fishes (Hyslop 1980;
Cortés 1997). When evaluating percent composition by number, small prey can
represent a dominant component of the diet. In contrast, percent composition by
weight tends to emphasize the relative contribution of larger prey. Frequency of
occurrence can provide information on how often a particular prey item was eaten
but provides no indication of the relative importance of prey to the overall diet.

When calculated from the entire sample, Ni and Wi represent single measures
with no corresponding variance estimate. If interest lies in evaluating the poten-
tial impact of predators on prey populations, then calculating Ni and Wi for the
entire sample is appropriate. However, if diet data are to be used for statistical
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comparisons then Ni and Wi should be calculated for individual fish and then
averaged for each prey type (see MNi and MWi in Table 11.1). In this way, we treat
individual fish as the sampling unit and assume that they represent a random
sample (Table 11.2). Diet items in the stomachs of individual fish are not inde-
pendent and generally should be measured to provide proportional data for indi-
vidual fish (Hurlbert 1984; Krebs 1989).

When one is evaluating diet composition, prey weights are often more useful
than are prey counts because weights are measured in comparable units. Consider

Table 11.1 Equations for calculating diet indices (adapted from Pope et al. 2001).  Symbols in
equations are food or prey item (subscript i); fish (subscript j ); number of fish (J); number of fish
with food in their stomachs (P); number of fish containing prey i (Ji);  number in food category i
(Ni); number of food types (Q); weight of prey type i (Wi);  weight of fish j (Fj); volume (mL) of
food category i (Vi);. caloric density (J · g–1 wet weight) of food type i (Xi); and stomach capacity
(mL) of fish j (Cj).

Diet index Index symbol Computational equation

Frequency of occurrence Oi

Proportion by number Ni

Proportion by weight Wi

Mean proportion by number MNi

Mean proportion by weight MWi

Mean proportion body weight MBWi

Mean stomach fullness MSFi

Prey importance index PIIi

Index of relative importance IRIi (%Ni  + %Wi )(%Oi )

Relative importance index RIi

Ji

P
=

Ni

� Ni

=

i = 1

Q

Wi

� Wi

=

i = 1

Q

�=
j = 1

P1
P ( (Nij

� Niji = 1

Q

�=
j = 1

P1
P ( (Wij

� Wiji = 1

Q

�=
j = 1

P1
P ( (Wij

Fj

�=
j = 1

P1
P ( (Vij

Cj

�=
j = 1

P1
P ( (Wij Xi

� Wij Xii = 1

Q

100AIi

�AIi

, where

AIi  = Oi  + Ni  + Wi 
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Table 11.2 Summary of prey weights for 10 bluegills. All weights are given in grams, and
values in parentheses represent prey proportions for each fish. Mean proportion by weight
(MWi) and frequency of occurrence (Oi) are given in the last two rows. Note that dipteran larvae
had the highest frequency of occurrence but contributed the least to the overall diet by
weight—illustrating some of the problems associated with interpreting different diet measures.

Total
Fish Dipteran Mayfly prey

Bluegill weight Amphipods Larval fish larvae nymphs weight

A 150 0.3 (0.52) 0.24 (0.42) 0.02 (0.03) 0.016 (0.03) 0.576
B   91 0.09 (0.78) 0 (0) 0.018 (0.16) 0.008 (0.07) 0.116
C   99 0.11 (0.66) 0 (0) 0.024 (0.14) 0.032 (0.19) 0.166
D 123 0.03 (0.25) 0 (0) 0.052 (0.43) 0.04 (0.33) 0.122
E 210 0 (0) 0.12 (0.83) 0.001 (0.01) 0.024 (0.17) 0.145
F 102 0.22 (0.92) 0 (0) 0.003 (0.01) 0.016 (0.07) 0.239
G 124 0 (0) 0 (0) 0.006 (0.10) 0.056 (0.90) 0.062
H 199 0.015 (0.09) 0.12 (0.71) 0.003 (0.02) 0.032 (0.19) 0.170
I 101 0.45 (0.91) 0 (0) 0.015 (0.03) 0.032 (0.06) 0.497
J 111 0.26 (0.39) 0.36 (0.53) 0.054 (0.08) 0 (0) 0.674

MWi        45%        25%          10%         20%
Oi        80%        40%        100%         90%

Prey weight and proportion

the difficulty in determining the relative importance of 1,500 zooplankton versus 1
fish. When measured as dry weight, we can directly compare 0.06 g of zooplankton
to 0.2 g of fish in the diet. For this reason, prey weights are more appropriate when
interest lies in comparing the energetic importance of different prey types (Bowen
1996). To correct for effects of fish size, it is often useful to express prey weight as
a percentage of predator body mass.

Other indices used for diet analysis include mean stomach fullness and the
prey importance index (Table 11.1). Early methods for measuring stomach full-
ness in fishes included subjective techniques such as the points method whereby
food items were awarded points proportional to their estimated contribution to
stomach volume (Swynnerton and Worthington 1940; Hynes 1950). Although easy
to apply, these techniques have been criticized for their subjectivity (Windell and
Bowen 1978). A more objective approach is to calculate the ratio of observed prey
volume to estimated stomach capacity (Kimball and Helm 1971; Knight and
Margraf 1982). Here, total volume of prey in each stomach is estimated either
directly by water displacement or indirectly by means of geometric measurements.
Maximum total prey volume is then regressed against fish size to estimate maxi-
mum stomach volume as

V = aLb, (11.1)

where V = maximum stomach capacity, a = regression coefficient, L = total length,
and b = instantaneous rate of change (Knight and Margraf 1982). The ratio of
observed prey volume (v) to maximum stomach volume (V ) provides an index of
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stomach fullness that accounts for fish length. The mean stomach fullness index
(MSFi) has several desirable advantages including it (1) eliminates subjectivity
associated with the points method, (2) is relatively quick and easy to apply, (3)
can be obtained from preserved or live fish, and (4) can be analyzed by a variety
of statistical procedures (Knight and Margraf 1982). Furthermore, the MSFi cor-
relates well with prey caloric contribution, providing a robust index for evaluating
the energetic contribution of different prey types (Pope et al. 2001).

The prey importance index (PIIi) combines information on the abundance,
weight, and caloric content of prey (Table 11.1). Given sufficient information
on prey assimilation efficiencies, the caloric densities of prey can be adjusted to
account for energy actually metabolized by fishes (Probst et al. 1984). In most
cases, this type of information is not readily available, so that total energy of prey
is used. The usefulness of a caloric-based index such as the PIIi is that it provides
a quantitative measure of the nutritional benefit of individual prey rather than
relative importance based on numbers, weight, or occurrence in the diet (i.e., Ni ,
Wi , or Oi).

Diet measures each provide unique information about relative prey importance.
In an attempt to consolidate the desirable properties of individual diet measures
(e.g., Ni , Wi , and Oi), compound indices were developed that combine two or
more diet measures into a single index (Table 11.1). The belief is that compound
indices capture more information than do single, component measures. Several
authors, however, argue that compound indices, such as the index of relative im-
portance (IRIi) and the relative importance index (RIi), provide little or no addi-
tional information than that provided by single indices (MacDonald and Green
1983; Hansson 1998). Proponents of compound indices, on the other hand, have
argued that (1) compound indices provide a more balanced view of fish diets
because they capture all of the unique properties affecting individual measures
(e.g., Ni, Wi, or Oi), and (2) there is a need for a standardized method for report-
ing relative prey importance (Cortés 1997). This argument has been criticized on
the basis that the addition or multiplication of percentages has no biological mean-
ing because both quantities are dimensionless ratios (Bowen 1996).

The usefulness of compound indices is constrained by several limitations. Com-
parisons with single measures indicate that compound indices can be a redun-
dant source of information (MacDonald and Green 1983). A more significant
problem, however, is that compound indices can be affected by the taxonomic
resolution of prey items (Hansson 1998). At different taxonomic resolutions, the
importance of different prey types can change, rendering the IRIi a poor choice
for a standard index in diet analyses (Hansson 1998).

The search for an index that best describes relative prey importance has led to
much controversy over which diet index is best (Hyslop 1980; Cortés 1997; Hansson
1998). No doubt much of this confusion stems from the fact that relative prey
importance is context specific and can be defined in a variety of ways. If we intend
to evaluate energy flow, prey composition by weight (or volume) would be a bet-
ter choice than composition by number. On the other hand, prey numbers could
be used to assess prey preference if corresponding information on in situ prey
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abundance was available (Hansson 1998). A general framework for selecting diet
measures is given in Figure 11.2.

11.3.2 Presenting Data with Graphical Techniques

Diet measures such as Ni , Wi , and Oi are usually presented in tabulated format,
making it difficult to interpret two or more indices simultaneously. Graphical tech-
niques attempt to overcome this problem by combining two or more diet measures
in two-dimensional space (i.e., bivariate plots). By examining relationships between
different diet measures, graphical techniques can be used to interpret (1) predator
feeding strategies, (2) relative prey importance, and (3) diet variability.

A graphical technique that relates prey abundance (Ni or Wi) to frequency of
occurrence (Oi) was developed by Costello (1990) and later modified by Amundsen
et al. (1996). In the Amundsen method, prey-specific abundance is plotted against
frequency of occurrence, where prey-specific abundance is defined as the propor-
tion a prey item constitutes of all prey items in only predators that contain prey i
(Amundsen et al. 1996). The equation used to calculate prey-specific abundance
(Pi) is

Pi = (�Si /�Sti)100, (11.2)
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Figure 11.2 Diet measures commonly used to address questions about predator impacts,
prey preference, or energy flow. See Table 11.1 for calculation of different diet measures.
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where Pi equals prey-specific abundance (numbers, mass, or volume) of prey i, Si

equals the abundance of prey i in stomachs, and Sti equals the total abundance of
prey in predators that contain prey i. As an example, consider three fish, respec-
tively with 1, 2, and 3 g of prey i and 8, 7, and 5 g of total stomach contents. We
calculate Pi as follows:

Pi =
1 + 2 + 3
8 + 7 + 5

(100) = 6
20

(100) = 0.3(100) = 30%.

When plotted against frequency of occurrence, prey-specific abundance can
be used to evaluate three important aspects of the fish diet: (1) feeding strategy
(specialized versus general), (2) prey importance (dominant versus rare), and
(3) niche width (Figure 11.3). In practice, four interpretations can be made by
relating prey-specific abundance to frequency of occurrence that could otherwise
not be determined from single diet measures (Box 11.2).

Because prey-specific abundance and frequency of occurrence are calculated
for the entire sample of fish, graphical techniques that use these indices repre-
sent analysis at the population level. To assess feeding patterns at the individual
level, graphical methods have been developed that incorporate the use of prey
diversity and number of prey in individual stomachs (Bridcut and Giller 1995). In
this approach, individual prey diversity for each fish is calculated using a diversity
index and then plotted against the total number of prey in the stomach. A gener-
alist feeding strategy is characterized by high prey diversity and low abundance of
each prey type, whereas a specialist strategy is represented by low prey diversity
and high utilization of a few prey types. Methods for defining high prey diversity,
however, have not been developed. As a result, this technique involves subjective
interpretation but can be useful for examining patterns of diet specialization across
time or space (Bridcut and Giller 1995).

11.3.3 Exploring Variation in Prey Size

Often investigators are interested in the relationship between prey size and preda-
tor size, particularly as it relates to gape limitation in fishes. Hence, the maximum
linear dimensions of each diet item are plotted against predator length (Juanes
1994). Resulting distributions are often wedge-shaped because small fish are gen-
erally limited to small prey, whereas large fish can incorporate a variety of prey
sizes in their diet (see example in Box 11.3). In many cases, identifying maximum
and minimum prey sizes, rather than the average size, is desirable. Although the
maximum and minimum edges of these bivariate scatter plots can be described
using least squares regression (LSR), the choice of what edge data to include in
the analysis is arbitrary. In addition, LSR is sensitive to the effects of outliers in the
chosen edge distribution. A promising method involves the use of a quantile re-
gression technique called least absolute values regression (Scharf et al. 1998; Cade
and Noon 2003), in which the sum of the absolute values of the residuals are
minimized (rather than the sum of squares of residuals as in conventional LSR).
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Estimates are obtained through minimization of

�
i
 |yi – �0 – �1Xi |hi , (11.3)

where hi is a multiplier equal to a chosen quantile value (e.g., 0.5 for the median)
if the residual within the absolute value symbols is positive or one minus the quantile
value if the residual is negative (Scharf et al. 1998, Cade and Noon 2003). This
technique was quite robust in identifying upper and lower bound slopes in scatter
diagrams (Scharf et al. 1998; Cade and Noon 2003) and is very useful for charac-
terizing prey size–predator length relationships (Box 11.3).

Figure 11.3 Graphical model that depicts feeding strategy (specialized or generalized),
relative prey importance (dominant or rare), and niche variation (individual versus population
patterns) based on the distribution of individual prey types. Prey-specific abundance is calcu-
lated from only those predators that contain prey i and is plotted against frequency of occur-
rence for each prey (Oi ).  Prey points located in the upper left of the plot indicate prey that are
consumed by few individuals displaying specialization; points located in the lower right reveal
prey items that have been eaten occasionally by most individuals (Amundsen et al. 1996).
Figure adapted from Amundsen et al. (1996) as first described by Costello (1990).
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Box 11.2 Presenting Diet Measures Graphically

By combining different diet measures in two-dimensional space, graphical techniques can relay
important information about feeding behavior of fishes. Using Figure 11.3, we can interpret feeding
strategies of each predator population in the graphs presented below.

Figure Graphs showing abundance of 13 prey types for four predator populations—A, B, C, and D.
Each point represents a different prey type and is expressed as prey-specific abundance plotted
against frequency of occurrence (adapted from Admundsen et al. 1996).

We see that fish from population A specialize on individual prey types. As a result, these fish show a
high degree of between-individual variation in diet breadth. In population B, predators have a more
generalized diet and higher within-individual variation in diet breadth. In population C, the
predator population is specializing on a single prey type while occasionally consuming other prey.
Finally, population D represents a mixed feeding strategy in which some individuals have a
specialized diet and other fish have a more generalized feeding strategy. Graphical techniques,
such as the one illustrated here, provide insight about fish feeding patterns that might not be
inferred from single diet indices.
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Box 11.3 Determining the Minimum and Maximum Sizes of Prey

The maximum size of prey in fish diets often increases with body size. However, the minimum size
of prey may change relatively little. In addition to determining the mean or median size of prey
consumed by use of bivariate plots, investigators may want to characterize the maximum and
minimum sizes consumed (i.e, the edges of the scattergrams). Least absolute values regression
(LAV), also called least absolute deviations regression, can be used to evaluate these types of diet
data (Scharf et al. 1998). An extension of LAV, quantile regression, fits any specified quantile as a
linear regression model. The LAV is the 50th percentile (median) in quantile regression. Such an
analysis is available in the Blossom Statistical Software Package (Cade and Richards 2000; available
at http://www.mesc.usgs.gov). This program generates test statistics by permutations of the
original data through re-randomization.

For example, we want to characterize the upper and lower bounds of lengths of fish prey in age-0
largemouth bass diets from Tappan Lake, Ohio, during 1994 through 1996 (data from Garvey et al.
1998b).

Using quantile regression, we first determine the median regression model that minimizes the least
absolute differences between the observed values and the residuals. We then determine the
quantile regression models that fit the 5th and 95th percentiles of the data. The form of each linear
regression model is y = �0 + �1x. The test statistic generated for the LAV regression (i.e., quantile =
0.5) is equivalent to that of a typical least-squares regression comparing the proportional reduction
in deviations when passing from a reduced to a full model. Because quantile regression involves
weighted absolute deviations (see equation [11.3]), we cannot assume identical error distributions
across the independent variables. As such, Cade and Richards (2000) recommend using a rank-sums
test for quantile regression (i.e., quantile � 0.5), in which the statistic is based on the sign of the
residual from the reduced parameter null model.

Figure Prey length versus age-0 largemouth bass length (from Garvey et al. 1998b).
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11.3.4 Evaluating Nonindependence of Diet Data

The compositional nature of diet measures (i.e., proportions) has important impli-
cations for data analysis. Interpretations about the relatedness of prey items or sites
can be very different when using compositions relative to unstandardized (e.g.,
raw) data (Jackson 1997). In practice, arcsine transformations are often applied to
compositional data prior to analysis in attempts to normalize the data. Such trans-
formations should not be applied arbitrarily; rather, data should be examined (for
normality) to verify that transformations are needed. Traditional statistical tech-
niques (e.g., t-test and analysis of variance [ANOVA]) can be applied when assump-
tions of normality are met or large sample sizes are obtained. In cases in which
compositional data are not normally distributed, nonparametric rank procedures
can be useful for detecting differences in individual prey proportions.

Fisheries scientists must be aware of the nonindependence trait of diet data. A
well-considered experimental design will avoid the pitfall of pseudoreplication
(Hurlbert 1984). Diets from individual fish often contain multiple items that can-
not be treated independently. In addition, fish diets are usually sampled either
repeatedly through time or at the same location. A variety of statistical techniques
can be used that account for autocorrelation within diet data. When designing a
study, fisheries scientists should determine if the assumptions of these tests are met.

Temporal and spatial variation in diet data may be analyzed using conventional
parametric statistical techniques such as ANOVA if stomachs of individual fish are
collected from independent experimental units. For example, temporal dietary
patterns in an experiment may be analyzed using ANOVA if they derive from

Table Model values for the full LAV (median), 95th percentile, and 5th percentile regressions. The
absolute values of the residuals for the 95th and 5th quantile regression are weighted, and the P-
value is based on a rank-sums test.

Sum of absolute
Quantile �0 �1 values of residuals P

0.5 –0.5748 0.3541 433.07 0.0002
0.95 –1.0507 0.7930 112.92 0.077
0.05 5.9543 0.0957 41.73 0.055

The full LAV regression model (quantile = 0.50) was significantly different than the reduced model.
The quantile regression models describing the 95th and 5th percentiles had slopes greater than 0,
and only 7.7% and 5.5% of the corresponding test statistics generated by the permutation
procedure had more significant values. We conclude that this technique effectively characterizes
the median as well as the upper and lower bounds of prey sizes consumed by age-0 largemouth
bass in Tappan Lake.

Box 11.3 (continued)
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independent mesocosms or aquaria sampled only once during an experiment. In
this case, each stomach would represent a one date–replicate combination. Obvi-
ously, meeting this assumption may require a large number of replicates in an ex-
periment because variation among individuals within treatments will likely be high.

In field studies, stomach contents are often collected from groups of fish at the
same location during multiple sampling trips. Diet data also may be collected
from the same live fish multiple times during an experiment. In these cases, diet
data are not independent. For fish captured at the same location, time, or both,
stomach samples will likely be more similar than those collected at other times
and locations. These potentially confounding problems of spatial or temporal
autocorrelation may be addressed statistically using several techniques including
repeated-measures ANOVA.

Repeated-measures designs use the same subject (e.g., site or fish) for each of
the treatments in a study (Neter et al. 1990). The subject is considered a block,
and the treatment(s) are applied to each subject in random order. In a random-
ized-complete-block repeated-measures ANOVA, each subject receives all of the
treatment combinations. If the subject is being followed through time, then time
is the repeated measure within each subject (i.e., the within-subject effect; Box
11.4). It is assumed that the variance within each subject (i.e., individual) will be
less than that among subjects (Neter et al. 1990). The randomized-complete-block
approach is often difficult to employ because it may be impossible to apply all
treatments to all subjects. A split-plot ANOVA is a special case of the repeated-
measures design that allows subjects to be included in only some of the treat-
ments (see Maceina et al. 1994). To illustrate, let us explore temporal variation in
fish diets both within days and among weeks. If we consider each fish to be a fixed
subject, then biomass consumed by each may be quantified during morning for
half of the fish, while the remaining half is sampled during afternoon. All diets
are quantified on a weekly basis. In this case, variation in biomass consumed must
be partitioned due to (1) individual fish, (2) time of day, (3) week, and (4) inter-
actions among fish, time of day, and week. Fish with similar characteristics are
blocked in pairs, and each is randomly assigned a morning or afternoon sampling
time (Table 11.3). Samples are then taken for several weeks. We perform an ANOVA
exploring the effects of block, time of day, and their interaction, called the main-
plot effects. We also determine the subplot effects of week and the week × time of
day interaction. The allure of this approach is that individual fish can be followed
through time, and not all fish need to be handled twice each sampling date.

Randomized-complete-block repeated-measures ANOVAs involve strict assump-
tions about the sphericity of the variance–covariance matrix of the within-subject
factor (e.g., time). For the matrix to be spherical, the variance of the difference
between any two levels of the within-subject factors must be constant. This prop-
erty is tested by determining the sphericity of the variance–covariance matrix,
such as with a Mauchly’s test of sphericity (SAS Institute 1999). If assumptions of
sphericity are not met, then the likelihood of rejecting the null hypothesis of no
within-subject effect (e.g., time) is inflated, and an adjusted test must be used
(Box 11.4).
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Other techniques are available for analyzing autocorrelation in temporal or
spatial diet data. Long-term observations of diets may be analyzed using time-
series techniques, which are particularly useful in unreplicated systems such as
lakes or reservoirs. Autoregressive integrated moving average (ARIMA) models
and related techniques may be used to identify nonrandom patterns through time
(Rasmussen et al. 1993), assuming that observations are available in discrete, evenly
spaced intervals. These models can be extended to compare the treatment response

Box 11.4 Analyzing Diet Data with Repeated-Measures Analysis of Variance (ANOVA)

Diet data often arise from multiple samples within the same system or from multiple observations
of the same individual. A repeated-measures ANOVA approach is useful for teasing apart variation
as a function of independent effects (e.g., between subject) and nonindependent effects (e.g.,
within subject).

In this hypothetical example, we conducted a 5-week experiment to determine the effect of gizzard
shad on the mean percent by weight (MWi ) of zooplankton in diets of bluegill. Four bluegills were
sampled from each replicate once weekly. The resulting data were MWi  for each replicate and date.
Data were arcsine(x) transformed prior to analysis.

Table Zooplankton (MWi ) in diets of bluegill (n = 4 per replicate per sampling period) in treat-
ments with and without gizzard shad. Data in the table are untransformed.

Treatment
(gizzard shad)
and replicate 1 2 3 4 5

Absent
1 0.6 0.57 0.59 0.68 0.67
2 0.36 0.37 0.4 0.41 0.49
3 0.43 0.39 0.48 0.49 0.48
4 0.55 0.54 0.6 0.58 0.52

Present
1 0.72 0.45 0.4 0.32 0.29
2 0.65 0.4 0.38 0.27 0.1
3 0.53 0.46 0.38 0.29 0.23
4 0.45 0.4 0.29 0.23 0.25

Program
data one;

input treat $ rep week1-week5;

cards;

[input data];

proc glm;

class treat;

model week1-week5=treat;

repeated time/ printe;

run;

Week
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Interpretation
The test for the gizzard shad effect (between subjects) was significant at P = 0.057.

Table The effect of gizzard shad on the MWi of zooplankton in diets of bluegill.

Effect df Mean square F-value P

Treatment 1 0.222 5.51 0.0572
Error 6 0.040

When testing for a time effect (within subjects), a Mauchly’s test for sphericity was rejected (P =
0.0021), indicating that the variance–covariance matrix was not circular.  This is typical for data that
are sampled repeatedly through time. A test such as the Greenhouse–Geisser epsilon (G–G) must
be used to adjust the error rate. These tests are automatically computed by the SAS procedure.

Table Test for time effect and time*treatment effect of gizzard shad on zooplankton in
bluegill diet.

G–G
Effect df Mean square F-value adjusted P

Time 4 0.0350 10.06 0.0040
Time*treatment 4 0.0746 21.42 0.0002
Error 24 0.0034

We conclude from this analysis that MWi  changed in both treatments through time. The
time*treatment effect indicates that the treatments changed in different ways through time,
probably because zooplankton increased in diets in the absence of gizzard shad but declined
in treatments with gizzard shad.

of a single, unreplicated experimental system to that of a reference system. A
limitation of these moving average techniques is that they usually require large
sample sizes (>50 dates; Rasmussen et al. 1993).

Autocorrelated spatial patterns in diet data can be analyzed in a variety of ways.
The Mantel test is a randomization test that determines whether differences
between two n × n distance matrices are random (Fortin and Gurevitch 1993).
Spatial variation among individuals (distance matrix 1) can be compared to the
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relative proportion of a specified diet item in the stomachs (distance matrix 2).
The Mantel test will determine if nonrandom spatial patterns in diet composition
exist. Alternatively, two or more bivariate plots of spatial distributions of prey
occurrence in diets of individual fish may be compared using a multiway, two-
dimensional Kolmogorov–Smirnov test (2DKS; Garvey et al. 1998c). The 2DKS
test can also be used to determine if spatial distributions within single plots differ
significantly from randomly generated ones. An example of using 2DKS to assess
spatial variation in predator diets is given in Box 11.5.

Diel changes in diet have important implications for choosing sampling times
or understanding gastric evacuation patterns for fishes (see section 11.2.2.1). Using
analysis of covariance (ANCOVA), the content of fish stomachs (e.g., weight) can
be regressed against fish weight (the covariate) using conventional least-squares
regression during each sampling time. If these relationships can be transformed
such that they are linear, the slopes of each line can be compared (Box 11.6). If
slopes are the same (i.e., parallel), then the intercepts among the regression lines
can be compared. Significant among-intercept differences indicate a diel pattern
in the abundance of prey in stomach contents.

11.3.5 Comparing Diet Composition

11.3.5.1 Employing Multivariate Analysis of Variance with Randomization

The multivariate nature of fish diets often requires approaches other than
univariate statistics when interest lies in the simultaneous evaluation of all prey
categories. By example, consider the decisions we make when buying fishing gear.
Before making a purchase, we (e.g., anglers) often consider at least four factors:
(1) price, (2) quality, (3) brand name, and (4) style. One angler may rate their
decision on (1) style, (2) quality, (3) brand name, and (4) price, whereas another
angler may consider the purchase based on (1) price, (2) quality, (3) style, and
(4) brand name. Here, we are interested in asking whether anglers use the same

Table 11.3 Split-plot repeated-measures ANOVA design for biomass consumed by individual
fish (n = 6) blocked into pairs and then randomly selected to be sampled in the morning or
evening (effect A). Consumption of each fish was quantified once a week (effect B).

Time of day
Block and fish (effect A) 1 2 3

Block 1
1 AM AAMB1 AAMB2 AAMB3

2 PM APMB1 APMB2 APMB3

Block 2
3 PM APMB1 APMB2 APMB3

4 AM AAMB1 AAMB2 AAMB3

Block 3
5 AM AAMB1 AAMB2 AAMB3

6 PM APMB1 APMB2 APMB3

Week (effect B)
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Box 11.5 Assessing Spatial Patterns in Diet with the Two-Dimensional Kolmogorov–
Smirnov Test

Several statistical methods are available to relate diet patterns to the distribution of habitat in
aquatic systems. Mantel and partial-Mantel tests are powerful techniques that test whether spatial
patterns are random or due to some treatment (or time). These tests are not specifically discussed
here. More information can be obtained in Fortin and Gurevitch (1993) and Chapter 18. If spatial
data can be arranged into bivariate spatial coordinates, a two-dimensional Kolmogorov–Smirnov
(2DKS) test can be used to (1) identify whether a single distribution has arisen by random effects or
(2) compare two bivariate distributions (see Garvey et al. 1998c for a review). This nonparametric
test finds the maximum difference, Dbks (where bks represents bivariate Kolmogorov–Smirnov), in
integrated probabilities for four quadrants around each point in a plane. If the maximum Dbks

between two distributions exceeds that expected randomly, we conclude that they differ. The
significance of the test statistic Dbks is determined by rerandomizing the original data 5,000 times
and then comparing this randomly generated distribution to the observed value.

In the following hypothetical example, we want to know how vegetation in a large lake affects
piscivory in age-0 smallmouth bass. We partition the bottom of a shallow lake into 80 habitat
quadrants (20 × 4) and determine whether each contains vegetation. Within each quadrant, we
sample smallmouth bass diets by means of gastric lavage and note whether piscivory is present or
absent.

Figure Two hypothetical scenarios of smallmouth bass in a shallow lake. The bottom of the lake is
partitioned into 80 habitat quadrants (20 × 4), and it is determined whether each contains vegeta-
tion. Within each quadrant, smallmouth bass diets are sampled to determine whether piscivory is
present or absent.
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decision factors before purchasing fishing gear. To address this issue, we treat the
purchase as a multivariate response by evaluating these decisions simultaneously.
In the same way, we can treat the diet of fish as a multivariate response defined by
the abundance of different prey items in the stomach.

There are a variety of approaches for analyzing multivariate diet data. For the
convenience of modeling and performing statistical tests, techniques such as multi-
variate analysis of variance  (MANOVA) require the assumption of multivariate nor-
mality (Khattree and Naik 1999). Other multivariate methods, such as cluster analy-
sis and ordination techniques, are largely distribution free in nature and are useful
for generating biologically meaningful patterns from multivariate data.

When diets are expressed as prey weight or volume, MANOVA can be useful
for testing differences in diet composition. The assumptions of MANOVA require
that prey proportions have a multivariate normal distribution and a similar vari-
ance–covariance structure among samples. Prior to performing MANOVA, tests
for multivariate normality should be applied to data to evaluate this assumption
(Khattree and Naik 1999). When diet composition data do not meet the assump-
tion of multivariate normality (as is often the case), a nonparametric-based ran-
domization procedure can be applied to test for differences in diet composition
between samples (Crow 1979; Somerton 1991). In this approach, MANOVA is
combined with a randomization procedure. Randomization procedures are not
new to ecological analysis but have received little attention in the analysis of fish
diets (but see Somerton 1991). Randomization procedures are relatively straight-
forward and proceed as follows.

1. Combine diet proportion data from time or area samples.
2. Randomly sort data into n new samples equal in size to the original data.
3. Calculate a test statistic based on the new samples.
4. Repeat steps 2 and 3 a large number of times (e.g., 5,000).

In the scenario depicted in the upper panel (A), piscivorous smallmouth bass (closed circles)
appeared to be closely associated with quadrants containing vegetation (open triangle). In
confirmation, a 2DKS test comparing the bivariate distributions of vegetation and piscivorous
smallmouth bass revealed no difference (Dbks = 0.143, P = 0.999). In the scenario depicted in the
lower panel (B), the distribution of vegetation is identical to that in A.  However, the spatial
distribution of piscivorous smallmouth bass appears to be associated with some other factor. The
2DKS test detected a difference between the spatial distributions of vegetation and piscivorous fish
(Dbks = 0.714, P = 0.002).

Of course, the 2DKS test is useful for determining only presence and absence in this example. We
also must assume strong site-fidelity of fish within habitats and that fish are homogeneously
distributed among vegetated and nonvegetated sites. Cells with missing data are acceptable. It is
important to note that Mantel tests incorporate quantities within each cell, allowing us to compare
other responses such as the frequency of occurrence of fish in diets.

Box 11.5 (continued)
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Box 11.6 Determining Diel Patterns in Diet Data with Analyis of Covariance (ANCOVA)

We often want to determine if diel patterns in diet data occur. This has important implications for
designing sampling protocols and interpreting diet data. One way to determine whether diel
variation in feeding occurs is by sampling fish during different times of the day.

Figure The total weight (mg) of food found in the diets of different size fish are given for three
time periods—morning, noon, and evening.
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Program
An ANCOVA was used to test the null hypothesis that the three regression lines are equal. For an
ANCOVA to be valid, the slopes of the regression lines must be parallel (slopedawn = 0.0322; slopenoon

= 0.0380; and slopedusk = 0.0377). If this assumption holds, then we can use the general linear model
(GLM) procedure in SAS in which length is the continuous covariate and time is the categorical
variable. The assumption of parallel slopes is rejected if a length*time interaction is detected.

data one;
input time $ length diet;
cards;
[input data];
proc glm;
class time;
model diet = time length;
run;

Interpretation

Table Effect of time of day and length of fish on weight of items in fish stomachs.

Effect df Mean square F-value P

Time 2 6.770 28.65 0.0001
Length 1 14.431 61.06 0.0001
Error 32 0.236

No length × time interaction occurred in the initial model. We then assumed that slopes were
parallel and dropped the interaction from the model. The ANCOVA revealed that total weight of
items increased in guts with increasing body size. In addition, the amount of food varied with time
of day, suggesting that sampling time be carefully considered when developing a protocol.
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From these data, a probability distribution of the randomized test statistic is
generated. If the observed test statistic is within the upper (or lower) 5% tail of
the randomized distribution, then the result is significant at the 5% level. Simi-
larly, if our observed value falls within the 1% tail, then we can conclude that the
difference is significant at the 1% level and so on. The choice of a test statistic
depends on the research question being addressed and the characteristics of the
test statistic. In a two-sample case, we could perform a randomization procedure
on the Hotelling’s T2-statistic and test for a difference between sample means.
Similarly, the F-statistic could be used to test for a treatment effect among three or
more factors (e.g., lakes, seasons, and sites). An example of a nonparametric
MANOVA that tests for diet differences is given in Box 11.7.

11.3.5.2 Examining Prey Numbers with Log-Linear Contingency Tables

When diet data are expressed as prey numbers, a multiway contingency table
analysis can be used to assess diet variation (Cortés 1997). In this approach, data
are arranged in an R × C contingency table, where R is the number of prey catego-
ries and C is the number of predator categories. Each cell in the table contains
the total number of the ith prey category found in the stomachs of the jth preda-
tor category. One limitation of contingency table analysis is that large samples
sizes are needed so that less than 20% of the cells have an expected frequency less
than five. One way to remedy this situation is to pool prey species, so that we
reduce the total number of categories and increase the sample size for the re-
maining categories (see section 11.2.1; Crow 1979).

Contingency table analysis begins by testing for significant interactions. In this
way, we are testing a hierarchy of models starting with the most complex. In a
three-way contingency table, we would start by examining the three-way interac-
tion. If this term were not significant, we would delete it from the model and then
proceed to test all the two-way interactions. The advantage of this approach is that
by proceeding with posthoc tests, we can readily identify the rows (prey types)
and columns (predators) that contribute the most to diet variation (Cortés 1997).
An example of a three-way contingency table is given in Box 11.8.

11.3.5.3 Applying Ordination Techniques

Ordination techniques, such as principal components analysis (PCA), are widely
used in ecological data analysis. Because diet data are often measured as propor-
tions, analytical techniques are affected by the constant-sum constraint (i.e., as
the abundance of one taxa increases, one or more taxa must decrease; Jackson
1997). To deal with compositional data, two alternative ordination methods have
been proposed. The first approach is a log-ratio analysis performed on the loga-
rithms of the percentages; this approach is most appropriate when compositional
data do not contain zeros (Aitchison 1983). Although not new to the ecological
literature, log-linear PCA techniques have only recently been applied to fish diet
data (De Crespin De Billy et al. 2000). Termed %PCA, this technique is based on
a PCA performed on a proportion table in which each column is defined by a prey
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Box 11.7 Comparing Diet Data from Different Locations or Times with Multivariate
Analysis of Variance (MANOVA)

Because of the multivariate nature of diet data, we are often interested in determining whether diet
composition differs among fishes sampled from different locations or at different times. When diet
data are measured as prey mass (or volume), MANOVA can be useful for testing an overall location
(or time) effect.

Table Hypothetical diet data for three bluegill populations. Data are presented as mean percent
composition by weight (MWi ) for four different prey items.

Prey type

Bluegill Chironomids Amphipods Odonates Copepods

Lake A
1 0.12 0.35 0.44 0.09
2 0.09 0.22 0.63 0.06
3 0.12 0.35 0.5 0.03
4 0.26 0.38 0.22 0.14
5 0.27 0.29 0.27 0.17

Lake B
6 0.49 0.01 0.38 0.12
7 0.36 0.04 0.59 0.01
8 0.34 0.05 0.57 0.04
9 0.42 0.03 0.24 0.31
10 0.57 0.11 0.21 0.11

Lake C
11 0.08 0.34 0.49 0.09
12 0.06 0.27 0.59 0.08
13 0.02 0.33 0.58 0.07
14 0.11 0.57 0.28 0.04
15 0.01 0.57 0.31 0.11

Program
Here, we are interested in testing for an overall lake effect in diet composition and perform a
MANOVA analysis. The MANOVA procedure was used in the following SAS program to generate
output.

data test;

input lake $ fish chiro amph odon zoo;

cards;

[input data];

proc glm;

class lake;

model chiro amph odon zoo=lake;

manova h=lake / printe printh;

title ‘Manova of diet data’;

run;
(Box continues)



498 Chapter 11

type and each row represents an individual fish. An advantage of this technique is
that individual fish and their prey are analyzed simultaneously and can be dis-
played on the same graph (De Crespin De Billy et al. 2000). A second approach
offered as a solution to the problem of compositional data is correspondence
analysis (CA; Jackson 1997). This approach is particularly well suited to handle
compositional data and provides advantages over other methods (e.g., PCA; Digby
and Kempton 1987; Jackson 1997). Furthermore, unlike log-ratio analysis, CA is
not constrained by the presence of zeros in the data, providing a robust approach
for analyzing compositional data.

Although the mathematical derivation of these techniques is beyond the scope
of this chapter, a user-friendly program for running these analyses is CANOCO

Box 11.7 (continued)

Interpretation
Results from the MANOVA test for the hypothesis of no overall lake effect are presented below.
Several statistics are produced from MANOVA analysis and provide similar results. For randomiza-
tion procedures, we will consider the Wilk’s lambda test statistic. From the output shown below, we
would conclude that there is an overall lake effect on bluegill diets.

Table Test statistics comparing MANOVA results of diet composition for bluegills among three
lakes.

Statistic Value F-value P

Wilk’s lambda 0.079 8.52 0.0001
Pillais trace 0.92 3.16 0.021
Hotelling–Lawley trace 11.58 17.38 0.0001
Roy’s greatest root 11.58 42.46 0.0001

To determine which prey types vary among bluegill populations, individual ANOVAs are performed
on each prey type. Because these tests are a posteri, an appropriate alpha level can be obtained
using the Bonferroni inequality by which adjusted alpha levels are equal to the overall alpha
divided by n.  In this case, we would consider individual ANOVAs to be significant at 0.0125. In the
table below, we see that chironomids and amphipods vary significantly among lakes.

Table Analysis (ANOVA) of which prey types vary among the three bluegill populations.

Prey item Source of variation df Sum of squares F-value P

Chironomid Lake 2 0.379 31.38 0.0001
Amphipod Lake 2 0.363 20.98 0.0001
Odonate Lake 2 0.007 0.13 0.87
Copepod Lake 2 0.004 0.34 0.71
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for Windows (ter Braak and Smilauer 1998). To demonstrate the usefulness of log-
ratio analysis (%PCA), we used diet data provided in Table 11.2 to assess individual
variation in bluegill food habits (Box 11.9).

11.3.6 Estimating Diet Overlap

Niche overlap indices are often used to measure the magnitude of resource over-
lap among different species. Although these indices are sometimes used to infer
competition, we should recognize that high resource overlap between two species
may not indicate competitive bottlenecks. Rather, it may be indicative of high re-
source abundance, such as seasonal peaks in prey availability.

Once we obtain our observed test statistic (e.g., Wilk’s lambda = 0.079), we then perform a random-
ization test (Crystal Ball 7.0, Decisioneering, Inc., Denver, Colorado; http://crystalball.com/
crystal_ball/) to evaluate the significance of our statistic. After performing 4,999 simulations, we
obtain the following probability distribution of the test statistic based on our data.

Figure Randomized frequency distribution for Wilk’s lambda based on 4,999 simulations.
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From the randomized frequency distribution, we see that our observed value (0.079) easily falls in
the lower 5% of the observations. In fact, only 75 observations were less than our observed Wilk’s
value (0.079). We can estimate a P-value as 75/5,000 or 0.015.  Hence, it is unlikely that we would
obtain a value of 0.079 if the null model is true, and we would conclude that diets are significantly
different among lakes. Similarly, randomization procedures could be performed on the individual
ANOVAs (e.g., F-value) to confirm that chironomids and amphipods account for these differences.
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Box 11.8 Testing Prey Counts with Multiway Contingency Table Analysis

When diet data are measured as prey counts, multiway contingency table analysis can be used to
test for treatment effects.

Table The following data represent numbers of prey for two different life stages of fish collected
from two different environments. A three-way contingency table is used to test for differences
among the three different levels: (1) life stage, (2) habitat, and (3) prey type.

Prey type

Habitat and life stage Amphipods Chironomids   Mayflies   Ostracods

Littoral
Adult 29 69 9 10
Juvenile 19 43 4 6

Pelagic
Adult 6 21 6 4
Juvenile 1 8 5 4

Program
The following SAS program was used to generate output.

data test;

input prey $ stage $ habitat $ number;

cards;

[input data];

proc catmod;

weight number;

model prey*stage*habitat=_response_ / pred=freq;

loglin prey|stage|habitat;

run;

The summary statistics below show that the three-way interaction, prey*stage*habitat, is not
significant. If this term were significant, there would be no reason to examine two-way interactions
or main effects.

Table Summary statistics for multiway contingency table analysis.

Source df �2 P

Prey 3 71.27 0.0001
Stage 1 8.99 0.002
Habitat 1 26.75 0.0001
Prey*stage 3 1.70 0.637
Prey*habitat 3 12.88 0.0049
Stage*habitat 1 0.18 0.674
Prey*stage*habitat 3 3.09 0.377
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Deleting the prey*stage*habitat term from the model, we obtain a significant interaction for
prey*habitat (P = 0.0095).  To determine which prey items are responsible for the significant
prey*habitat interaction, we can delete individual prey categories and revaluate the interaction
term.  Below, we see that by deleting individual prey types, we are unable to obtain a nonsignificant
interaction term for amphipods, chironomids, or ostracods. However, when we delete two groups of
prey from the analysis we find that amphipods and chironomids are responsible for the significant
interaction observed in the prey*habitat term.

Table Analysis to determine which prey items are responsible for the significant prey*habitat
interaction.

Prey type deleted P-value for interaction term

Single prey
Amphipods      0.024
Chironomids      0.007
Mayflies      0.115
Ostracods      0.006

Combined prey
Amphipods & chironomids      0.377
Amphipods & ostracods      0.010
Chironomids & ostracods      0.002

By tabulating the observed and expected frequencies (in parentheses) for amphipods and
chironomids, we can make inferences about how these prey types differ across fish life stages and
habitats. Here we see higher than expected numbers of chironomids in adult diets from both
habitats. For both prey types, adult fish also showed higher than expected values compared to
juvenile fish.

Table Comparison of prey type across life stage and habitats. Given are observed and expected
(in parentheses) frequencies of prey type in diet; note that observed and expected frequencies are
not equal because other prey types are not shown.

Prey type and life stage Littoral habitat Pelagic habitat

Amphipod
Adult 29 (22)   1 (5)
Juvenile 19 (22)   6 (5)

Chironomid
Adult 69 (57)   8 (12)
Juvenile 43 (57) 21 (12)
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Box 11.9 Exploring Diet Data with Principal Component Analysis (PCA)

Traditional multivariate techniques, such as PCA, can be constrained by the compositional nature of
diet data in so much as the row sums must equal one. Log-ratio analysis, such as %PCA (see text), is
performed on the logarithm of proportions and can be useful for exploring individual variation in
diet data. For values equal to zero, very small numbers (e.g., 0.00001) are entered prior to analysis as
recommended by Aitchison (1983). A %PCA analysis was performed on the diet composition data
given in Table 11.2. The first two components accounted for 94% (%PC1 = 60%; %PC2 = 34%) of the
total variation in diet data.

The patterns represented in the figure above can be compared to physical or biological characteris-
tics to help identify factors affecting diet variability. For example, we might be interested in
whether fish size accounts for variation in stomach contents. Correlation analysis reveals a signifi-
cant relationship between the first axis scores (%PC1) and fish size (r = –0.84; P = 0.002). Smaller fish
(i.e., B, C, I, and F) consumed more amphipods, whereas larger fish (i.e., H and E) were more likely to
contain larval fish in their diet. Similarly, this approach could be used to assess a variety of factors
such as habitat characteristics, limnological parameters, or fish community attributes.

Figure The graph shows each prey type linked to an arrow for which the length of the arrow is
proportional to the relative abundance of the prey. The %PCA results for individual bluegills (A–J)
are then superimposed on the prey distribution to show individual variation in diet composition.
Amphipods, larval fish, and mayflies accounted for much of the variation in individual diets,
whereas dipterans accounted for little variation and were distributed near the population centroid
(origin).
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A variety of indices have been proposed to quantify diet overlap, and there is
controversy as to which index is best (Krebs 1989). In cases where prey numbers
are available, Morista’s index has been recommended as the most robust index
(Smith and Zaret 1982). Morista’s index is calculated using the equation

M  = 
� pij

;
[(nij – 1)/(Nj – 1)] + � pik[(nik – 1)/(Nk – 1)]

2� pij pik
n n
i i

n
i

(11.4)

M = Morista’s index of niche overlap between species j and k;
pij = proportion resource i is of the total resources used by species j;
pik = proportion resource i is of the total resources used by species k;
nij = number of individuals of species j that use resource category i;
nik = number of individuals of species k that use resource category i; and
Nj, Nk = total number of individuals of each species in sample.

If data are not expressed as prey numbers (e.g., biomass or volume), then
Horn’s index is recommended (Krebs 1989) and is calculated as

H  = ,
2log2

�(pij  + pik)log(pij  + pik) – �pij logpij  – �piklogpik
(11.5)

where H = Horn’s index of overlap between species j and k. In equation (11.5),
any base of logarithms may be used.

Confidence limits or tests of significance can be calculated for diet overlap
values. One way to estimate confidence limits on diet overlap values is to use
bootstrapping techniques. Bootstrap techniques are relatively simple and proceed
as follows.

1. Using the original data with n observations, randomly select n diet overlap
values with replacement. Because we are sampling with replacement, some
values may be selected one or more times or not at all. Repeat this step at
least 100 times (preferably 1,000).

2. Calculate a mean diet overlap value for each bootstrap sample.
3. Estimate the mean and standard error from the replicate bootstrap values.

Because bootstrap procedures estimate the sample mean, rather than the popu-
lation mean, they contain a bias that can be corrected using the equation,

Bootstrap meanadj =  2x–s – x–B , (11.6)

where x–s = observed mean of original sample and x–B  = bootstrap estimate of mean
(Krebs 1989).
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11.3.7 Estimating Prey Preference

When given a variety of prey types, most fishes select some food categories over
others. To measure this selectivity, a variety of indices have been developed that
incorporate measures of prey use and prey availability (see review in Bowen 1996).
While prey use can be easily determined from gut content analysis, accurate de-
scription of prey availability can be problematic. What we quantify as prey avail-
ability may be quite different than what fish perceive under natural conditions.
Furthermore, because different prey can occupy different habitats, a single sam-
pling technique may not adequately quantify the relative abundance of different
prey items in the environment. This is important because we cannot use volumet-
ric estimates of zooplankton abundance (e.g., number/L) and real densities of
benthic invertebrates (e.g., number/m2) as simultaneous measures of prey avail-
ability. Only in cases where prey are collected with the same gear type, such as
open-water zooplankton, can we begin to compare use versus availability.

Like diet and overlap indices, there is much controversy over which preference
index is best (Wallace and Ramsey 1983). Comparisons of different indices have
revealed that the Manly–Chesson (Chesson 1983) and the linear (Strauss 1979)
indices are good choices for quantifying prey preference (Smith and Zaret 1982;
Wallace 1981; Krebs 1989). The Manly–Chesson index is frequently used to quan-
tify prey preference and can be calculated for two scenarios (Krebs 1989).

Constant prey abundance. This form of the Manly–Chesson index is used when
the number of prey eaten is very small relative to that prey item’s total population
or when prey are replaced, as in laboratory studies. The equation for the Manly–
Chesson index under constant prey abundance is

� i = r i
ni

;1
�(r j /nj )

(11.7)

�i = Manly’s alpha for prey type i;
ri , rj = proportion of prey type i or j in the diet;
ni , nj = proportion of prey type i or j in the environment; and
m = total number of prey types.

Values of �i are normalized so that
Prey preference is indicated when �i values are greater than 1/m. Conversely,

�i values less than 1/m imply that prey species i is avoided in the diet because it is
used in lower proportion than its availability in the environment.

Variable prey abundance. This form of the Manly–Chesson index is used when
the number of prey eaten is large relative to that prey item’s total population in
the environment or when, in experimental studies, prey are not replaced after
being eaten. The Manly–Chesson index for variable prey populations is calcu-
lated using the equation

� i = ;
logPi

�Pj
j = 1

m (11.8)

�� i = 1.0.
m

i =1
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�i = Manly’s alpha for variable prey populations;
Pi , Pj = proportion of prey i or j remaining at the end of the experiment (ei /ni);
ei = number of prey type i remaining at the end of experiment;
ni = number of prey type i at the beginning of the experiment; and
m = total number of prey types.

In equation (11.8), any base of logarithms can be used.
It is recommended when using the Manly–Chesson index for variable prey

populations that the number of prey eaten and the number of prey remaining are
greater than 10 (Manly 1974; Chesson 1983; Krebs 1989). In practice, indices
such as the Manly–Chesson can be used to test for differences in prey selectivity
providing important information about preferred (or vulnerable) prey types (Box
11.10).

Box 11.10 Assessing Prey Preference

Differences in prey selectivity provide important insight about foraging patterns of fishes.  In many
cases, these type of data are collected under controlled, experimental settings in which changes in
the absolute abundance of prey can be accurately determined.

Catalano et al. (2001) examined the effects of tag color on vulnerability to predation. Age-0 bluegills
were marked with either brightly colored fluorescent tags or cryptic tags and then exposed to
largemouth bass predators in a series of tank experiments. Manly’s alpha was calculated using the
equation for variable prey populations (equation [11.8]).

Table Vulnerability of age-0 bluegills with differently colored tags to predation by largemouth
bass (data from Catalano et al. 2001).

Initial number Final number Proportion Manly’s
Trial and tag color of prey  of prey remaining alpha

1
Bright 120 22 0.183 0.618
Cryptic 60 21 0.350 0.382

2
Bright 96 26 0.271 0.529
Cryptic 48 15 0.313 0.471

3
Bright 150 64 0.427 0.528
Cryptic 75 35 0.467 0.472

Here, we are interested in whether marking pattern (bright versus cryptic tags) influences prey
selectivity. A Student’s t-test reveals a significant difference in selectivity between brightly colored
and cryptic tags (t  = 2.76, P = 0.05 ); fish marked with brightly colored tags had a higher selectivity
( x– = 0.56) than did fish marked with cryptic tags (x– = 0.44).
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■ 11.4 TRACKING ENERGY FLOW WITH STABLE ISOTOPE ANALYSIS

Stomach content analysis provides a high degree of taxonomic precision but is
limited in many ways because it provides only a snapshot in time of consumer
diets. Stable isotope analysis is an alternative approach to traditional food habit
studies that provides time-integrated information useful for tracking energy flow
in aquatic food webs (Fry and Sherr 1984; Peterson and Fry 1987). Stable isotope
analysis has several advantages as a method for quantifying feeding patterns: (1)
it reflects materials actually assimilated by fish, enhancing our ability to detect
subtle but important feeding interactions that might go undetected by traditional
gut content analysis; (2) it allows more efficient use of sampled fish because there
is no loss of information when stomachs are empty; and 3) it can be used to evalu-
ate within-population variation in fish feeding habits.

Carbon (�13C) and nitrogen (�15N) are the most commonly used isotopes in
aquatic food web studies. In general, �13C signatures of consumers are similar to
those of their prey and can be used to identify carbon sources at the base of the
food chain. Conversely, �15N signatures exhibit a step-wise increase from prey to
predator. A 3–4‰ enrichment of the heavy nitrogen isotope represents a typical
trophic level increment (e.g., zooplankton to fish). Hence, �15N signatures can be
used to identify important feeding relationships and energy pathways.

Stable isotope ratios are expressed in delta (�) notation, defined as the parts
per thousand (ppt; ‰) deviation from a standard material (Peterson and Fry
1987). The formula for calculating �13C or �15N is

�13C (or �15N) = ([Rsample/Rstandard] – 1) × 1,000, (11.9)

where R equals the ratio of 13C/12C (or 15N/14N). Standard materials are repre-
sented by Pee Dee belemnite limestone for �13C or atmospheric nitrogen for �15N,
where both standards have a ppt value set to 0. A positive (or less negative for
carbon) isotopic value indicates the sample is “isotopically” enriched and con-
tains more of the heavy stable isotope (13C or 15N; Vander Zanden et al. 2000).

Samples for stable isotope analysis are usually collected from white dorsal
muscle tissue (1–2 g wet weight) of individual fish and frozen until analysis.
Although samples are usually collected from sacrificed fish, biopsy punches (6–
8 mm) are useful for obtaining nonlethal samples in the field where fish can be
quickly treated with an antibiotic ointment and released. For invertebrates or
larval fish, whole samples are obtained in the field and then frozen. Prior to
freezing invertebrates and larval fish, it is recommended that they be placed in
filtered water for up to 12 h to allow gut evacuation. Prey items in the guts of
small invertebrates and larval fish can affect �15N signatures (Yoshioka et al.
1994). Because 0.1 g dry weight is usually required to analyze stable isotopes,
samples should consist of about 1–2 g wet weight. Samples are then dried at
70°C to a constant weight, ground into a fine powder, and packed into 4 × 6-mm
tin capsules for isotopic analyses. Isotope analysis of �13C and �15N is performed
using a mass spectrometer.
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11.4.1 Applying Stable Isotope Data

A promising new technique for assessing energy flow in aquatic ecosystems in-
volves the calculation of fish trophic position, a continuous variable that quanti-
fies the average energy pathway to a consumer (Vander Zanden and Rasmussen
1999). Trophic position is useful for assessing feeding patterns because it incorpo-
rates the relative contribution of different trophic levels to fish diets. Both dietary
data and stable isotope ratios can be used to calculate trophic position of fish.
Because trophic position incorporates omnivorous feeding behavior, it provides
an advantage over food chain studies that fail to consider omnivorous trophic
interactions and food web studies that fail to weight food links according to their
energetic importance (Polis 1991; Gaedke et al. 1996; Vander Zanden and
Rasmussen 1999).

To demonstrate how trophic position can be estimated from dietary data, con-
sider a lake trout population that has a diet consisting of 20% herbivorous zoop-
lankton (trophic level = 2) and 80% planktivorous fish (trophic level = 3). These
data, usually obtained from numerous fish within a size-class, can be used to calcu-
late trophic position (TPdiet) as

TPdiet = �(ViTi) + 1, (11.10)

where Vi is the percent volumetric contribution of the ith prey item (e.g., 0.2 or
0.8) and Ti  is the trophic position of the ith prey item (e.g., 2 or 3; Vander Zanden
et al. 1997). Hence, the size-specific trophic position for this lake trout popula-
tion is 3.8.

Alternatively, trophic position can be estimated for individual fish from stable
isotope ratios as

TPfish = [(�15N fish – �15N baseline)/3.4] + 2, (11.11)

where �15Nfish is the isotope signature of the fish, �15Nbaseline is the “corrected” iso-
tope signature of the fish, 3.4 is the assumed per mil increase in �15N per trophic
level, and 2 represents the number of trophic levels involved (Vander Zanden
and Rasmussen 1999).

Because �15N values vary greatly among organisms at the base of the food chain,
the �15N value of a consumer cannot be regarded as an absolute measure of trophic
position. Hence, it is necessary to correct the �15N signatures of fish to account for
�15N variation among primary consumers (e.g., zooplankton, chironomids, and
amphipods; Angradi 1994; Vander Zanden and Rasmussen 1999). To accomplish
this, bivariate plots of �15N – �13C are used to describe the relationship between
nitrogen and carbon signatures for primary consumers. This relationship can then
be used to calculate baseline conditions (�15N baseline) that are used to correct �15N
values of secondary consumers (see Vander Zanden and Rasmussen 1999).

Isotopically derived measures of fish trophic position can be used to assess diet
variability within a population. Bivariate plots that depict trophic position–body
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size relationships are first constructed to assess variation in energy flow among
different-sized fish. Because trophic position normally increases with fish size,
variance estimates may be higher for populations with steep trophic position–
body size slopes. To remedy this, variance estimates can be estimated as the mean
absolute residual value from trophic position–body size relationships (Box 11.11).
This variation is independent of body size and can be used to assess factors affect-
ing fish trophic position (Vander Zanden et al. 2000).

Variation in trophic position reflects the magnitude of two diet components:
(1) diet breadth–the overall range of prey consumed, and 2) diet consistency–the

Box 11.11 Determining Trophic Position of Fishes with Stable Isotope Analysis

Stable isotope data is often used to estimate the trophic position of fishes (Vander Zanden et al.
2000). Variation in trophic position can then be used to evaluate factors affecting fish foraging
patterns across space or time.

In this example, isotope data were used to calculate the following trophic position estimates (TP)
for different size walleyes. The relationship between TP and walleye size was then used to develop
the equation

TPpredicted = 2.797 + 0.001445(L),

where predicted trophic position (TPpredicted) is estimated as a function of walleye length (L = total
length in mm).

Table Trophic position (TP) versus walleye size. From this relationship, predicted TP and residuals
are calculated.

Walleye size (mm) TP TPpredicted |Residual|

152 3.5 3.0166 0.4834
254 3.6 3.1640 0.4360
305 3.4 3.2377 0.1623
355 3.5 3.3100 0.1900
381 3.61 3.3475 0.2625
457 3.42 3.4574 0.0374
508 3.45 3.5311 0.0811
584 3.61 3.6409 0.0309
609 3.59 3.6770 0.0870
660 3.7 3.7507 0.0507

Mean residual 0.1821

Residual values were calculated from the trophic position–body size relationship as the difference
between TP – TPpredicted. Absolute residual values are then averaged to obtain a measure of trophic
position variation that is independent of fish body size (i.e., 0.1821). Variation in trophic position can
then be compared across time or space or correlated with biotic or abiotic variables to assess
factors affecting diet variation of walleyes.
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degree to which an individual fish repeatedly consumes the same prey type. High
levels of variation indicate high diet breadth and high diet consistency, whereas low
variation can represent either (a) high diet breadth and low consistency (all indi-
viduals consume similar proportions of a wide range of prey), or (b) low diet breadth
(e.g., all individuals specialize on a few prey types; Vander Zanden et al. 2000).
Variables, such as lake area, prey diversity, number of competitor species, food chain
length, and lake productivity, are just a few parameters that can be compared with
trophic position variation in an attempt to understand factors affecting feeding
patterns. Similarly, variation in trophic position can be compared across seasons as
a method for evaluating temporal changes within a population.

■ 11.5 CONCLUSIONS

Food habit assessments are an integral part of many research and management
plans. While specific goals of food habit studies vary, the usefulness of diet data
relies on the accurate quantification of diet composition. Factors such as time of
year and sample location can profoundly affect prey availability and diet composi-
tion of fishes. At smaller scales, time of day, habitat characteristics, and collecting
gear can influence diet composition. The degree to which these factors affect
interpretation of fish diets largely depends on the research question. As a result,
it is important in diet studies to have well-defined research objectives that account
for factors affecting diet composition.

Because diets can be quantified in many different ways, it is unlikely that a
single diet index will be useful in all circumstances. Rather, we should rely on the
unique properties of individual measures to select a method that is most appro-
priate for our study. As previously discussed, single indices based on prey number,
weight (or volume), or occurrence each have their place in studies of diet compo-
sition. Similarly, graphical techniques that incorporate two or more single indices
can provide important insight into feeding strategies, niche breadth, and relative
prey importance. For questions concerning energy flow in aquatic ecosystems,
techniques such as stable isotope analysis can provide powerful tools for quantify-
ing important energy pathways to fishes.

Diet data have several important characteristics that affect analysis and inter-
pretation: data are usually (1) multivariate in nature, (2) proportional, (3) vari-
able at the individual level, and (4) autocorrelated across space and time. By ap-
preciating and understanding these characteristics, we can design appropriate
studies and select sound analytical techniques for assessing food habits and feed-
ing patterns of fishes.
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■ 12.1 INTRODUCTION

Bioenergetics is the study of pathways and mechanisms through which energy
enters and is then stored, used, and ultimately lost from living organisms to allow
for their maintenance, growth, and reproduction. Bioenergetics investigations
have ranged from those focused at the molecular and cellular levels to those fo-
cused at population, community, and ecosystem levels. Within fisheries and aquatic
ecology, bioenergetics investigations have focused primarily at the organismal level
but have often been extrapolated to populations and communities. However, as
our demand increases for more accurate and detailed estimates and predictions
of fish energetics responses, bioenergetics studies at finer organizational levels
will likely become necessary.

Studies of bioenergetics in fisheries have sought mainly to develop estimators
of energy consumption and growth for the “average” fish. These estimators have
as their underpinning the following balanced energy equation:

C = G + (M + SDA) + F + U. (12.1)

Consumption (C) represents the amount of energy ingested by a fish over some
common unit of time. Growth (G) is the increase, or decrease, in energy content
of the fish that occurs after various energy costs and losses have been subtracted
from C. Metabolism (M) comprises both a basal and active component, and spe-
cific dynamic action (SDA) is the energy lost as heat during the chemical transfor-
mation of food into utilizable energy. Egestion (F ) and excretion (U ) are waste
products of ingestion. Bioenergetics models are based on the balanced energy
equation for which knowledge of the values for any five variables permits solving
for the sixth. Values of the energy equation variables (usually C or G) are often
estimated from the field whereas values of M, SDA, F, and U are typically deter-
mined from laboratory studies.

Although fisheries bioenergetics studies have arisen from seemingly limited
objectives, a broad and ever increasing array of questions have been addressed. At
the heart of these objectives has remained an interest in estimating the growth or
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consumption of fishes. Traditional methods include in situ studies in which con-
sumption is estimated by sampling fish over diel periods and applying gastric evacu-
ation information in a variety of model forms (Jobling 1986). During the 1970s
and 1980s, development and availability of microcomputers permitted the ready
use of bioenergetics models that estimated consumption or growth from math-
ematical models of fish energetics parameters and commonly collected field data
(Kitchell et al. 1974, 1977; Hewett and Johnson 1987). We begin this chapter by
discussing the individual components of fish energy budgets and the experimen-
tal designs and data analyses commonly used to develop estimators of these com-
ponents. Approaches for combining the component predictors into whole bioen-
ergetics models and applications of bioenergetics models, as well as approaches
for evaluating their predictive accuracies, are considered. We also provide sugges-
tions for improving and standardizing procedures in fish energetic studies and
highlight areas where additional research is most warranted.

■ 12.2 FISH ENERGY BUDGETS

Fish energy budgets, such as the one shown in Figure 12.1, often provide the basis
for indirect estimation of fish consumption and growth rates in field settings by
means of bioenergetics models. For example, estimation of consumption rate (C)
by fish over a given period would require equation inputs of fish growth over that
period (Chapter 5). In addition, other values would be required to enable the
estimation of the energy cost and loss terms M, SDA, F, and U.

Most bioenergetics terms have been derived from measures on captive fishes;
however, recent technological advances have permitted limited estimates on fishes
in natural settings. Metabolic costs and SDA are typically measured as depletion
of oxygen concentrations in closed respirometry chambers (Brett 1970, 1976;
Beamish 1974, 1990; Brett and Groves 1979; Cech 1990), with the resulting oxy-
gen consumption converted into units of energy by means of oxycalorific coeffi-
cients (e.g., 13,730 J/g, Elliott and Davidson 1975). Telemetry and videography
have been applied to fishes in freshwater systems to estimate active metabolism
(Lucas et al. 1991; Krohn and Boisclair 1994). Active metabolism has also been
estimated using an algebraic solution of the balanced energy equation where con-
sumption and growth are known and laboratory or field estimates exist for the
other parameters (F, U, and SDA); the model is solved for the activity level (ACT)
required to balance the equation (Boisclair and Leggett 1989; Hartman and Brandt
1995a). Egestion and excretion are most often estimated on captive fish for which
collection of feces and monitoring of nitrogenous wastes can be conducted. Growth
in the bioenergetics models is often constrained by the maximum consumption
function. This function dictates the maximum rate of consumption based upon
fish size and temperatures experienced by the fish and are typically developed
from ad libitum feeding experiments.

A common extension of energy budgets is to calculate a scope for growth for a
given species and size of fish (Warren and Davis 1967; Brett 1970; Kitchell et al.
1977). Scope for growth is the potential growth rate of a fish under the range of
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feeding levels and environmental temperatures it may encounter (Brett 1976).
The growth scope allows a fisheries scientist to assess rapidly how well a particular
species may do if stocked into a novel environment, or it may be useful as a diag-
nostic tool in fisheries that appear to be growth limited. Providing the fisheries
scientist has information on the water temperatures available to fish in a body of
water, and given assumptions about food availability, scope for growth can be used
to evaluate a water body for introductions of species (see Box 12.1).

■ 12.3 BIOENERGETIC LABORATORY EXPERIMENTS

Laboratory experiments have been used to measure feeding levels and energetics
components of fishes under a variety of controlled conditions. This section begins
by describing key energetics components and the factors that affect them. Be-
cause similarity exists among experiments used to measure metabolic costs and
losses in egestion and excretion, many of the aspects of design, analysis, and de-
scriptive model development for laboratory energetics studies have been handled
together. Therefore, this section is further organized into experimental analysis
and design sections with descriptions of the various energetics components and
factors that affect them.

Discussion of laboratory consumption experiments is complicated by the fact
that they are often run for different objectives that require distinct designs and
analyses. Often, experiments are aimed at defining the maximum consumption
(Cmax) level for a given-size fish under different thermal conditions. Models or
functions that describe relationships among Cmax, fish size, and water temperature
have been widely used in bioenergetics model development (Hanson et al. 1997)
as well as in applications, where they are often used to estimate the predatory

Figure 12.1 A conceptual visualization of the bioenergetics components in the balanced
energy equation for fishes, where C is consumption, G is growth, M is metabolism, SDA is specific
dynamic action, F is egestion, and U is excretion.
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Box 12.1 Scope for Growth

Scope for growth is a mathematical expression of the possible growth of a fish given the energetic
constraints at different temperatures and fish sizes. It is most often presented graphically, showing
how the relationships change with temperature for a given size fish.  Below is an example of scope
for growth for a 10-g fish. Growth is bounded by Cmax (maximum consumption) and the sum of all
the energetic costs and losses (M + SDA + F + U; see Figure 12.1 for abbreviations). Here, greatest
growth is possible from 13 to 18°C. Studies of wild fish populations find that most wild fish feed at
40–60% of Cmax, or at a P-value (proportion of Cmax) of 0.4 to 0.6. This level of feeding can be assumed
by fisheries scientists in assessing how well a species may do, or may be doing, in a system based
on  the scope of growth model. Thus, a similar graph could be constructed to evaluate potential
suitability of a site for stocking a novel species by replacing C max below with a more realistic
expectation of wild fish feeding, such as 0.6 (C max). If the resulting scope for growth was positive
across most of the temperatures available to the fish in this site, then the site would likely have
suitable thermal conditions for that species.

Figure Scope for growth for a 10-g fish. Shaded areas under each curve represent specific rates at
each temperature for the cost terms U, F, SDA, and M (see Figure 12.1 for abbreviations).
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demand of wild fish populations on their prey (Stewart et al. 1981; Brandt and
Hartman 1993; LaBar 1993). Other consumption experiments have aimed to evalu-
ate optimum temperatures for fishes in cultured and wild settings or to estimate
maintenance ration requirements by fishes under various conditions.

12.3.1 Sources of Variation in Bioenergetics Experiments

Because fish are poikilotherms, the prevailing water temperatures dictate physi-
ological rates. In addition to temperature, fish size or mass also influences me-
tabolism and consumption parameters. Any factors that increase stress or alter
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activity may also affect bioenergetic rates. Stressors such as decreased oxygen con-
centrations may reduce feeding levels and resultant growth (Chiba 1988; Crocker
and Cech 1997), and fish may alter activity levels as a means of escaping or waiting
out the perturbation. Prey types may also affect maximum consumption rates
(Grove et al. 1978; Hartman and Brandt 1993), and social interaction among
conspecific fish can profoundly influence consumption rate and cost terms through
antagonistic interactions or stress, even at low densities (Hartman and Brandt
1993). Well-fed fish or those in high condition may have less motivation to feed
during experiments than those in poor condition, whereas fish in poor health
may reduce or cease feeding and activity. Hyperphagic responses have also been
noted in a growing list of species, and it is likely this phenomena is more the rule
than the exception in fishes (Dobson and Holmes 1984; Quinton and Blake 1990;
Russell and Wootton 1992; Jobling et al. 1993, 1994; Paul et al. 1995; Bull and
Metcalfe 1997; Hayward et al. 1997; Whitledge et al. 1998; Gaylord and Gatlin
2000; Hayward and Wang 2001). Evidence also suggests that seasonal cues may
influence metabolism and activity in some fishes (Olla and Studholme 1971; Chipps
et al. 2000). This great range of factors that influence bioenergetic parameters
makes controlling them an obstacle in model development. The best advice to
give persons conducting bioenergetic experiments is that while measuring bioen-
ergetic parameters every attempt should be made to match the conditions under
which the models will be applied.

12.3.2 Design of Fish Energetics Experiments

12.3.2.1 Experiment Duration

Metabolism experiments.—Although typically of short duration, metabolism experi-
ments include an acclimation period to allow the influence of prior feeding to
fade, to permit acclimation to a new exposure temperature, and to allow time for
the fish to become acclimated to the experimental chamber. Measurements of
oxygen uptake rates (g O2/g fish/h) should be taken 3–5 times daily over a 3–7-d
period. These initial data indicate fish acclimation to the test tanks via inspection
of the pattern of oxygen uptake over time for evidence of stabilization. A standard
curve, such as a negative power function, can be fit to oxygen consumption data
over time, and a standard point at which the curve asymptotes can be used to
define fish acclimation. After observations on several fish at each temperature,
the acclimation protocol is established and followed on subsequent measurements.
Metabolism measurements begin following the acclimation period, with several
measures being made for each fish. The average of these measures is used to
represent that fish at the specific combination of fish size and water temperature.
The duration of a metabolism experiment will vary depending upon the gastric
evacuation rate (required to clear the gut from previous meals) and the time
required for acclimation. Typically this is less than 4 d per experiment; longer
times may induce metabolic compensation due to lack of feeding and give erro-
neous results.
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Cmax experiments.—Maximum consumption experiments involve estimating the
average daily ration (g/g fish/d) of captive fish under ad libitum feeding. The
duration of such experiments has varied greatly from just a few days to hundreds
of days. The choice of duration is important in the analysis and interpretation of
the data in that fish offered unlimited food tend to eat less over time as their size
and energy reserves increase; thus, the average maximum consumption rate will
necessarily decline in longer-duration experiments.

The length of Cmax experiments should be matched to the intended use of the
data and resulting bioenergetics model. In aquaculture applications, where fish
are often fed at, or near, ad libitum ration, experiments should be of durations
that simulate periods under which production or production models are to be
used. For Cmax experiments relating to the development of bioenergetics models
for free-living fish (particularly for estimation of consumption from growth data),
durations can be shorter (e.g., 4–14 d). Longer periods of unlimited food supply
are not typical in nature; moreover, using shorter experiment periods permits
additional replication, provides time savings, and allows better experimental con-
trol of size- and stress-related effects on ration levels. Due to the effect of feeding
history on Cmax, it is recommended that feeding regime be standardized as part of
acclimation for consumption experiments. For example, an average feeding level
of 50% ration during acclimation can be achieved by feeding fish ad libitum every
other day, thereby establishing a uniform feeding pattern and hunger level prior
to experimentation.

12.3.2.2 Treatment Levels and Replication

Many studies have shown the importance of water temperature and body size
upon consumption and metabolism of fishes (Winberg 1956; Brett and Groves
1979; Penczak 1990). Therefore, at a minimum, these two variables are usually
considered in the design of energetics experiments. In most studies to date, more
attention has been paid to the temperature effect than to the size effect upon Cmax

or metabolism. Studies commonly employ 4–8, and as many as 15, temperature
treatments, whereas body size treatments are typically 1–5 in number (Table 12.1).
The reason for the disparity in treatment levels among temperature and mass is
not that size is unimportant. Rather, size is more difficult to control than is tem-
perature, and patterns of change with size are more consistent than with tem-
perature: slopes can both increase and decrease along the temperature continuum.
Nearly all energetics studies that have looked at size as a treatment have found
the relationship between specific consumption and size to be a negative power
function (see Figure 12.2, upper panel). Based upon this apparent relationship it
would be best to have a minimum of four size treatments over a wide range of
sizes to define the relationship. At a minimum, attention should be paid to ensure
that both small and large fish are included in the experiments, as prior study has
shown size dependence to be a simple power function relationship (linearized
with a log10 transformation).

The number of treatment levels for water temperature should depend upon
the range of environmental temperatures occupied by the fish. Most researchers
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have selected an upper and lower treatment temperature and then evenly distrib-
uted the treatments within that range. The reason for this is the response of Cmax

or metabolism to temperature varies across species and may also vary with ontog-
eny (Hartman and Brandt 1995a). In many species, Cmax and metabolism increase
to a point, levels off, and then declines as temperatures become stressful (see Fig-
ure 12.2, lower panel). Defining the optimum temperature for consumption and
the upper temperature ranges at which consumption often declines has required
researchers to use a larger number of treatments for temperature than for size.

The number of replicates (individual fish or fish groups) for each treatment
level or combination of treatments has also varied greatly in the literature (Table
12.1). The number of replicates used appears more often determined from avail-
ability of laboratory space or fish than from any statistical rationale. In designing
Cmax or metabolism experiments, researchers should consider statistical power as
well as logistical constraints in the determination of replication levels. Metabo-
lism and Cmax experiments aimed at determining size and temperature effects are
well suited to analysis of variance (ANOVA) designs, as long as size and tempera-
ture have no interactive effect (see section 12.3.3).

Within size treatments, the number of replicates needed to describe the effects
of temperature upon Cmax or metabolism will vary with species and other factors. It
will also vary depending upon the level of accuracy desired in estimating the de-
pendent variable. Among-individual variability in energetics responses tends to
be highest where rates are highest. For example, small fish tend to exhibit higher
specific rates and more variation than do large fish; and with the exception of low
temperatures where some individuals may not feed, within a size-class variability is
often highest near the optimum temperature for consumption (see Figure 12.3).

For example, based on the variability in Cmax and metabolism data for three
species of fish (striped bass, weakfish, and brook trout), we can determine a range
of replicates (number of individual fish) needed to achieve a given level of accu-
racy (Table 12.2). Sample size can be determined by the equation,

n = (1.962)(�2)/A2, (12.2)

where n is the required sample size to be within A units of the population mean
(determined by the level of accuracy) with 95% confidence, and �2 is the variance
in the estimates (Devore and Peck 1986). For example, if the mean was 0.100 g/
g/d and we wanted to be within 10% of the true value with 95% confidence, A
would be 10% of the mean, in this case, 0.010 g/g/d. This value of A would be
used in calculating the required replication level.

In the data sets for striped bass, weakfish, and brook trout, the mean Cmax levels
at optimum temperatures were 0.112, 0.227, and 0.120 g/g/d, respectively. Vari-
ances were generally low, but the level of replication needed for a given level of
accuracy in estimating Cmax varies substantially among these data sets. To be 95%
confident that our estimate of Cmax will fall within 25% of the true population
mean would require from 2 to 6 fish (Table 12.2). The same confidence to be
within 10% of the population Cmax would require 9–33 fish and to be within 5% of
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the population mean with 95% confidence would require 33–131 replicates. To
be within 1% of the true population parameter for Cmax would require over 800
replicates. The number of replicates needed for a given level of accuracy in me-
tabolism experiments yield estimates of 1–5 fish for 25% and 6–28 fish for 10%
accuracy with 95% confidence (Table 12.2).

Figure 12.2 Within a species, the two most important influences on Cmax are fish mass (top
panel) and temperature (bottom panel). Specific consumption is a negative power function of
weight. Temperature has been modeled as one of three types as defined in Hanson et al. (1997).
Type 1 is an exponential function, whereas type 2 (Kitchell et al. 1977) and type 3 (Thornton and
Lessem 1978) are different models that fit one form to the increasing limb and another to the
decreasing limb of the data. Types 2 and 3 are most often used where fish may experience
temperatures above their thermal optimum.
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Given the rapid increase in the number of replicates required for increasingly
modest improvements in estimate accuracy, it is wise to choose an acceptable level
of accuracy for estimates a priori and then proceed with experiments near the
optimum temperature for the species to gain a measure of variance. With this
measure of variance and the mean Cmax or metabolism value, the researcher can
then use equation (12.2) to evaluate the number of replicates needed for the
desired level of accuracy. We recommend the use of a priori data to establish
replication levels in experiments, but in the absence of such data we recommend
10–15 replicates as this generally will place the energetic estimate within about
10% of the true mean value with 95% confidence based upon data in Table 12.2.

12.3.2.3 Repeated Measures Versus Random Factorial Design

Energetics experiments, particularly consumption and metabolism experiments,
have been conducted both as a repeated-measures design and a completely ran-
dom design with factorial treatments. There are pros and cons associated with
either approach. The completely random with factorial treatment (CRFT) design
is a purer statistical design as each fish contributes only a single observation. The
disadvantage of the factorial approach is that it requires the evaluation of many
individual fish and, consequently, substantial laboratory space and equipment.
For the example outlined above (Table 12.2) a Cmax experiment of 4 size-classes of
fish to be evaluated at 5–6 temperatures with 10–20% accuracy would require 12

Figure 12.3 Variability in Cmax estimates among individual striped bass is greatest near the
optimum temperature for consumption—23°C. In assessing sample size requirements for
energetics studies, pilot studies near the expected optimum temperature for consumption
(or metabolism) can be run to provide a measure of variability for calculation of sample size
requirements (figure from Hartman and Brandt 1995a).
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replicates; in total, 240–288 fish would be required for a CRFT design. Often
laboratories are not equipped to hold this number of fish simultaneously. Re-
searchers have often attempted to sidestep the space limitation issue by using a
repeated-measures approach by which each individual receives multiple measure-
ments (e.g., temperature or ration), or by conducting studies on small fish and
applying the results to larger fish, often with assumed reductions in the thermal
optima range. One disadvantage of the repeated-measures approach is that indi-
vidual fish’s responses carry substantial weight such that an atypical fish could
greatly influence overall results. Also, true repeated-measures designs require that
each fish be exposed to the various treatment levels in a randomly selected order
that is often not possible due to space constraints. Repeated-measures analysis is
often performed without meeting this condition. Nonetheless, the repeated-mea-
sures approach is usually preferable to eliminating treatment levels (such as fish
size) from analyses because of the impractical number of observations required
for CRFT designs.

12.3.2.4 Experimental Treatments

Most energetics experiments have similar experimental treatment designs. In
metabolism and Cmax experiments, size and water temperature are the typical treat-
ments. For experiments aimed at defining egestion, excretion, and specific dy-
namic action, temperature and ration level effects are often evaluated. With two
variables (weight and temperature or temperature and ration), the experimental
design will vary slightly depending upon the intended objectives of the study. For
example, if the experiments are truly aimed at identifying the influence of tem-
perature and fish size upon metabolism or consumption, then the preferred de-
sign should be an n × m completely randomized factorial design with n size treat-
ments and m temperature treatments. Ideally, in such a design, the treatments
and replicates are all run simultaneously. Again, in most laboratory facilities space
and temperature control limitations conspire to make this impossible. A statisti-
cian might argue that if all experiments are not run simultaneously then they
must be randomly selected for experimental temperature treatment sequence to
ensure that time (or treatment level order) is not influencing the results. Thus, in
this experimental application, all size-classes should be run simultaneously with
the temperature treatments randomly selected for each series of experiments until
the block is filled. In this case, analysis would consist of ANOVA with treatment
sequence as the blocked variable and temperature and weight as the categorical
variables.

Often, energetics experiments are conducted with the intent of defining pa-
rameters for bioenergetics models. Thus, the objective in these types of experi-
ments is to develop predictive models that will define values of key energetics
parameters for fish under various environmental conditions. Regression analysis
is commonly used to define relationships between a given energetic parameter
and size and temperature. Analysis for these experiments can vary from the ANOVA
detailed above to a mixed regression model in which temperature is a categorical
explanatory variable and weight is a continuous explanatory variable. Regardless
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of the design, the aim is to construct an equation that describes the influences of
temperature and weight upon specific rates of consumption or metabolism—typi-
cally using regression.

12.3.3 Analysis of Fish Energetics Data

Here, we consider data from Cmax experiments as an example, but similar proce-
dures can be used for analyzing metabolic rate or other energetics component
data. A reasonable first step in analyzing energetics data is to construct plots to
determine whether relationships appear linear or curvilinear. If the plot of the
energetic variable (e.g., Cmax or metabolism) versus water temperature, as well as
the plot of the energetic variable versus fish weight is linear (or can be linearized
with transformation), then a simple linear regression model can be employed for
analysis. If the relationship between the dependent variable and weight or tem-
perature is curvilinear, then a quadratic equation should be fitted to the data.
Regression will still be used to analyze the data, but the interaction between vari-
ables becomes difficult to assess. Alternatively, a better fit to the data may be ob-
tained by using the Thornton and Lessem (1978) algorithm, which is used more
commonly to fit parameters for bioenergetics models. It should be noted that
although standard types of curves have been established for common relation-
ships such as the allometric (power function) relationship for weight-dependent
responses, these standard curves may not always fit new data for previously un-
studied species, and alternative polynomial models should be explored to deter-
mine best fit.

Perhaps the best way to describe the analysis of energetics data is to present an
example based on a data set of Cmax for striped bass (from Hartman 1993; see Box
12.2). Although these are Cmax data, the procedures for analyzing metabolism or
other components of the energy budget would proceed in the same manner. The
data are arranged in the columns weight, temperature, and Cmax. Before analyzing
the data we should verify the relationship between Cmax and weight and determine
whether the Cmax versus temperature relationship is linear (or can be linearized
with transformation) or curvilinear. The data are plotted on each of two graphs:
each has Cmax as the dependent (y-axis) variable with either temperature or weight
as the independent (x-axis) variable. On the weight-dependence graph (step 1;
Box 12.2, Figure A), different lines are used for each temperature treatment. On
the temperature-dependence graph, all the data are plotted, but different sym-
bols are used for each size range of fish (Box 12.2, Figure B). From these plots, it
is apparent that the size dependence of consumption varies with temperature
(Box 12.2, Figure A). The slope of the relationship is steepest at the highest tem-
peratures and declines to virtually no slope at the lower temperatures. This sug-
gests a possible interaction between temperature and fish size, meaning that a
single parameter for size dependence of Cmax at all temperatures may not be ap-
propriate (step 2). In this case, different size-dependent model parameters may
need to be determined for different temperature ranges. (This presently cannot
be done with the Fish Bioenergetics Model 3.0 software [Hanson et al. 1997].).
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Box 12.2 Sample Analysis of Striped Bass Data

Presented here is a step-by-step account of an approach to analyzing common energetics data
such as Cmax or metabolism. In the example provided here, data are from maximum consumption
experiments for striped bass conducted by Hartman (1993). The data set (available in the Chapter
12 compact disk [CD] folder) is arranged by the variables wet weight, temperature, and ration.

Step 1 Graph data.
Data are graphed to determine the shape of any relationships between Cmax and temperature or weight.

Figure A Plot of Cmax versus wet weight for different temperature groups from the striped bass Cmax

data set. For simplicity, only data from four temperature ranges are shown. Curves appear similar for
weight effects on Cmax, but the relationship becomes insignificant at temperature extremes, especially
at 6.9°C. This suggests that at thermal extremes the size dependence is not significant and may lead
to a significant interaction term in subsequent analyses of variance (ANOVAs).

Figure B Plot of Cmax versus temperature for small (<77g, mean 38 g), medium (131–725 g, mean
403 g), and large (>809 g, mean 1,567g) striped bass. The regression results shown on the graph
represent polynomial regressions (poly.) performed in Excel describing Cmax for each size-group as a
function of temperature and temperature squared. Notice that even given the wide range of sizes
used in the groups, these equations describe 49–81% of the variability in the data.
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It is apparent from the graphs above that there is a significant effect of temperature and weight
upon Cmax. However, the effect of temperature is not linear and will require a polynomial regression
to fit (Figure B). Weight effects on Cmax can be linearized with log10 transformation, but the signifi-
cance of weight effects appears to decline as temperature declines (Figure A).

Step 2 Test for significant interaction.
Because there appears to be no weight effect on Cmax at the coldest temperature, we need to verify
that interaction between the two independent variables, weight and temperature, does not exist.
To do this we run an ANOVA in SAS (SAS Institute 2004) on consumption (cons) data with weight
(WW), temperature (tem), and the interaction term as model variables. The SAS program to do this
is given below. The data set and SAS code are contained in the Chapter 12 CD folder.

Data One;

input ww tem cons;

data two;

set one;

if cons=0 then delete;

Lww=LOG10(ww);

Lcons=LOG10(cons);

proc glm;

model Lcons = Lww tem lww*tem;

run;

This SAS program log10 transforms the data after removing consumption values of 0, which cannot
be log10 transformed.  The program produces the following output.

Table Results of general linear model (GLM) procedure of SAS with log10 transformed values of
consumption (Lcons) as dependent variable. Abbreviations are sum of squares (SS), coefficient of
variation (CV), mean square error (MSE),  log10 wet weight (Lww), and temperature (tem).

Source df SS Mean square F-value P > F

Model 3 16.21097039 5.40365680 69.43 <0.0001
 Error 160 12.45300437 0.07783128
 Corrected total 163 28.66397476

R2 0.565552 Root MSE 0.278983
CV –20.59431 Lcons Mean –1.354659

Source df Type I SS Mean square F-value P > F

Lww 1 1.46877402 1.46877402 18.87 <0.0001
tem 1 14.51104974 14.51104974 186.44 <0.0001
Lww*tem 1 0.23114662 0.23114662 2.97 0.0868

(Box continues)
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Source df Type III SS Mean square F-value P > F

Lww 1 0.06050657 0.06050657 0.78 0.3793
tem 1 2.41835685 2.41835685 31.07 <0.0001
Lww*tem 1 0.23114662 0.23114662 2.97 0.0868

Examination of the type III SS indicates that the interaction term is not significant (P = 0.09). Had
this interaction term been significant we would be forced to break the data into smaller subsets to
describe the temperature and size effects such that their interaction would be insignificant. For
example, we would develop statistical models describing temperature effect for different size
ranges of fish or would use different size-dependent model values for different ranges of tempera-
ture  (e.g., <6.9 and >6.9 in Figure A). These methods are important in attempting to model Cmax

accurately for use in bioenergetics models.

Here the interaction term was not significant so we may continue with the process of developing a
single statistical model to describe the relationship between weight, temperature, and Cmax.

Step 3 Develop a statistical model.
In our example the Cmax of striped bass appears to increase with temperature to a point, and then it
declines slightly with increasing temperatures. A good start for such curvilinear data is to use a
quadratic model that includes wet weight (WW), temperature (T ), and a quadratic form such as
temperature × temperature (T2), for example:

log10[Cmax (g/g/d)] = a + B1 ·  log10WW + B2T + B3T 2 + e ,

where a is the intercept, e is the error term, and B1, B2, and B3 are the parameter estimates for WW, T,
and T 2, respectively.  This model is easily run in SAS using the following code.

data one;

input ww tem cons;

data two;

set one;

if cons=0 then delete;

Lww=LOG10(ww);

Lcons=LOG10(cons);

proc glm;

model lcons = lww tem tem*tem;

run;

This program returns output on a polynomial equation describing Cmax as a function of WW, T, and
T 2.  Line 5 removes lines of data where Cmax = 0 so that log10 transformation of the weight and Cmax

data can occur (lines 6 and 7). Running the SAS program yields the following output.

Box 12.2 (continued)
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Table Results of GLM procedure based on polynomial equation describing Cmax as a function of
WW, T, and T 2.

GLM Procedure

Source df SS Mean square F-value P > F

Model 3 23.01195018 7.67065006 217.14 <0.0001
Error 160 5.65202458 0.03532515
Corrected total 163 28.66397476

R2 0.802818 Root MSE 0.187950
CV –13.87433 Lcons Mean –1.354659

Source df Type I SS Mean square F-value P > F

Lww 1 1.46877402 1.46877402 41.58 <0.0001
tem 1 14.51104974 14.51104974 410.79 <0.0001
tem*tem 1 7.03212641 7.03212641 199.07 <0.0001

Source df Type III SS Mean square F-value P > F

Lww 1 0.87579819 0.87579819 24.79 <0.0001
tem 1 11.76947748 11.76947748 333.18 <0.0001
tem*tem 1 7.03212641 7.03212641 199.07 <0.0001

Parameter Estimates

 Parameter Estimate SE t-value P > |t|

 Intercept –2.412543486 0.07306064 –33.02 <0.0001
 Lww –0.119482562 0.02399631 –4.98 <0.0001
 tem 0.145070569 0.00794772 18.25 <0.0001
 tem*tem –0.003296181 0.00023362 –14.11 <0.0001

All three parameters in the model yield significant results. The derived equation is

 Lcons = –2.412 – 0.1195Lww + 0.1451T – 0.0033T 2,

which transforms to

Cmax (g/g/d) = 10(–2.412 + 0.1455T – 0.0033T 2) · WW –0.1195
 .

The model explains 80% of the variability in the data. A final step is to evaluate how well this
statistical model fits the data upon which it was derived.

Step 4 Evaluate model fit.
Although the model explains a significant portion of the variability in the data we still must
evaluate how well it fits all the data before deciding to accept this model. It is still possible that the

(Box continues)
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model fits poorly in places. To evaluate this model we plot the residuals of the model versus
temperature using different symbols for fish within each of the three size-groups described in
Figure B of this box: for small (<77g, mean 38 g), medium (131–725 g, mean 403 g), and large (>809 g,
mean 1,567g) striped bass. This plot will identify if the model fits poorly at different temperatures,
sizes, or combinations thereof.  In Figure C there does appear to be some “funneling” of residuals,
particularly for the small fish as temperature increases.  However, examination of the CVs of
residuals for the same data does not show this pattern, suggesting a good model fit (Figure D).
However, even when the CV varies with the independent variable, resulting submodels may still be
used in bioenergetics models provided the resulting model is calibrated and tested.

Box 12.2 (continued)

Figure C Plot of the residuals (observed – predicted) of the polynomial model describing Cmax as
functions of WW, T, and T 2 shows the model seems to do a good job of fitting the observed data. The
model fits less well for medium and large fish at 22–31°C, but the residuals appear relatively
normally distributed, suggesting a fairly good model fit.

Figure D Plots of CV versus temperature for small, medium, and large striped bass show no clear
pattern in variation relative to the mean, suggesting the funneling of residuals in Figure C is due to
the variation of the mean with temperature.
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Some success has been had fitting metabolic responses over different tempera-
tures and fish sizes by means of multiple regression analysis with a model form of

log10M = a + bT + c(log10W W), (12.3)

where logeM is the natural log of metabolic rate, a, b, and c are empirically derived
constants, T is water temperature, and log12WW is the natural log of fish wet weight.
This model accommodates a power function relationship with body weight and an
exponential relationship with temperature. Regardless of the model form, plots of
the temperature versus energetics data will reveal the nature of temperature effects.

In our example, the temperature–Cmax relationship is curvilinear (Box 12.2,
Figure B). In past bioenergetics model fitting, two different nonstatistical meth-
ods were used to fit a curve to the data subjectively (Kitchell et al. 1977; Thornton
and Lessem 1978; Hanson et al. 1997). However, if a statistical model is desired
then a quadratic equation in a multiple regression model is required (step 3).
The rule here is to keep the model as simple as possible. A reasonable starting
point for curvilinear data is a model that includes temperature in the linear (T )
and quadratic forms (T 2):

log10Cmax (g/g/d) = a + b(log10WW) + cT + dT 2, (12.4)

where a, b, c, and d are empirically derived constants and WW is wet weight. We
may consider adding interaction terms between weight and temperature (e.g.,
INT1 = [log10WW] · T  and INT2 = [log10WW] · T 2) and using stepwise regression
to evaluate whether there is a significant interaction that should be accounted for
in the resulting model.

Regardless of whether interaction is included, to see if the quadratic form cap-
tures the essence of the temperature relationship with Cmax, we regress the result-
ing model for a single discrete size range of fish (without log10WW) and inspect
plotted residuals (step 4, Box 12.2, Figure C). Plotting the residuals for each size-
or age-class of fish will suggest whether different models and parameters are re-
quired for each size- or age-class. Regardless of the relationship or model form
decided upon, all models should be evaluated by plotting the residuals versus the
independent variables to verify goodness of fit. Figure C in Box 12.2 shows the
plot of residuals for the model in equation (12.4), describes potential shortcom-
ings, and discusses funneling of residuals (heteroscedasticity), which is com-
mon in energetics data. Figure D in Box 12.2 shows plots of the coefficient of
variation of residuals with temperature for the three size-classes of striped bass;
these curves suggest heteroscedasticity does not prevent us from a good model
fit. The complete process of analysis of the striped bass Cmax data is presented in
Box 12.2.

In the event that the relationship between the dependent variable and tem-
perature is not curvilinear, analysis of covariance (ANCOVA) can be used to evalu-
ate the interaction between the fish size and temperature variables. Multiple re-
gression is conducted to examine whether the interaction term ([log10WW] · T)
is significant. If the type-III sum of squares is significant (P < 0.05), the interaction
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is significant and should be evaluated in the model. Evaluation can consist of the
plotting methods described above or regression analysis of weight effects on the
dependent variable at each temperature level (see Box 12.2 for SAS code, output,
and analysis). Again, if the interaction term contributes significantly to the model,
one may need to develop model parameters for different size-groups with param-
eters changing as fish grow into new size ranges.

■ 12.4 FISH BIOENERGETICS MODELS

12.4.1 Model Platforms and Model Execution

A number of different platforms have been developed for running fish bioener-
getics models. The most common and popular is the Fish Bioenergetics 3.0
(Hanson et al. 1997; available from University of Wisconsin Sea Grant Institute,
Communications Office, 1800 University Avenue, Madison, WI, 53705–4094, USA,
for a nominal fee of US$75 in 2005), which was preceded by versions 1.0 and 2.0
(Hewett and Johnson 1987, 1992). This model is commonly referred to as the
Wisconsin model due to its development, production, and support at University
of Wisconsin and Wisconsin Sea Grant Institute. The platform runs on all Win-
dows-based operating systems from Windows 3.1 through Windows XP. It has the
advantage of a menu-driven operation, and parameterized models for 40 species
and life stages are currently included in the model.

Although the Fish Bioenergetics 3.0 model is widely popular, it is not without
limitations. Many experiments associated with fish bioenergetics have sought to
derive parameters for fish bioenergetics model software as these models are “data
hungry,” with typical models involving 15–30 parameters (Ney 1990, 1993). One
limitation of Fish Bioenergetics 3.0 software (Hanson et al. 1997) is that it is lim-
ited to the model functions and styles that were in vogue at the time of publica-
tion. There are presently no options in the Fish Bioenergetics 3.0 software for
constructing models of a different form than that included in the model settings.
The ease of applying the Fish Bioenergetics 3.0 software has led some users to
compromise the use of alternate models that may better fit experimental energet-
ics data in favor of model forms included with Fish Bioenergetics 3.0 software. An
example of this problem would be data that have a significant interaction term
between size and temperature effects which is best described by a polynomial
equation. Although we can accurately model this relationship, it cannot be incor-
porated into the Fish Bioenergetics 3.0 software, which is constrained by a model
structure that does not include any interaction terms or other polynomial forms.
In such situations, the modeler can use alternate model platforms.

In fitting models to data for construction of bioenergetics models, trade-offs
emerge among the perceived superiority of using statistical models such as regres-
sion, the need to enhance model performance by fitting functions over a range of
variables for which no interaction of terms occurs, and the limitations of the popular
software Fish Bioenergetics 3.0 in which most bioenergetics applications are com-
piled. In cases in which energetics data can be statistically fit through regression,
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this is the preferred method of developing a model. However, despite high corre-
lation, models may not fit particularly well at all temperatures (e.g., failure of size
dependence of Cmax at lower temperatures). In such cases, separate sets of model
parameters may need to be established for particular size- or age-classes of fish or
temperature ranges.

If the data conform to the models provided in the Fish Bioenergetics 3.0 model,
then it may be adequate to use that application for modeling. The Fish Bioener-
getics 3.0 model software includes three basic functions for Cmax and metabolism
and two functions for egestion and excretion (Hanson et al. 1997). Metabolism
and Cmax functions include an exponential model (type 1) and two different forms
of a convex model (types 2 and 3) that fit one curve to the increasing part of the
relationship and another to the declining limb of the relationship between Cmax

or metabolism and temperature (see Figure 12.2, lower panel).
As described in section 12.3.3, after a component submodel is constructed, it

should be evaluated to see how well it fits the original data before incorporating it
in a bioenergetics model. Evaluation of model fit should be done with individual
submodel components such as Cmax and metabolism. These submodels can be
evaluated by calculating the predicted value from the submodel for each data
point in the original dataset, similar to the example in Box 12.2, Figure C (step 4).

Another potential issue with the Wisconsin model is the way in which it con-
strains consumption, a constraint that can result in unrealistic patterns of growth
in the fish. The Wisconsin model estimates consumption as a proportion (P) of
maximum ration (Cmax) varying between 0 and 1. Consumption over a time inter-
val is estimated from growth curves generated from observed initial and final
weights by solving for P as the independent variable. Different values of P are run
iteratively in the model with a daily time step until the resultant growth trajectory
matches the final weight. The resulting value of P is inserted into the model to
estimate consumption over the interval. The estimated consumption is the sum
of all daily rations as estimated by the best fit of P. The model’s use of P to estimate
consumption is appealing in that it forces the model to agree with the initial and
final weights of the fish. However, depending upon the length of the growth in-
terval, the actual growth trajectory between initial and final weights can be quite
different than observed or expected. The result is over- or underestimation of
final weights within the interval and then converging with the final weight by the
end of the period. These patterns may occur due to the length of the time interval,
even when actual fish growth is nearly linear. In these circumstances, the growth
period should likely be broken into shorter periods for better model results.

Other model platforms for fish bioenergetics models include SAS (SAS Insti-
tute 2004), or a simulation modeling package such as STELLA (available at http://
www/iseesystems.com/softwares/Education/StellaSoftware.aspx), STELLA,
MATLAB (available from MathWorks, Inc., Natick, Massachusetts), and spread-
sheets such as Microsoft Excel. The disadvantage of using these other platforms is
that the user must construct the models and write the code. However, this does
allow greater flexibility in being able to model interactions between temperature
and size or to code other model functions, such as quadratics, that are not currently
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possible in the Wisconsin model platform. The model can be easily coded into
spreadsheets. An example in Excel is provided in the Chapter 12 compact disk
[CD] folder.

Alternative approaches do exist for the indirect estimation of fish growth and
consumption and, to some extent, prediction of fish responses to changing ener-
getic conditions. In general, these alternative models require fewer input param-
eters than do bioenergetics models. While this may be beneficial in terms of num-
ber of potential error sources, there is also elevated risk in that high sensitivity is
attached to the few input variables (Ney 1993). Ney (1993) described a simplified,
bioenergetics model-like approach and provided assessments of (1) a simplified
predictor based on the equation of Winberg (1956) as well as (2) models that
predict whole population or cohort consumption from estimates of production
combined either with conversion efficiency (Eck and Wells 1983) or biomass (Ney
1990). A distinct approach, the nitrogen balance method, estimates food con-
sumption of fish by determining their nitrogen loss over a period of postcapture
confinement (Davis and Warren 1971). Nitrogen losses are added to nitrogen
gains through growth to estimate food mass consumed. In a number of cases,
laboratory-derived relationships between food consumption and growth rates
have been used to estimate consumption in the field from growth estimates
(Davis and Warren 1971; Allen and Wootton 1982; Brafield 1985). However, it
has been observed from laboratory data that such relationships may perform
substantially better when estimating fish growth from observed consumption
than when estimating consumption from observed growth (R. Hayward, unpub-
lished data). Estimates of food consumption have also been made by measuring
changes in fish’s body concentrations of radioisotopes over time periods (Davis
and Foster 1958; Gingras and Boisclair 2000); increases in body concentrations
of radioisotopes over relatively short periods (e.g., a month) are related to prey
consumption. Artificial neural networks (ANNs), a relatively new and rapidly
proliferating modeling approach, have shown potential to predict fish daily con-
sumption patterns in aquaculture settings (Ruohonen 1999). The ANN approach
may provide better predictions of day-to-day consumption than is currently pos-
sible with bioenergetics models and other fish consumption predictors. These
alternative approaches for estimating consumption and growth have, in gen-
eral, received less attention than the currently popular bioenergetics models,
with rigorous evaluations being limited or nonexistent in some cases. Further
consideration of these less frequently used approaches would be of value be-
cause it is likely that some will hold advantages over currently popular bioener-
getics models in certain situations.

12.4.1.1 Calibration of Bioenergetics Models

The balanced nature of the energy equation permits users to calibrate bioener-
getics models to fit observed data better. This feature can be used to force mod-
els to provide the correct values of C or G. Calibration experiments can be con-
ducted in which C and G, temperatures experienced, and energy content of fish
are estimated for the duration of the experiment. When these data are used in
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the bioenergetics model, discrepancies between observed and predicted G or C
can be corrected by altering parameters such as ACT, F, U, or SDA. This results in
calibrated models. However, such forcing may result in errors in the apportion-
ment of energy between cost and loss terms.

One way in which models have been fit to arrive at correct values of C and G has
been with respect to estimating the activity (ACT) multiplier needed to balance
the model when both C and G have been measured on captive fish. In the spread-
sheet example included in the Chapter 12 CD folder; an ACT estimator allows
users to estimate the ACT multiplier needed to balance growth and consumption
with known values. A similar approach can be used to fit other parameters when
the remaining components of the energy budget have been measured.

Attempts to calibrate bioenergetics models from field-derived data are not rec-
ommended because of the potential for substantial error in the estimation of key
input and output parameter values (e.g., C, G, temperature, and caloric densi-
ties), which would lead to inappropriate calibration. A new form of model correc-
tion determines and corrects for systematic error in bioenergetics models based
on intensive laboratory evaluations (see Bajer et al. 2003).

12.4.1.2 Site- and Species-Specific Input Data

At a minimum, bioenergetics models require two basic types of information: spe-
cies-specific energetics information from which to model energy dynamics, and
site-specific information. Energetics information has already been gathered and
developed into bioenergetics models for many popular species (Hanson et al.
1997). For species lacking a bioenergetics model, information can often be gath-
ered from the literature or obtained in experiments if needed. Site-specific infor-
mation includes data that can typically be gathered as part of a fisheries investiga-
tion, such as age and growth, diet composition, energy content of predators and
prey, and thermal history of the fish to be modeled. Growth inputs to the model
are generally conducted by age-class such that we are essentially modeling the
growth and consumption dynamics of the average individual of that age-class. In
cases in which multiple cohorts within an age-class exist (Hartman and Brandt
1995b) or in which growth differs by sex, these differences can be accounted for
by running distinct groups as individual cohorts.

Recommendations on energy content measures and thermal history measures
are limited. Despite the fact that these parameters may have large effects on bioen-
ergetics output, most studies assume constant values for the energy content of
predators and prey (Ney 1993), which are known to vary seasonally as well as with
size and sex (Adams et al. 1982). For bioenergetics studies that require precision,
energy density of predators and prey should be estimated directly. This can be
done rather easily by drying samples of fish and using the strong generalized
relationships between the dry weight percentage of wet weight (DW%) and en-
ergy content (J/g wet weight) reported by Hartman and Brandt (1995c) and oth-
ers (see Table 12.3). Alternatively, one can apply bioelectrical impedance analysis
models that permit nonlethal estimation of body composition and hence energy
content in fishes (Cox and Hartman 2005).
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Accurate knowledge of fish’s thermal history is important to bioenergetics model
estimates because temperature effects on energetics parameters are typically stron-
ger than are other influences such as body size. In stratified or thermally hetero-
geneous environments, fish are usually assumed to reside in the most optimal
temperatures available. However, a recent study with white crappie has demon-
strated that this assumption can lead to erroneous determinations of fish's ther-
mal histories. (P. Bajer, University of Minnesota, unpublished data). In heteroge-
neous environments, sound approximations of thermal history may be obtained
through technological advances such as radio tags with thermal sensors, which
provide descriptions of the temperatures actually occupied by fishes in the wild.

12.4.1.3 Estimation of Consumption and Growth

Bioenergetics models can be used to estimate any unknown parameter in the
balanced energy equation provided we have estimates or measures of the other

Table 12.3 Equations describing energy content (J/g wet weight) as a function of the dry
weight (DW) percentage of wet weight for many common taxonomic groups used in bioener-
getics modeling. All equations are highly significant (P < 0.001) and have r2 values greater than
0.80.  Models are of the form J/g wet weight = a + b · DW. Equations are reproduced from
Hartman and Brandt 1995c, Table 1.

Model coefficient

Model taxon  a b

Clupeiformes –2,532 328.6
Cypriniformes –1,265 262.2
Perciformes –1,875 309.5
Pleuronectiformes –1,832 286.1
Salmoniformes –3,386 379.0

Clupeidae –2,532 328.6
Cottidae –1,498 306.0
Cyprinidae –981 251.1
Percichthyidae –2,533 349.1
Salmonidae –3,632 386.7
Sciaenidae –1,936 309.9

Alewife –2,086 323.7
Atlantic menhaden –2,695 309.0
Bloater –2,424 336.2
Bluefish –3,792 372.4
Coho salmon –3,207 367.8
Lake trout –3,809 397.9
Muskellunge –1,939 294.5
Rainbow smelt –1,094 303.2
Rainbow trout –2,735 357.5
Striped bass –1,460 313.9
Weakfish –1,997 319.4
Yellow perch –2,873 313.1
Zander –2,011 309.4

 Combined (all species) –3,419 375.0
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components. It is this principle that allows us to estimate consumption or growth
with a bioenergetics model. If we have estimated growth, then we can input that
into the model and estimate how much the average fish had to eat in order to
grow in the observed manner given thermal, size, energy content, and other con-
straints. Similarly, we can estimate growth with an estimate of consumption, al-
though this is less often done in bioenergetics models due to the difficult nature
of estimating ration in the field. It was, in part, the difficulties and expense of
estimating ration in the field that led to the development of the bioenergetics
models (Kitchell et al. 1974) and other low-effort consumption estimation meth-
ods (Hayward and Hiebert 1993).

12.4.2 Model Evaluations

Evaluations of bioenergetics models’ predictive accuracies during the past 25 years
have been far less common than their applications, which have increased geo-
metrically with time. Early evaluations, most being field based, considered only
small portions of the full array of conditions under which these models were ap-
plied. More recently, a substantial number of laboratory-based evaluations have
been completed (largemouth bass, Whitledge and Hayward 1997; hybrid sunfish
[green sunfish  × bluegill ], Whitledge et al. 1998; lake trout, Madenjian and
O’Connor 1999; yellow perch, Bajer et al. 2003; subadult and adult smallmouth
bass, Whitledge et al. 2003), some covering broad ranges of ration level, fish size,
and temperature. Results of laboratory evaluations have been mixed, showing
good model performance under some sets of conditions but much poorer perfor-
mance under others.

Efforts to improve predictive accuracy of bioenergetics models have been
particularly rare because evaluations have tended not to identify sources of model
error. One of the few examples of an effort to improve a bioenergetics model is
that of Karas and Thoresson (1992), who incorporated effects of body weight
on optimum and maximum temperatures for consumption and respiration of
Eurasian perch into an existing model for yellow perch (Kitchell et al. 1977).
Recent laboratory evaluations have identified an important form of systematic
error that appears common to many bioenergetics models. This error is strongly
linked to consumption level, becoming greater at extreme (high or low) levels
of consumption (Madenjian and O’Connor 1999; Bajer et al. 2003; Bajer et al.
2004a). The connection of this widespread bioenergetics model error to a par-
ticular model variable (consumption level) suggests that energy cost parameters
within bioenergetics models that are consumption level dependent are poten-
tial sources of the model error. Approaches to remove or diminish this error
include the use of error-correction equations (Bajer et al. 2004b), and the rede-
velopment of equations that determine the magnitude of energy cost param-
eters within bioenergetics models, particularly those parameters that are con-
sumption level dependent.

Strong efforts to improve predictive accuracy of bioenergetics models are war-
ranted. Although these models may have been originally intended to serve only as
inductive machines for elucidating causes of observed trophic dynamics, in fact
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they now are being increasingly applied in settings where inaccurate prediction
may have serious consequences for aquatic populations and communities and
humans. Moreover, models that are substantially inaccurate may be ineffective as
inductive machines! Recent findings (Bajer et al. 2004a, 2004b) suggest a way to
improve bioenergetics models’ predictive accuracies. Equally critical to improv-
ing these models may be a philosophical adjustment whereby model users, as
much as model builders, bear responsibility for model performance when they
apply them to research and management endeavors. If a bioenergetics model has
not been well evaluated under the conditions to which it will be applied, users
should consider conducting an evaluation and possibly improving the model if
warranted. If users were more often required to substantiate the accuracy of a
bioenergetics model that they have used, not only would these models be used
more judiciously, but their broad evaluation and improvement would likely progress
more expeditiously than has previously occurred.

12.4.2.1 Two Types of Model Evaluation

Laboratory- and field-based approaches have been used to evaluate bioenergetics
models’ abilities to predict consumption and growth rates of fishes accurately. In
laboratory evaluations, simultaneous values of fish growth rate, food consump-
tion, thermal experience, and caloric density of both the consumer and its food
can be directly determined and essentially known over a time period. Activity
cost, a notoriously hard-to-estimate model input variable in field settings, can usu-
ally be controlled or closely estimated in the laboratory. Consequently, laboratory
evaluations can provide highly accurate test data sets against which bioenergetics
model predictions can be rigorously tested (Box 12.3)

When laboratory evaluations are conducted over ranges of the variables that
influence bioenergetic responses (including ration level, temperature, and fish
weight), inaccuracies in these models can be identified. For example, if a con-
trolled laboratory evaluation shows that an otherwise well-performing model pre-
dicts growth and consumption poorly for larger fish, a problem with the allomet-
ric (body mass-dependent) portion of the standard metabolism equation would
be suggested. This error source is suggested because standard metabolism is often
the only energy cost–loss parameter within bioenergetics models that has body-
weight dependence. Examination of the original data used to formulate the body
mass influence on standard metabolism might reveal that large fish were not well
considered, suggesting that the poor growth prediction may arise from faulty ex-
trapolation of metabolic rates for larger fish. Improvement of this relationship by
conducting additional standard metabolism experiments that include larger fish
would be warranted.

Sources of model error have been investigated on the basis of sensitivity analy-
ses that indicate which model parameters and input variables most influence model
predictions (e.g., Kitchell et al. 1977; Bartell et al. 1986; Adams and Breck 1990).
Low-sensitivity parameters and variables receive little attention. However, it should
be considered that high-sensitivity model parameters are not the only potential
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Box 12.3 Laboratory- versus Field-Based Evaluations of Bioenergetics Models

For laboratory evaluations of bioenergetics models (BEMs), corresponding values of fish consump-
tion, temperature experience (Temp), growth, and caloric density (for predator and prey) are
accurately determined in laboratory experiments. Activity cost can be controlled to be negligible.
With such data, the BEM can be run with known, corresponding input and output variable values. In
this way, a BEM’s predictive performance can be accurately determined by comparing model
predictions of growth or consumption with known values. In contrast, field evaluations of BEMs rely
on field-predicted input and output variables, any of which may be inaccurately estimated.
Consequently, if model predictions of consumption or growth do not agree with field estimates, it
is not known whether the lack of agreement is due to BEM error or inaccurate field estimation of
input or output variables.

Temp
Growth

Consumption

Activity costs

Caloric
density

Growth

Bioenergetics
model

Predicted

Known

Observed

Agreement?

Laboratory-based evaluations

Conduct controlled fish growth experiments:

Controlled
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sources of model error; moderate- and even low-sensitivity parameters can cause
substantial model error if their values are sufficiently inaccurate. Another approach
for identifying sources of bioenergetics model error examines whether model
predictive error is associated with key input–output variables including consump-
tion level, fish body weight, and temperature. Each of these variables has known
linkages to internal model parameters. Bajer et al. (2003) found that prediction
error in two bioenergetics models was strongly correlated with consumption level.
Because consumption level is involved in the computation of only three internal
parameters in these models (egestion, excretion, and SDA), it was suggested that
the observed systematic model error likely owed to inaccurate internal represen-
tation of at least one of these parameters. These findings suggest that the existing
equations for egestion, excretion, and SDA should be reevaluated through labo-
ratory studies. This finding, in turn, is interesting because these three internal
model parameters have been considered to be of low sensitivity, which has pro-
moted “borrowing” (sensu Ney 1993) of nearly identical equation forms for calcu-
lating egestion, excretion, and SDA values across bioenergetics models for many
fish species.

A new approach for reducing systematic error in bioenergetics models may not
require data collection beyond that used initially to evaluate a model. Bajer et al.
(2004b) evaluated a white crappie bioenergetics model (Zweifel 2000). Labora-
tory data sets were developed for which concurrent values of white crappie daily
consumption, thermal experience, growth, and other model input variables were
essentially known for individual fish. Collectively, substantial ranges of fish weight,
temperature, and consumption level were covered by the laboratory data sets for
model testing. Plots of model prediction error versus fish weight, consumption
level, and temperature indicated relationships between magnitude of model er-
ror and the levels of certain input variables. These relationships were confirmed
by simple regression analyses. Multiple regression equations that predicted bioen-
ergetics model error according to levels of fish weight, consumption, and tem-
perature were then incorporated into the white crappie model to correct model
predictions on a daily time-step basis. Cross validation was used to fairly evaluate
improvement in the bioenergetics model’s predictive accuracy from incorporat-
ing the correcting equations for both growth and consumption predictions.
Through this approach, predictive accuracy of the original white crappie model
was both evaluated and improved from the same data set. Because systematic er-
ror appears to be common in bioenergetics models (Hartman and Brandt 1993;
Bajer et al. 2003; Bajer et al. 2004a) it is reasonable to explore associations that
both confirm systematic error and identify its likely sources when bioenergetics
models are evaluated.

In field evaluations of bioenergetics models, corresponding values of the previ-
ously described model inputs and outputs are estimated over time periods to pro-
vide a test data set. Accuracy of field estimates are far less certain than are values
determined in the laboratory, even when good estimate precision is indicated
(Ver Hoef and Cressie 1993). Consequently, when field evaluations are conducted
without the benefit of prior, well-controlled laboratory evaluations, indications
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concerning model predictive accuracy are truly inconclusive. Poor agreement
between model predictions and field estimates of consumption and growth raises
doubt as to whether the bioenergetics model or the field estimates are most in
error. Good field-to-model corroboration, although taken to indicate model
soundness can, in fact, occur when both model predictions and field estimates
of key input and output variables are erroneous. For this reason, controlled
laboratory evaluations should first be carried out to verify that a model is sound
as a predictor of consumption and growth over a range of conditions. With this
established, field evaluations can then provide valuable indication of how well
bioenergetics model input and output variables have collectively been estimated
in a field setting.

12.4.2.2 Design of Laboratory Evaluations

The strength of laboratory evaluations of bioenergetics models lies in their capac-
ity to determine accurately concurrent values of consumption, growth, thermal
experience, caloric density of the consumer and its food, and activity costs of fish
over a period of time and to provide accurate data sets for evaluating bioenerget-
ics models. Accordingly, effort should be put forth to ensure accurate determina-
tions of these variables.

In general, water temperature should be tightly regulated and monitored daily.
Daily consumption should be directly measured as the difference between food
amounts provided to test animals and that which remains unconsumed after 24 h.
Fish body weight should be determined frequently enough during an experiment
to portray growth trajectories adequately but not so frequently as to disrupt fish
behavior or to cause prolonged stress. Longer intervals between body weight mea-
surements can be used for laboratory experiments of longer durations. For ex-
ample, Whitledge et al. (2003) made weekly determinations of fish body mass
when developing a 63-d laboratory data set to evaluate a new subadult–adult small-
mouth bass bioenergetics model. On the other hand, Bajer et al. (2003) deter-
mined fish weights only every 2 weeks when developing 120-d laboratory data sets
to evaluate two yellow perch bioenergetics models.

Caloric densities of the fish and their food will preferably be determined di-
rectly by bomb calorimetry and not by relying on published values from other
studies as these can vary widely. When possible, caloric density estimates should
be made throughout laboratory experiments, with consideration given to when
values are likely to change (as when new batches of live food are introduced or
when fish’s ration levels are increased). Alternatively, the use of established rela-
tionships that predict caloric densities of the test fish (or their food) from readily
determined variables such as fish condition (Neumann and Murphy 1991; Bajer
et al. 2003) or water content (Diana and Salz 1990; Hartman and Brandt 1995c)
can produce reasonably accurate measures. However, it is recommended that
published relationships be tested for accuracy in the particular study setting.

The range of conditions (e.g., temperature, fish size, and ration level) under
which a bioenergetics model is evaluated in a laboratory study is typically based on
the array of conditions under which an investigator plans to apply the model
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(Hartman and Brandt 1993; Madenjian and O’Connor 1999). However, an ulti-
mate goal should be to evaluate bioenergetics models under the full array of con-
ditions under which they may be applied. The possibility of seasonal shifts in bioen-
ergetic responses of some fish species (Chipps et al. 2000) warrants further
elucidation as this may hold important implications for accurate modeling.

Laboratory experiments intended to provide data sets for evaluating bioener-
getics models must be run long enough to allow observed growth and consump-
tion trajectories to become established and, for some experimental designs to
allow adequate statistical power to be achieved. However, laboratory experiments
for model evaluation are labor intensive and should not be run longer than is
necessary. If short, efficient laboratory experiments can be run for each set of
growth conditions, multiple sets of conditions can often be evaluated (e.g.,
Whitledge et al. 2003). Longer experiment durations are required when a single
group of fish is used without replication to produce a data set for model testing;
such designs are common in field-based studies (e.g., Rice and Cochran 1984)
but are sometimes seen in laboratory assessments as well. Longer experimental
durations are needed in unreplicated settings because analysis of model predic-
tion accuracy is based on the single observed and model-predicted trajectories,
and having sufficient observations along each trajectory is needed for statistical
power. Appropriate experiment duration for designs involving unreplicated tra-
jectories is difficult to address because a variety of statistical and analytical proce-
dures are used, and we are aware of no sample size or power analyses that have
been conducted for these analyses. In contrast, shorter experiment durations for
each set of growth conditions (levels of consumption, fish body weight, and tem-
perature) are possible when replication is incorporated in laboratory-based ex-
perimental designs, either by using individually held fish or multiple fish groups.
Here, variation is measured among the multiple observed and predicted trajecto-
ries rather than along one observed and one predicted trajectory. In addition,
duration of laboratory experiments used to evaluate bioenergetics models can
influence the magnitude of determined model error rates. This is particularly
true if systematic model error is present because model error often increases with
trajectory length. Consequently, it is reasonable from the perspective of compar-
ing performance among models or across conditions, that laboratory experiment
durations be standardized. We suggest that experimental designs for developing
laboratory test data sets involve replication and that experiment durations of 21 d
be used for each distinct set of growth conditions applied. This duration would
allow four weekly measurements of body weight and 21 daily measurements of
consumption per sample unit.

12.4.2.3 Design of Field Evaluations

As in the laboratory, field evaluations of bioenergetics models warrant strong ef-
forts to determine concurrent values of model input and output variables accu-
rately over a time period. In field settings, the set of growth-influencing condi-
tions that fish experience is less well known than those in the laboratory. Whereas
most of the input and output variables for bioenergetics models can be directly
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measured throughout a laboratory experiment, in field settings most must be
estimated (Box 12.3). Growth conditions in field settings cannot be controlled
as in the laboratory, and substantial temporal variation in these conditions can
occur between sampling dates. Temporal variation in growth conditions in field
settings is problematic because sampling date intervals are typically substantial
(weeks to months) due to high sampling costs, and it must be assumed that
values of certain variables (e.g., consumption rate, predator and prey caloric
density, and temperature experience) follows a linear trajectory between sam-
pling dates. Consequences of linear interpolation between field sampling dates
to estimate trajectories of variables whose values can change markedly from day-
to-day were illustrated by Whitledge and Hayward (2000). By applying Monte
Carlo simulations to in situ estimates of daily consumption made over 30 succes-
sive days for two fish populations (in a stream and small impoundment), they
found that short sampling date intervals not exceeding 5 d were needed to esti-
mate consumption trajectories adequately through linear interpolation between
sampling dates. Similarly, a sample date interval of less than 7 d was found nec-
essary to estimate fish’s consumption levels accurately in an estuarine environ-
ment (Hartman 2000). Sampling date intervals of less than 7 d are uncommon
for in situ studies of fish daily ration. However, it is noted that a similar study
(Trudel and Boisclair 1993) found less day-to-day variation in fish’s daily con-
sumption in a natural lake, indicating that broader sampling date intervals may
be possible at some times in some settings.

Fish sampled on distinct dates at a given field location also may not be continu-
ally exposed to conditions at that sampling site throughout a sampling date inter-
val. This can occur from fish’s substantial movements in both the vertical and
horizontal dimensions and contribute to inaccurate field evaluations of bioener-
getics models. Of course, in laboratory settings fish have little choice but to show
high fidelity to the “sampling site.” This problem can apply to field estimates of
fish’s thermal experience, consumption, growth, and caloric densities of both
predator and prey. In general, field estimation errors due to temporal variation in
conditions as well as from fish changing locations should diminish as sampling
date intervals are reduced. If fidelity to a sampling site cannot be reasonably as-
sumed for a population and exposure to disparate environmental conditions is
possible, expanded spatial coverage of the field evaluation should be considered.
Because in situ daily consumption estimation is particularly labor intensive, the
use of low-cost, in situ consumption estimators may be appropriate to allow in-
creased spatial coverage (Boisclair and Leggett 1988; Hayward and Hiebert 1993;
Madon 1998).

12.4.2.4 Analysis of Model Evaluation Data

General considerations.—Evaluations of bioenergetics models typically involve as-
sessments of how accurately they predict fish growth or estimate consumption
over a time period, using test data sets developed either in the laboratory or field.
Occasionally, bioenergetics models have been evaluated for their ability to pre-
dict either consumption or growth alone, under the expectation that the other
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variable will be predicted with similar accuracy in the opposite direction. For ex-
ample, a model observed to overestimate growth by 15% may be assumed to un-
derestimate consumption by about 15% under the same conditions. However,
recent evaluations of bioenergetics models under broad ranges of growth condi-
tions have shown that predictive accuracy for consumption and growth can be
quite disparate (Bajer et al. 2004b). Consequently, it is recommended that evalu-
ations of bioenergetics models consider predictive accuracy for both consump-
tion and growth.

Data used to evaluate bioenergetics models typically include concurrently de-
rived observed trajectories of fish body weight and daily or cumulative consump-
tion over a period of time (Figure 12.4). These observed data have either been
directly determined from laboratory experiments or estimated in a field setting.
Paralleling observed data are corresponding trajectories of predicted consump-
tion and growth from a bioenergetics model. Analysis of a bioenergetics model’s
predictive accuracy typically involves (1) visually portraying the likeness of corre-
sponding predicted and observed trajectories (Figure 12.4), (2) representing the
lack of agreement between predicted and observed trajectories as some form of
percent error, and (3) applying one or more statistical tests or indices to facilitate
decisions of whether or not apparent lack of agreement between predicted and
observed trajectories is statistically different from nil or otherwise acceptable.

Predictive accuracy for fish growth.—Accuracy of a model’s predictions of fish growth
is usually evaluated by entering into a model a series of daily values of observed
consumption and temperature experience, based on daily observations in the
laboratory or linear interpolation between observed values in the field. Caloric
densities of the consumer and its food, as well as an activity cost value, are also
entered. Values of fish body weight on each day of a model run are required by
internal equations and are provided by model estimates of daily growth, which
are sequentially added to a set starting weight. In this way, a model-predicted
growth trajectory is produced to be compared to an observed growth trajectory
(Figure 12.4A). Differences between these two trajectories provide the basis for
visualizing, quantifying, and statistically testing the model’s ability to predict growth
under a given set of conditions. In cases in which replicate observed and pre-
dicted growth trajectories are produced, as when individual fish serve as the sample
unit, growth trajectories can be represented as either absolute (g/d) or relative
(g/g/d) growth rates upon which statistical analyses are conducted (e.g., Whitledge
et al. 2003). Representing predicted and observed growth trajectories in terms of
relative versus absolute growth diminishes the problem of variance inflation among
individual fish weights with time (that is, growth depensation), which tends to
reduce statistical power.

Predictive accuracy for consumption.—Evaluating a bioenergetics model’s ability to
estimate consumption over a period typically involves entering fixed daily con-
sumption levels into the model in iterative fashion until finding the fixed level
that produces a growth trajectory that matches the initial and final observed fish
body weights in an observed growth trajectory. For the Fish Bioenergetics Model 3.0
software described by Hanson et al. (1997), this iterative process involves inputs of
a constant percentage of maximum daily consumption and is termed a “p-fit” (see
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Figure 12.4 Corresponding trajectories of (A) growth, (B) daily ration, and (C) cumulative
consumption (cons.) observed from a laboratory experiment (solid lines) and predicted from a
bioenergetics model (broken lines) for largemouth bass. Data are from Whitledge and Hayward
(1997).
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section 12.4.1). Predicted and observed trajectories of daily consumption (Figure
12.4B) or cumulative consumption over the period (Figure 12.4C) are consid-
ered in evaluations of model predictive accuracy. When using the p-fit approach,
by which fish consumption rates are estimated over multi-day periods in a single
step, it is unlikely that the predicted trajectory of daily consumption will fully
match short-term fluctuations in the observed daily consumption trajectory, which
are more pronounced at higher consumption levels (Figure 12.4B). Because this
approach promotes error in model predictions of daily consumption, the use of
cumulative consumption trajectories instead (Figure 12.4C), which dampen these
fluctuations, is preferred.

Ambiguity in representing model error.—Percent error has been used commonly to
represent predictive accuracy of bioenergetics models (Table 12.4). This measure
has been used to compare a single model’s performance across different sets of
conditions and to compare performance among models. To an extent, percent
error has also served as a barometer of acceptable model performance (see per-
formance comparison of six bioenergetics models by Ney 1993). Consequently, it
seems important that percent error for model predictions would be determined
in a manner that is both accurate and consistent across model evaluations.

However, it is often unclear in studies what form of predicted and observed
values were used in evaluating models. Often the predicted and observed trajec-
tories of weight, cumulative consumption, or daily consumption have been final-
day values. Although the use of final-day values may be appealing due to simplic-
ity, this expression of percent error is often not representative of model
performance over the complete trajectories. For example, consider the predicted
and observed growth trajectories in Figure 12.4A, which are substantially sepa-
rated for the most part but converge near the final day. Determination of percent
error for model predictions of growth based on final-day values would clearly be
misleading, as a near-zero value would not reflect overall predictive error.

Recommended portrayal of model error.—A more appropriate representation of
model error when predicting growth trajectories is mean absolute daily growth
error or, more succinctly, the mean growth error (MGE) between model-predicted
and observed trajectories (Table 12.4). This measure of error is representative of
the full predicted and observed growth trajectories and approximates the area
between the two trajectories. By standardizing for the number of days in a model-
evaluation trajectory, it is less influenced by the length of model evaluation trajec-
tories, unlike calculations of percent error based solely on final-day error. Abso-
lute values of daily differences between predicted and observed values are used
because predicted trajectories can cross over observed trajectories leading to posi-
tive and negative errors (e.g., Bajer et al. 2003). Summing of positive and negative
daily errors would underrepresent total error, whereas use of absolute values avoids
this. One drawback associated with the use of MGE is that direction of the model
error (positive versus negative) is not indicated. For this reason it is recommended
that the predominant direction of the error be stated or that graphic portrayals of
predicted versus observed trajectories be shown. In addition to MGE, it is recom-
mended that the maximum absolute daily growth error (MaxGE) also be reported
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Table 12.4 There are several commonly used metrics for evaluation of bioenergetics models
with test (growth and consumption trajectory) data sets.  Below we list these metrics and
provide instances in which they may be properly used to report model assessment.  In report-
ing new model evaluations we recommend use of multiple metrics to identify where models
may be weakest and their volatility. Abbreviations are as follows: predicted value (P ), observed
value (O), growth (G ), and consumption (C ).

Metric Equation Use

Percent error (PE) PE = (P – O)/O × 100 Generic approach for quantifying
error in predicted trajectories of G
or C.  What is represented by P and
O has frequently been unclear, but
these likely have most often been
final-day values in trajectories.

Mean growth error MGE or MCE = ( � | (Pi – Oi )/Oi | )/n × 100 Recommended for representing
(MGE) or mean model prediction error for G or
consumption daily C. Accommodates positive
error (MCE)a and negative errors and permits

comparisons of error across
modeled trajectories of different
durations.

Maximum absolute MaxGE or MaxCE = max | (Pi – Oi )/Oi | Represents model volatility.
daily growth (MaxGE)
or consumption
error (MaxCE)a

Mean cumulative MCCE = (Pf – Of )/Of /n × 100 Consumption prediction error
consumption error based on cumulative consumption.
(MCCE)b Permits comparisons of error

across modeled trajectories of
different durations.

a Here Pi  and Oi are the predicted and observed values for G or C on day i (units of g/g/d), and n is the number of days
in the trajectory.
b Here Pf and Of are the predicted and observed final-day values of cumulative consumption (g).

n

i = 1

when models are evaluated under particular sets of growth conditions. The MaxGE
provides indication of model volatility that may not be evident from MGE and
would be particularly valuable in a situation in which a bioenergetics model gives
close predictions of observed growth over much of a trajectory, but predictions
then depart substantially over the final few days.

While use of the MGE and MaxGE approach would also be logical for repre-
senting model prediction error associated with daily consumption trajectories
(Figure 12.4B), recall that it is more appropriate that model prediction error for
consumption be based on cumulative consumption (Figure 12.4C). An appropri-
ate representation of error for model predictions of cumulative consumption is
based on final-day cumulative consumption values, but this should also be stan-
dardized for the number of days in a modeled trajectory. This measure of error is
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termed mean cumulative consumption error (MCCE). Standardizing MCCE
for the number of days in a modeled trajectory reduces the effect of trajectory
length on the representation of model prediction error (Table 12.4). Crossing
over of predicted and observed trajectories of cumulative consumption can oc-
cur; however, in such an event MCCE would still be appropriately calculated as
in Table 12.4.

Analyses of modeling error.—Several statistical analyses are commonly applied to
test for differences between bioenergetics-model-predicted and observed values
of growth and consumption in model evaluation studies. The choice of statistical
procedure is determined by whether the growth or consumption trajectories are
replicated. Historically, some of the commonly applied statistical procedures and
model performance indicators (Leggett and Williams 1981; Mayer and Butler 1993)
were used because they accommodated model evaluations without replicated tra-
jectories. Unreplicated trajectories of consumption and growth based on mean
responses are most common in field evaluations of bioenergetics models whereas
replicated trajectories are more common in laboratory evaluations.

Multivariate profile analysis has often been used to test whether a predicted
and observed trajectory of consumption and growth are parallel with differences
of zero along their full course (Rice and Cochran 1984). It has also been used in
a model evaluation with replicated trajectories (Whitledge and Hayward 1997).
The analysis is based on Hotellings’s T 2-statistic:

T 2 = n · Y �· S –1 · Y, (12.5)

where n is the number of replicates; Y is a column vector of average model devia-
tions between successive observation times; Y � is the transpose of Y ; and S –1 is the
inverse of the variance–covariance matrix (Timm 1975). In another commonly
used statistical approach, degree and sources of prediction error are evaluated by
decomposing the mean square error (MSE) associated with a linear least-squares
regression of predicted on observed values (Rice and Cochran 1984; Wahl and
Stein 1991; Whitledge and Hayward 1997; Zweifel 2000). The MSE (variance
around the predicted–observed line) is decomposed into a mean component (m,
error due to differences in the means of predicted and observed values), a slope
component (s, error due to the slope differing from unity), and a residual compo-
nent (r, the portion of MSE due to random error). Values of m = 0, s = 0, and r = 1
are most favorable because they indicate that predictive error is totally random
and therefore asystematic, meaning that the model does not contain significant
bias. Bonferroni joint confidence intervals are then applied to determine whether
the slope and intercept of a regression of predicted on observed values are differ-
ent from 1 and 0, respectively (Neter et al. 1990).

In contrast to field evaluations, replicated trajectories of fish consumption
and growth are more readily produced in laboratory evaluations of bioenerget-
ics models by measuring responses of multiple, individually held fish or fish
groups under imposed combinations of growth-influencing conditions. Model
evaluations using experimental designs that produce replicated trajectories of
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growth and consumption permit application of more well-known statistical tests
such as ANOVAs and t-tests or their nonparametric analogs.

Whitledge et al. (1998) evaluated the capacity of a bluegill bioenergetics model
(Hanson et al. 1997) to predict cumulative consumption and growth of hybrid
sunfish (green sunfish  × bluegill ) fed ad libitum (control group) or according
to three distinct schedules (treatment groups) that each elicited compensatory
growth (Hayward et al. 1997). Each of the four groups comprised seven individu-
ally held hybrid sunfish; each fish’s daily consumption and weekly growth was
determined for 105 d at constant temperature. The bioenergetics model was ap-
plied to predict cumulative consumption (CC) and absolute growth rate (AGR)
for each fish (N = 28) across groups. Differences between model-predicted and
observed responses of AGR and CC for individual fish were tested within control
and treatment groups using a paired t-test to determine if mean differences were
nonzero. No difference between mean model-predicted and observed values of
AGR and CC were found for the control group but differences were found for
some of the treatment groups. Results indicated that the bioenergetics model
predicted hybrid sunfish AGRs and CCs better under ad libitum feeding condi-
tions than under conditions where compensatory growth occurred. In retrospect,
it would have been preferable to have applied one-way ANOVA to test simulta-
neously whether mean differences between model-predicted and observed values
differed among the four groups. Determinations of whether within-group means
differed from zero could then have followed using, for example, the least-squares
means (LSMEANS) procedure in SAS (SAS Institute 2004).

Besides evaluating performance of a single bioenergetics model, there can be
interest in determining whether one of two or more models performs best. These
situations can arise, for example, when (1) multiple versions of a newly constructed
model are being evaluated, (2) adjustments have been made to an existing model
and there is interest in whether model performance has been improved; or (3)
performances of two distinct models applicable to the same species are compared.
Bajer et al. (2003) used replicated growth and cumulative consumption trajecto-
ries from laboratory experiments involving a number of individually held yellow
perch to compare predictive accuracy of two bioenergetics models, one for yellow
perch and another for Eurasian perch. Observed laboratory growth and consump-
tion for each fish was predicted by each of the two models. Values of MGE and
MaxGE (portraying growth prediction error) as well as MCCE (portraying cumu-
lative consumption prediction error) were computed for each model’s prediction
of growth or consumption for each fish (see Table 12.4 for equations). Differ-
ences between MGE values for each model’s prediction of each fish’s growth were
tested for a nonzero mean difference through paired t-tests. A significant out-
come indicated that predictions by the two bioenergetics models differed on aver-
age, in which case the model with the lower mean MGE value was considered to
perform better. This same analytical process was repeated for MaxGE and MCCE.

In a more complex laboratory-based evaluation, Whitledge et al. (2003) si-
multaneously tested the relative performances of three smallmouth bass bioen-
ergetics models, each applied to fish growth under three sets of conditions.
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Daily consumption and growth rates of seven individually held smallmouth bass
(100–270 g) were directly determined while they were simultaneously subjected
to three successive 3-week periods involving different combinations of tempera-
ture and applied daily ration level. Each fish’s growth rate (expressed as relative
growth rate, RGR) and CC were predicted by each of the three bioenergetics
models over each 3-week period. Absolute values of predicted minus observed
RGR and CC values for each of the seven fish, as modeled by the three bioener-
getics models over each of the three periods, provided the test data set. Absolute
values were used because predicted minus observed RGR and CC values were
both positive and negative and combining these values would have resulted in the
inappropriate cancellation of error. Differences in model performance were evalu-
ated by applying a completely randomized 3 (model) × 3 (growth condition) fac-
torial ANOVA design with blocking done on the individual fish and comparing
the absolute predicted minus observed RGR values and likewise for the CC values.
Following indication from the ANOVA that significant differences existed, inter-
model performance differences within each of the three sets of growth condi-
tions were clarified using the LSMEANS procedure in SAS. The LSMEANS proce-
dure was also used to determine whether mean predicted minus observed values
of RGR and CC for each model–condition combination differed from zero.

12.4.3  Alternative Models

Currently popular bioenergetics models, including Wisconsin-type models (Kitchell
et al. 1977; Hewett and Johnson 1987, 1992; Hanson et al. 1997) are fundamen-
tally only predictors of fish growth and estimators of consumption. However, they
are appealing and being applied with rapidly increasing frequency in part be-
cause their flexible design permits desktop insights into complex fish bioener-
getic responses to changes in growth–influencing factors. Despite their appeal, it
is probably also fair to say that their current popularity also owes, in part, to their
high availability in user-friendly software (Hanson et al. 1997).

Direct approaches for in situ estimation of food consumption of fish popula-
tions are well known (e.g., Popova and Sytina 1977; Elliott and Persson 1978;
Eggers 1979) and typically involve substantial field efforts where fish are collected
at 3–4-h intervals over 24-h sampling periods (e.g., Hayward and Margraf 1987;
Pedersen 2000). High effort requirements associated with in situ estimation pro-
cedures often cause deviations from ideal experimental designs such that sam-
pling procedures are not well standardized. Despite the drawbacks, in situ estima-
tion of consumption remains common, likely because of unavailability of indirect
consumption estimation models for many fish species and life stages and the abil-
ity to gain direct insight into feeding dynamics of a population with these methods.
Three categories of in situ consumption models and associated procedures are de-
scribed by Adams and Breck (1990): chronology-of-feeding methods, carnivore
feeding models, and continuous feeding models. Many in situ consumption mod-
els require the estimation of fish’s gastric evacuation rates. Recent work indicates
that gastric evacuation rates may often be underestimated leading to substantial
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underestimation of in situ consumption (Richter et al. 2002). Also, Bochdansky
and Deibel (2001) concluded that gastric evacuation patterns for many fishes are
actually linear over time although appearing to be curvilinear when plotted against
postfeeding time. They demonstrate that food consumption estimates may be
biased twofold when a standard exponential gastric evacuation model is applied
instead of a linear evacuation model. Approaches to reduce amounts of field ef-
fort required to make in situ estimates of daily food consumption of fishes have
been developed by Boisclair and Leggett (1988) and Hayward and Hiebert (1993)
(see also Madon 1998). A few studies indicate that it may be possible to gain
accurate and precise in situ estimates of fish population daily consumption based
on fewer within-day samples and fewer fish per sample by measuring food amounts
in fish’s whole guts versus only stomachs (Boisclair and Leggett 1988; Heroux and
Magnan 1996).

■ 12.5 INFORMATION NEEDS FOR BIOENERGETICS STUDIES

Because in situ estimation of fish consumption rates remains common, further
evaluation and improvement of commonly used approaches is warranted. Labora-
tory-based evaluations of widely used in situ consumption models are needed for
fishes of different feeding modes and life stages. Laboratory data sets that can
include known 24-h consumption levels as controls would permit rigorous evalua-
tions of consumption models, associated estimates of gastric evacuation, and ef-
fects of using whole-gut versus exclusively stomach-content weight as the basis for
consumption estimation. Further investigation of predictive accuracy of reduced-
effort procedures for in situ consumption estimation is also needed (e.g., Boisclair
and Leggett 1988; Hayward and Hiebert 1993). Low-effort approaches may be
used exclusively for certain applications (e.g., Whitledge and Hayward 2000), but
their greatest value may be to expand spatial coverage of studied population’s
consumption rates or to increase estimate frequency over whole study periods.
Further evaluation and development of radioisotopic approaches (Gingras and
Boisclair 2000) is also needed.

Applications of bioenergetics models based on energy balance equations
(Winberg 1956; Kitchell et al. 1977) are increasing geometrically and will likely
continue to do so. Laboratory-based evaluations of soundness of existing versions
of this class of model are much needed over broad ranges of conditions of fish
size, temperature, and ration level. Follow-up efforts to correct detected areas of
model weakness are critical, once model weaknesses have been identified. Recent
findings (Bajer et al. 2003; Bajer et al. 2004a) show that substantial, consumption-
level-dependent systematic error is likely widespread in bioenergetics models. These
results also point toward consumption-dependent parameters in bioenergetcis
models, including egestion, excretion, and SDA as likely sources of this error.
Efforts to evaluate rigorously and improve current submodels that calculate values
of energy costs–loss parameters within bioenergetics models’ components are en-
couraged, even for some components for which sensitivity has been considered low
(Bajer et al. 2003). Data and equation borrowing from other species to construct
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new bioenergetics models should be more critically assessed (Ney 1993). Efforts
should also continue to quantify fish activity costs from all sources in natural envi-
ronments accurately and to evaluate the true practical importance of this param-
eter in bioenergetic model applications more thoroughly. The potential to esti-
mate fish activity costs from readily measured correlates or indicators should
continue to be explored, as should efforts to determine the accuracy of measure-
ments of fish activity in the field obtained through physiological telemetry that
monitors cardiac and muscle contraction rate. Fuller understanding of seasonal
effects and also effects of exposure to periods of low food supply on fish bioener-
getic rates including consumption and metabolism may be important toward im-
proving predictive accuracy of bioenergetics models. Also, while bioenergetics
models can often provide reasonable estimates of a fish’s average daily consump-
tion rates over weeks to months, they tend not to predict the substantial day-to-
day fluctuations in consumption, which may be particularly pronounced when
food availability is high (Whitledge and Hayward 1997). Development of capacity
to predict daily fluctuations in food consumption would be valuable both in eco-
logical applications (e.g., to predict short-term shifts in predatory impacts) as well
as in aquaculture (e.g., to avoid over- and under-feeding of cultured fish). If rela-
tionships between fish growth in weight and corresponding skeletal growth could
be defined, bioenergetics models could be used to predict fish growth in length
as well as change in condition under various scenarios. Such capacity was recently
developed (Bajer and Hayward 2006) and should be highly useful in fisheries
management applications that tend to be more length than weight based. An
ability to model fish condition under varying growth conditions would likewise be
very useful.

Finally, evaluations of less commonly used in situ consumption estimation ap-
proaches described in section 12.4.3 would be valuable toward broadening aware-
ness of the feasibility and reliability of different methods. In many cases low use
rates of some approaches may not be due to their ineffectiveness but rather be-
cause other avenues have been more emphasized.
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■ 13.1  INTRODUCTION

Approaches to detecting, interpreting, and reporting the significance of stressors
on fish populations vary. The tools described in Chapters 4 through 10 may all be
used alone, or in combination, to yield insights into how fluctuations in environ-
mental variables or anthropogenic stressors such as exploitation, habitat degrada-
tion, and pollution—or some combination of both—may affect abundance, re-
productive potential, or growth. Despite general agreement in the fisheries
literature that an understanding of the population level effects of stressors is of
paramount importance, relatively few studies have attempted to estimate stressor
effects systematically (Barnthouse 1993) or to link changes explicitly at lower lev-
els of biological organization to changes at the population level (Shuter and Regier
1989). Most investigations have followed the pioneering lead of Selye (1976), who
defined stress as the measurable biological response of an individual to an exter-
nal stimulus (stressor), and are based on laboratory experimentation aimed at
determining individual responses to acute or chronic stressors (Adams 2002). Al-
though valuable for achieving the specific objectives of determining whether a
measurable response exists, studies focused at the individual level lack ecological
realism and do not necessarily predict or facilitate understanding the consequent
effects of stress at the population level (Power and McCarty 1997).

The problem of quantifying the effect of stressor perturbations on populations
is not new and has formed the core of wildlife and fisheries management research
for many years (Barnthouse 1993). As with most population-based investigations,
the objective of stress-related population research is to infer from individual sample
data the characteristics of a well-defined grouping of like organisms (the popula-
tion) and the probable dynamic responses of the group to stress. In practice,
fisheries scientists have tended to equate stress with anthropogenic disturbances
that induce responses outside the normal range of variation for the selected mea-
surement endpoint (Evans et al. 1990). Although adoption of the normative range
concept (Odum et al. 1979) dealt adequately with the duality of possible benefi-
cial and harmful stressor effects at a theoretical level, inherent variability caused
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by the action of environmental variation and the operation of natural compensa-
tion mechanisms has confounded the simple interpretation of stress–response
relationships (Evans et al. 1990).

Understanding the responses of populations to stressors (population
bioassessment), therefore, requires knowledge of both the ways in which indi-
viduals respond to stress and the effect of collective individual responses on the
processes that govern population dynamics. Individual responses to stress may be
observed directly from experimental or field studies. A detailed compendium of
technical and theoretical considerations, much of it directly related to fishes, is
given in Adams (1990, 2002). Collective individual responses will sum to deter-
mine population level impacts, and these can be inferred only indirectly using
individual response data to estimate sample means and variances. In practice,
sample statistics have been found to have low predictive power because of the
effect of population regulating feedback mechanisms operating through com-
pensatory adjustments to birth and death rates (e.g., density-dependent recruit-
ment success, compensatory growth, and fecundity changes [McFadden 1977]).
The likelihood that stressors will interact spatially and temporally with population
compensation mechanisms has further complicated attempts to evaluate stressor
effects and has necessitated understanding the ways in which interactions between
population regulating mechanisms and stressors might influence observed popu-
lation level traits (Minns 1992).

Ecological theory has tended to view each population as unique and so tightly
integrated into its own particular ecosystem that the data collection programs
necessary to produce credible assessments of stressor and stressor interaction ef-
fects would themselves significantly alter the populations under study (Rigler 1982).
Furthermore, the sensitivity of manipulative experiments at the population level
can be severely compromised because the number of replicate populations avail-
able for use in experimentation is limited and local uniqueness among replicates
is so high that variance estimates remain large (Walters et al. 1989). Accordingly,
even with the many documented cases of population collapses in fish stocks (e.g.,
Great Lakes), it has typically been impossible to ascertain unambiguously the spe-
cific causes of decline (Barnthouse et al. 1990). Nevertheless, attention will con-
tinue to focus on stressor effects at the population level because of public concern
for the fate of highly valued populations and legislative mandates requiring at-
tempts to ensure the continued viability of threatened or endangered species and
no net loss of habitat.

Against this background of ecological complexity, this chapter will examine
population bioassessment methods for determining the possible consequences of
stressor action on fish populations. The emphasis is on identifiable quantitative
methods whose objective is the determination of a population level measure of
success (e.g., abundance) or process (e.g., operation of density dependence). In
that regard, field-based assessment techniques that combine consideration of sam-
pling protocols with routine statistical analysis of obtained data are not consid-
ered, except where such approaches have an identifiable analytical framework.
Thus generic approaches, such as before–after comparison of impact (BACI)
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methods, are not considered here, but graded-exposure–response techniques (e.g.,
Adams et al. 1993) are considered. Also not considered here are the numerous
ecosystem process or energy flow modeling frameworks that have been developed
in recent years. These include bioenergetic-based techniques, habitat supply mod-
els, individual-based models, and systemwide simulation frameworks (e.g., Ecopath
and Ecosim). Many of the considered techniques are not specific to fisheries,
having been developed by entomologists, terrestrial ecologists, and others. All
approaches herein attempt to incorporate consideration of population regulat-
ing mechanisms that confound the direct influences of the biotic and abiotic
environmental factors critical to determining population level characteristics (e.g.,
intrinsic rate of population increase or mean fecundity).

For purposes of discussion, a population is defined as a group of individuals of
the same species that occupy a definable geographic range and are reproduc-
tively self-sustaining. A population need not be isolated from the effects of immi-
gration or emigration, but for simplicity, such isolation is often assumed. Popula-
tions are governed by the fundamental processes of reproduction, mortality, and
the somatic increases that render individuals capable of reproduction (Shuter
1990). These critical processes are moderated by density-independent and den-
sity-dependent adjustments that compensate for abnormal levels of numerical
abundance. Ecologists have recognized for some time that populations can per-
sist only if some form of compensatory response exists (e.g., Nicholson 1933).
The compensatory processes that allow populations to persist, however, are also
partially capable of counteracting the adverse effects of stress at the population
level (Nicholson 1954), thereby complicating attempts at population level
bioassessment. The exact nature of density-dependent factors in the control of
populations has been debated for many years (see reviews by Clark et al. 1967;
Begon et al. 1990), but there is now widespread agreement that fluctuations in
the abundance of persisting populations are the result of both density-dependent
and density-independent processes (Hassell 1986; Elliott 1994). Discussions of
density-dependent processes, their possible effects on fish populations, and the
complications density-dependent feedbacks pose for the measurement and inter-
pretation of fisheries data are given in Goodyear (1980), Hassell (1986), Evans et
al. (1990), Meyers (2002), and Power (2002).

One of the biggest problems in population bioassessment has been differenti-
ating the effects of natural variability from the operation of density-dependent
population regulation. Natural variability may arise for reasons of demographic
or environmental stochasticity. Sources of variability in demographic parameters
can be broadly classified into those that depend on trophic interactions and those
that depend on physical processes (Shuter 1990). These diverse considerations
include biotic factors affecting variability in the energy available for growth and
reproduction, the abundance and availability of prey items, the predator field
that is encountered, and other factors such as disease and parasitism (Fogarty et
al. 1991). Natural variability may also be mistaken for density-dependent processes
resulting from within-generation heterogeneity arising from mechanisms that ren-
der some individuals more susceptible to mortality than others (Hassell 1986).
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Such mechanisms include nonrandom mortality factors, the existence of refugia
protecting individuals from a mortality-causing agent, and processes that give rise
to temporal asynchrony (e.g., differential spawning or hatch dates).

Although much of the mainstream fisheries literature has concerned itself with
addressing the implications of density-dependent factors for determining popula-
tion success, traditional contaminant-based studies of possible population level
stressor effects have tended to ignore the issue altogether (Power and McCarty
1997). For example, density-dependent effects are not recognized among the tra-
ditional list of significant biotic modifying factors (e.g., individual size or nutri-
tional status), knowledge of which is necessary to interpret toxicity test results
appropriately. The omission assumes density-related factors can be treated as ex-
perimental constants and denies the importance of population regulating mecha-
nisms as determinants of the status of individuals in the population.

Realization of the importance of population processes and life history strategies
for conclusions about fish population status has driven much of the development of
traditional fisheries assessment and management practices. A listing of common
measures used for assessing fish population status is given in Table 13.1. Although
developed largely to assess exploitation pressures, the techniques are useful for
assessing the effects of other anthropogenic and natural stressors on population
status (e.g., Healey 1978; Mills 1985; Mohr et al. 1990; Berlinsky et al. 1995). Re-
views of the basic techniques required to estimate the measures listed in Table 13.1
are given in Chapters 4 through 10 and will not be discussed in detail here.

In its broadest form, population level bioassessment can be taken to include
any measurement-based observational or experimental study that is directed to-
ward the estimation of a summary population characteristic (e.g., intrinsic rate of
growth, abundance, or mean fecundity) from sample data. Thus, many of the
methods developed specifically for fisheries ecology have been included in com-
prehensive monitoring programs attempting to combine information on stres-
sors and their measurable biological effects for making judgments about risk (e.g.,
USEPA 1992). Furthermore, attempts have been made to integrate disparate field-
based measurements into frameworks that integrate stressor exposure and effects
data by placing specific emphasis on the causal mechanism and quantification of
the cause–effect relationship. As an alternative, sample data are used to estimate
population vital statistics from which life history accounting (e.g., life tables) or
projection models (e.g., Leslie matrix or stock–recruitment) may be constructed.
Accordingly, there is a dichotomy between the largely field-based (section 13.2)
and modeling-based (section 13.3) approaches to population level bioassessment.

■ 13.2 FIELD-BASED APPROACHES TO POPULATION LEVEL BIOASSESSMENT

The field-based approaches may be grouped into three main categories: compare
and contrast, graded-exposure–response, and sequential sampling methods. A
full discussion of these techniques, and their short-comings, is given in Power
(2002) and will not be repeated in detail here. Briefly, compare and contrast
approaches to assessing population level impacts have a long history (Cairns et al.
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1984; Ryder and Edwards 1985; Munkittrick and Dixon 1989; Shuter 1990) and
stemmed from the need to develop reliable methods capable of detecting the
adverse effects of a wide variety of environmental stressors. A basic assumption of
the compare and contrast approach is that the population is the best indicator of
its own status and that consequent changes in population sample characteristics
(e.g., age, fecundity, and condition factor) will be functionally related to the pres-
ence or absence of a putative stressor. Accordingly, compare and contrast meth-
ods are typically executed as before and after and reference site comparisons.
Before and after comparisons monitor critical population characteristics before
and after the application of a possible stressor to determine if changes have oc-
curred (e.g., Munkittrick and Dixon 1989). The approach assumes that the stres-
sor is the cause of any measured change in monitored characteristics and that
characteristics would not have varied in the absence of the stressor. Reference site
comparisons use data on population characteristics from affected and unaffected
areas that are ecologically similar (e.g., Swanson et al. 1994) to make inferences
about cause and effect by assuming area differences are attributable to the differ-
ential presence of the stressor rather than to other possible systematic differences.

Compare and contrast frameworks have several limitations (Munkittrick and
Dixon 1989), the most serious of which are their static nature (Power 2002).

Table 13.1 Common methods or indicators used for assessing fish population status as
described in Chapters 4 through 10. Each is based on or derived from field measurements and
describes a single aspect of the growth, survival or reproductive processes that regulate
population abundance or biomass. To infer possible stressor effects on fish populations appro-
priately, at least one metric from each category listed below must be included in any
bioassessment exercise. Metrics within each category are not necessarily independent of others
within the same or other categories. For example, changes in specific growth rates hold direct
implications for fecundity and may affect age-specific survival rates in subsequent generations.

Growth-Related Metrics

Mean weight- or length-at-age Specific growth rates
Allometric relationships Proximate body condition
Population size structure Production, production:biomass ratios
Condition factor Biomass indices

Survival-Related Metrics

Age-specific mortality rates Density or abundance
Year-class strength Mean or maximum age
Population age structure Recruitment indices
Catch per unit effort Mean life expectancy
Intrinsic rate of population increase Generational cycle length

Reproduction-Related Metrics

Age-at-maturity Egg size
Reproductive life span Spawning frequency
Gonad somatic index Net reproductive rate
Age-specific fecundity rates Intrinsic rate of population increase
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Attempts to validate compare and contrast frameworks by means of modeling
(Jaworska et al. 1997) and multiple reference site (van den Heuvel et al. 1999)
approaches have met with limited success. As van den Heuvel et al. (1999) have
concluded, the physiological response indices used by static frameworks may not
be the most sensitive indicators of nonlethal stressor exposure because impacts
can be masked by population level compensatory responses.

Graded-exposure–response approaches compare groups of individuals (possi-
bly populations) in a series of graded stressor exposures and seek to establish a
correlative link between the measured exposure (e.g., concentrations of a con-
taminant or degree of exploitation) and biological characteristics of each group
(e.g., Adams et al. 1994). The approach assumes that any gradient observed in
sample characteristics is attributable to known differences in stressor intensity
alone. That is, the approach makes an “all other things equal” assumption about
the possible differences in the systematic operation and effect of other popula-
tion level regulating factors or stresses. The approach is well described in a series
of papers by Adams (Adams et al. 1993; Adams and Ryon 1994; Adams et al. 1994)
and others (Karas et al. 1991; Sandstrom 1994) and is noted for its use of sample
information on multiple response characteristics. Use of information on multiple
characteristics assumes environmental complexity is such that it is unlikely that
single characteristic measures will accurately reflect responses to stress (Adams
and Ryon 1994). Although the procedure is useful in helping to identify factors
that impair fish populations and the degree of difference among these factors, it
is a weak diagnostic tool in the sense that it cannot detect the cause of the prob-
lem (Adams et al. 1993). However, further detailed validation studies are being
conducted to determine on a case-specific basis the levels of evidence required
for inferring causal linkages.

Sequential sampling methods use traditional field sampling approaches to study
the long-term effects of exposure to a single stressor incident (e.g., Mills and
Chalanchuk 1987; Mills et al. 2000). The assumptions here are that critical re-
sponse variables (e.g., age at maturity or fecundity) relevant to determining stres-
sor effects may be identified a priori and that sufficiently long temporal data se-
ries will prove adequate for the quantification of observed associations between
population level responses and the stressor. Few examples of sequential sampling
studies on the effects of stress at the population level exist. Among the more
innovative sets of sequentially sampled data are those assembled from the Experi-
mental Lakes Area of northwestern Ontario to study the effects of controlled lake
acidification and recovery (Mills and Chalanchuk 1987; Mills et al. 2000) and
whole lake fertilization (Mills 1985; Mills and Chalanchuk 1987; Mills et al. 1998).
Results from these experiments point to the importance of multi-trophic sam-
pling and increased sampling frequency in the detection of critical population
level responses to stress and the validation of response predictions. Although im-
portant for increasing understanding of ecosystem structure and function as it
pertains to fish populations of interest, lessons from such experiments are diffi-
cult to generalize, and it is probably unreasonable to expect adoption of the ap-
proach for anything but specialized research needs.
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As a group, field-based attempts to assess population level responses to stress
and their possible ecological significance follow from the observation that fishes
in their natural environment are typically subjected to a number of stressors that
alone, or in combination, are capable of triggering measurable physiological re-
sponses having population level implications (Adams et al. 1993). Field-based
measures are viewed as integrative and as one means of directly capturing the
consequences of the complex interaction of environmental factors for studied
populations, while at the same time avoiding the difficulties associated with the
extrapolation of single stressor–response laboratory test data (Munkittrick and
Dixon 1989). As a result, field-based studies have become a popular means of
assessing stressor impacts when questions about the larger scale or longer-term
implications of stressors arise. A more detailed summary of the main field-based
approaches is given in Power (2002).

■ 13.3 MODELING-BASED APPROACHES TO POPULATION LEVEL
BIOASSESSMENT

The many field-based attempts to quantify population level stress responses have
taught us much about the difficulties associated with measuring the magnitude of
stressor effects and understanding the ways in which measurable population char-
acteristics may be functionally related to known stressor intensity. The number of
biotic and abiotic factors and mechanisms capable of modifying the effect of a
single stressor on measured population level responses suggests that the interpre-
tation, or prediction, of population level responses based on models alone will
never be an easy task and should not be separated from the basic ecological work
necessary to describe affected populations in their natural environment.

Numerous analytical modeling frameworks suitable for determining possible
population level effects of a wide variety of stressors have been developed. Al-
though modeling studies of populations can provide descriptions of the effects of
stress, they rely on making assumptions about causal mechanisms and cannot
establish the existence of actual cause–effect linkages (Maltby 1999). Neverthe-
less, Minns (1992) argues that the complexity of ecosystems is such that modeling
provides one of the few systematic means within which the dynamics of popula-
tion level responses to a suite of interacting anthropogenic and natural stimuli
can be appropriately analyzed. Modeling is also less expensive and permits inves-
tigation of potential population fluctuations over much longer time scales (Landahl
et al. 1997). Furthermore, modeling has progressed to the point at which identi-
fying vulnerable life stages, ranking sources of stress on an effect basis, and com-
paring alternative mitigating strategies can now be easily accomplished (Vaughan
et al. 1984; DeAngelis et al. 1990; Evans et al. 1990).

The suitability of a model type for predicting possible population level effects
will depend on the complexity of the question being asked, the suitability and avail-
ability of data for model development, the availability of stressor–effect data, the
skill of the modeler in conceptualizing and representing complex processes within
the constraints of simplifying model assumptions, and the perceived usefulness of
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model output to decision makers (Vaughan et al. 1984; Chambers 1993; Power
and McKinley 1997). To that end, care should be taken when selecting between
available model types. Emlen (1989) has also argued that to address the effects of
stressors at the population level appropriately, models must produce outputs de-
scribing population endpoints of regulatory relevance (e.g., intrinsic rate of popu-
lation increase) and must incorporate available scientific information on stressor
effects. With these criteria in mind, three categories of model types have been
selected for discussion on the basis of their historical utility for estimating fish
population level responses to stress: life tables, matrix models, and stock assess-
ment frameworks. Two further categories are discussed because of their possible
future utility for summarizing temporal data or determining the life history phases
most critical for the regulation of population abundance: variance and key-factor
analysis.

13.3.1 Life Table Analysis

Life tables have a long history of use in the insurance industry because life table
models provide useful summaries of changes in population characteristics for a
given set of conditions summarized in population-specific mortality and natality
data. The life table technique can be readily adapted to fish populations to deter-
mine the net effect of environmentally induced changes in mortality and natality
rates on summary parameters (e.g., intrinsic rate of population increase) defin-
ing the ability of populations to sustain themselves. As a consequence, life tables
have been widely applied as a means of summarizing population level effects of
stress (Walthall and Stark 1997).

Two strong assumptions dominating life table analysis are environmental sta-
bility and the lack of a limit placed on population growth. Violation of either or
both assumptions can lead to large predictive errors when attempting to deter-
mine potential stressor effects on population abundance. Any component of the
environment that affects age-specific fecundity or mortality will also affect the life
table summary parameters. Accordingly, key life table parameters can be com-
puted for only a given set of environmental conditions. Under natural conditions,
however, environmental constancy is rarely the case. Populations vary in response
to environmental influences acting on natality and mortality and to the feedback
effects environmental variation has on the natality- and mortality-derived demo-
graphic schedules from which summary life table parameters are computed (Birch
1953). Nevertheless, life table data and derivative age distributions can be used to
judge the status of a population. Care should be taken to ensure that the sum-
mary parameters are calculated for a series of population densities and environ-
mental scenarios.

13.3.1.1 Life Table Types and Construction

Life tables proceed by summarizing population mortality and natality schedules
over an arbitrary time interval. The chosen interval should be related to a rel-
evant biological time scale (e.g., annual reproductive cycle) and for most fishes
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will equal a year. The chosen interval may be shorter, but this comes at the cost of
increasing the data detail needed to construct tables. Furthermore, it is conven-
tional to include only females in the construction of life tables. Accordingly, popu-
lation data derived from field observation or sampling must be adjusted by sex
ratio information to obtain sex-specific numbers. Finally, census data are preferred
for life table construction.

In the case of field-based studies it is often not possible to study the entire
population or to age all individuals accurately. As a result, the development and
application of life tables in fisheries studies does not rely on the use of census
data. Instead, static or cohort-specific life tables are constructed using survey data.
A static life table is constructed from cross-sectional sampling of a population at a
specific point in time and presents derived population parameters as averages
under the assumption that age-specific fecundity and mortality rates have remained
constant from year to year (i.e., the population is stationary). A cohort-specific
life table is constructed from temporal information obtained from following a
single age-class from birth to death. The cohort-specific life table is considered to
be the more reliable of the life table types for use in ecological study (Krebs 1999).
If the environment is static, the two approaches will be equivalent, and the popu-
lation under study will be in equilibrium. If the environment is variable, the static
table will combine age-specific variations in vital rates with inter-annual variations
in vital rates, confounding accurate estimation of summary table parameters (e.g.,
net reproductive rate, R0, and the intrinsic rate of population increase, r).

Life table descriptions come in many forms (e.g., Wootton 1990; Krebs 1999),
and there is some variation in the use of symbols. Generally, the following notation
is used to describe the age-specific data computed for use in life-table analysis:

x = age or time interval used in table computations;
nx = number of individuals in a cohort or age-class alive at the start of age

interval x;
lx = proportion of individuals in a cohort or age-class surviving from age 0 to

age x (note that conversion to proportions allows among-population
comparisons of survival rates);

dx = number of individuals in a cohort or age-class dying in the interval x to
x + 1 (values may be summed to define total mortality over any defined
period of time);

qx = finite per capita mortality rate in the interval x to x + 1;
px = finite per capita survival rate in the interval x to x + 1; and
ex = mean expectation of life for individuals alive at the start of age interval x.

Once a single column of information for a life-table is known (typically nx or
dx), relationships among the information columns allow the remaining columns
to be computed using the formulae given in Table 13.2 (Caughley 1977) and
below for ex (Krebs 1999).

ex = Tx /nx , where Tx =   
nx + nx + 1

2 �Li
i = x

m 

and Lx  = . (13.1)
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The average number of individuals alive in the interval x to x + 1 is defined by
Lx, and Tx is the sum of all Lx values over the interval 0 to m (maximum observed age).

For both static and cohort-specific life tables, the number of individuals with a
common birth period dying (dx) or surviving (nx) in successive intervals of time
must be determined. For fisheries work such data may be difficult to collect ex-
cept when long-term studies are undertaken, such as those described by McFadden
et al. (1967) for brook trout populations in Hunt Creek, Michigan. Even when
long-term data are available, life table construction may require application of
indirect estimation procedures including the construction of age–length keys and
the completion of length-specific population estimates (McFadden et al. 1967).
Nevertheless, there are numerous possible data sources for use in fish population
life table construction, including those listed below.

Table 13.2 Formulae for converting between elements of the life table. The left-hand column
defines the data type requiring conversions. Formulae to the right define the conversion
relationship for the type of elemental data required. For example, nx is converted to dx using the
relationship (nx  + 1 – nx) (source Caughley 1977). Symbols are as follows: x = age or time interval
used in table computations; nx = number of individuals in a cohort or age-class alive at the start
of age interval x; lx = proportion of individuals in a cohort or age-class surviving from age 0 to
age x; dx = number of individuals in a cohort or age-class dying in the interval x to x + 1 (values
may be summed to define total mortality over any defined period of time); qx = finite per capita
mortality rate in the interval x to x + 1; and px = finite per capita survival rate in the interval x to
x + 1.

Element to
be converted nx lx dx qx px

nx

nx

n0
nx + 1 – nx

nx  +  1

n0
– 1

nx  +  1

n0

lx lx · n0 ( lx + 1 – lx)n0

lx  +  1

lx
1 –

lx  +  1

lx

dx �
y = x

�

dy

�
y = x

�

dy

n0
�
y = x

�

dy

dx( ) �
y = x

�

dy

dx( )1 –

qx �
y = 0

x – 1

(1 – qy)n0

�
y = 0

x – 1

(1 – qy)

n0

�
y = 0

x – 1

(1 – qy)qx 1 – qx

px �
y = 0

x – 1

pyn0

�
y = 0

x – 1

py

n0

�
y = 0

x – 1

(1 – qy)1 – qx 1 – px

Conversion relationship
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1. Direct observation of the population, usually under controlled experimen-
tal conditions if data are being collected from longitudinal studies, where
the number of individuals alive, or dead, in successive intervals is recorded
for a cohort. The observed data are the nx or dx columns of the life table.

2. Observed age at death, usually from creel surveys or other cross-sectional
survey methods. Data allow the estimation of mortality through the use of
catch curves that may be used to determine the lx column of the life table.

3. Direct observation of population age structure at a known point in time
obtained from cross-sectional sampling methods that must be controlled for
known sampling biases (e.g., net selectivity). Numbers must be counted di-
rectly rather than be based on estimates of the proportion of individuals in
each age-class. Data allow the number of individuals alive at age x to be
compared with those that die before reaching x + 1 to derive the number of
deaths in a given age interval, dx, and a direct estimate of qx.

There is little guidance in the literature about the sample sizes needed to con-
struct accurate life tables (Krebs 1999). On the basis of experience with terrestrial
animal ecology, Caughley (1977) recommended a minimum of 150 individuals
when age distributional data are used in life table construction. For fish species
with highly variable age-at-first maturity or fecundity, a sample size of 150 indi-
viduals is probably too few for the accurate estimation of life table parameters. An
average of 30 or more individuals in each age-class ought to be included for rea-
sons of ensuring the statistical adequacy of age-specific parameters used to derive
the key nx, dx, lx, or qx schedules in a life table.

13.3.1.2 Summary Parameters Derived from Life Tables

Critical to life table construction are the summary computations for parameters
used to characterize population dynamics. Computed parameters include both
individual and population values. Gross reproductive rate (GRR), generational
cycle length (G), and mean life expectancy (e0) are among the useful summary
parameters, with GRR being the most useful for reproductive assessments and G
and e0 being most useful for describing population cycle lengths and expectations
of individual longevity. Net reproductive rate (R0) is used as an indicator of popu-
lation status. The intrinsic and finite rates of population increase, (r) and (�)
respectively, are similarly useful population indicators that define the potential
rates of change in population abundance per unit of time. Formulae detailing the
computation of these parameters are given in Leslie et al. (1955), Pianka and
Parker (1975), Caughley (1977), Wootton (1990) Krebs (1999) and in the ex-
ample discussed in Box 13.1.

The intrinsic and finite rates of population increase are commonly used in the
literature to compare populations and draw inferences about relative success. The
intrinsic rate of population increase (r) in a population with fixed lx and bx sched-
ules (Box 13.1) may be computed when the population has achieved a stable age
distribution via iteration based on the Euler–Lotka equation:

l = �e (–rx)lxbx .   
x = 0

�

(13.2)
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Box 13.1 Life Table Analysis

Consider the following data obtained for the 1954 cohort of brook trout from Hunt Creek, Michigan
(McFadden et al. 1967). Details of sampling methodology and estimation of the life table column
data are given in McFadden et al. (1967).

Table Data for the 1954 cohort of brook trout from Hunt Creek, Michigan (McFadden et al. 1967).
Symbols are defined in the text that follows. Computations in this box are carried to five decimal places.

Age nx lx dx qx

0 52,000 1.00000 49,882 0.95927
1 2,118 0.04073 1,339 0.63220
2 779 0.01498 620 0.79589
3 159 0.00306 146 0.91824
4 13 0.00025 13 1.00000
5 0 0.00000

The column nx defines numbers of individuals alive at each age, with the proportions of the popula-
tion surviving from age 0 to age x (lx) schedule being computed directly from the nx schedule by
means of the relationships given in Table 13.2. The dx column defines the number of individuals
dying in the interval x to x + 1 and is combined with nx to compute the finite per capita mortality
rate (qx) in the interval x to x + 1  (Table 13.2). Because population growth will depend on both
natality and mortality rates, the fecundity schedule (bx) must be determined before life table
summary parameters describing population dynamics can be estimated. Modification of the life
table to include fecundity data given in McFadden et al. (1967) yield the table below from which
summary measures for the gross reproductive rate (GRR) and net reproductive rate (R0)  may be
computed as shown (Krebs 2002).

Table Summary measures for gross (GRR) and net (R0) reproductive rates based on fecundity
schedule (bx ) for 1954 cohort of brook trout.

Age and
summary measure nx lx bx lx bx

0 52,000 1.00000 0.0 0.0
1 2,118 0.04073 0.0 0.0
2 779 0.01498 43.0 0.64414
3 159 0.00306 122.6 0.37516
4 13 0.00025 346.2 0.08655
5 0 0.00000

Summary equation
and value

The average number of daughters produced by a female living to maximum age is defined by GRR,
whereas R0 defines the average number of age-0 female offspring produced by the average
newborn female during its life. The important difference between GRR and R0 is that GRR is an
individual measure of reproductive potential, whereas R0 defines the multiplication rate of the
population per generational cycle. Thus, if R0 > 1 the population is increasing; if R0 = 1 the popula-
tion is stable; and if R0 < 1 the population is decreasing.

GRR = � bx
x = 0

5

GRR = 511.8

R0 = � lxbx
x = 0

5

R0 = 1.10585
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Once R0 is known, mean generational cycle length (G) may be estimated as follows:

� lxbxx
x = 0

X

R0
G = ,

where G is best interpreted as the “average” time between the birth of parents and progeny. In an
iteroparous population, G will only be approximate, whereas in a semelparous population with a
fixed life cycle, G will be exact (Krebs 2001). Using the data above, G may be calculated as

� lxbxx
x = 0

X

R0
G = = 2.75996

1.10585
= 2.49578. 

Another parameter closely related to G is the mean life expectancy at a birth (e0), as defined by the
equation (13.1). Leslie et al. (1955) derived a variance for e0 computed as

� Wx
x = 0

m – 1

var(e0) = = �
x = 0

m – 1 Sx + 1qx
2

px(nx  – 0.5ax)[ ] ,

where lx , nx , px , qx , and x are as defined in section 13.3.1; ax is the number of accidental deaths or
removals resulting from experimental or observational handling during the interval x to x + 1;
Sx = lx + lx + 1 + . . .  + lm – 1 + 0.5lm ; and m is the number of age-groups in the data. Note that in many
cases ax values will equal 0. Once the variance has been computed, confidence limits on e0 can be
obtained as

e0 ± t� ,var(e0)

where t� is the tabular value for Student’s t-value with n0 – 1 df. More generally, for any ex  the
degrees of freedom are (nx – 1), where nx is the number of individuals alive at the start of interval x.
Continuing with the sample data given above for the 1954 cohort of brook trout in Hunt Creek,
age-specific estimates of the finite rates of mortality (qx ) and survival (px ) may be computed.

Table Age-specific estimates of the finite rates of mortality (qx) and survival (px) for the 1954
cohort of brook trout.

Age nx lx qx px

0 52,000 1.00000 0.95927 0.04073
1 2,118 0.04073 0.63220 0.36780
2 779 0.01498 0.79589 0.20411
3 159 0.00306 0.91824 0.08176
4 13 0.00025 1.00000 0.00000
5 0 0.00000 0.00000 0.00000

Using the above estimates, the interim values required for computing e0 and the variance of e0 may
be estimated.

(Box continues)
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Table Interim values required for computing e0 and the variance of e0 for the 1954 cohort of brook
trout. The average number of individuals alive in the interval x to x + 1 is given by Lx .

Age Lx Tx Sx Wx

0 27,059.0 29,069.0 1.05902 1.578 ×10-6

1 1,448.5 2,010.0 0.05902 2.715 ×10-7

2 469.0 561.5 0.01829 5.484 ×10-8

3 86.0 92.5 0.00331 4.415 ×10-9

4 6.5 6.5 0.00025

Mean life expectancy and associated variance may then be computed as

e0 = 
T0
n0

= 29,069
52,000

= 0.559,

and

var(e0) = 0.059022 � 0.95927
0.04073 � 52,000

 + 0.018292 � 0.63220
0.36780 � 2,118

 + . . . 

= 1.908 � 10–6.

The confidence limits on mean life expectancy with nx = 52,000 and t = 1.96 are

e0 ± t� = 0.559 ± 1.96   1.908 � 10–6var(e0)

= 0.556, 0.562 

To compare population rates of change per unit of time, the intrinsic rate of population increase (r )
is computed using equation (13.2) and an approximate starting value for the iteration that is
defined by the parameter estimates for R0 and G obtained above. Accordingly, the starting value for
the iterative solution of the Euler–Lotka equation is

r = 
logeR0

G
 = 

loge1.10585
2.49577

 = 0.04031,

which in turn yields the values in the table below.

Table Euler-Lotka values for the 1954 cohort of brook trout based on a starting value of
r = 0.04031.

Age and summary measure lxbx Euler–Lotka values

0 0.0 0.0
1 0.0 0.0
2 0.64414 0.59425
3 0.37516 0.33243
4 0.08655 0.07366
5 0.0 0.0

Summary measure � e(–rx )lxbx = 1.0034
x = 0

�

Box 13.1 (continued)
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Although the r-value yields a sum close to 1, the sum may be improved by incrementing r to
0.04044.

Table Adjusted Euler-Lotka values for the 1954 cohort of brook trout based on r = 0.04044.

Age and summary measure lxbx Euler–Lotka values

0 0.0 0.0
1 0.0 0.0
2 0.64414 0.59409
3 0.37516 0.33230
4 0.08655 0.07362
5 0.0 0.0

Summary measure � e(–rx )lxbx = 1.00001
x = 0

�

Accordingly, the value r = 0.04044 satisfies the Euler–Lotka equation, and the finite rate of popula-
tion increase (�) may then be determined as

� = e0.04044 = 1.04127,

where r is interpreted as the production of 0.04044 females per female per year, and � is 4.127 %.
These values will be useful for predicting period to period changes in abundance only if the age-
specific fecundity and mortality schedules defined for the 1954 cohort remain fixed. Population
doubling time (DT) is sometimes computed from r as

DT = 
loge(2)

r
 = 

0.6931
0.04044

 = 17.1401.

Finally, for any pair of unchanging lx and bx schedules there will be a stable age distribution for the
population (Lotka, 1922) in which the population percentage in each age-class remains constant
whatever the total population abundance. The proportion of the population in any age-class (Cx )
can be computed to obtain a stable age distribution for any set of unchanging lx and bx schedules
as follows once � is known.

��–i li
x = 0

�Cx = 
�–xlx

For example, using the 1954 cohort data, the proportion of age-2 individuals may be computed as

��–i li
i = 0

5C2 = 
�–2l2 = 

1.04127–2 � 0.01498
1.05585

= 0.01309.

(Box continues)
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When solving via iteration, values of r are successively varied in the Euler–Lotka
equation until the sum on the right-hand side of the equation approaches unity
to within some prespecified level of precision. An approximate starting value for
the iteration can be obtained using R0 and G as follows:

r = loge(R0)/G. (13.3)

If the resulting value for r is greater than 1, population abundance is increas-
ing per unit of time; if r equals 1, population abundance is stable; and if r is less
than 1, population abundance is decreasing per unit of time. The intrinsic rate of
population increase may be related to the finite rate of population increase (� =
Nt  + 1/Nt) as follows:

� = e r. (13.4)

The difference between the two measures is that r is a rate computed over an
immeasurably short (infinitesimal) period of time, whereas the � is computed over
a measurable time period (e.g., days, weeks, or months) more useful for summariz-
ing periodic responses in fish populations. Methods for approximating the variance
of �, which facilitates statistical testing, are given by Lenski and Service (1982) and
Rago and Dorazio (1984). The former method is a conservative approximation for
which only large differences in � are likely to prove significant. The penalty for

Repeating the computations for all possible age-classes yields the following table.

Table Computations for determination of proportion of the population in any age-class (Cx )  to
obtain a stable age distribution for the 1954 cohort of brook trout.1

Age and sum lx �–x(lx) Cx

0 1.00000 1.00000 0.94710
1 0.04073 0.03912 0.03705
2 0.01498 0.01382 0.01309
3 0.00306 0.00271 0.00257
4 0.00025 0.00021 0.00020
5 0.00000 0.00000 0.00000

Sum 1.05585 1.00000

1. Please check your �–x values and hence �–x(lx) values. The values are correct. The problem is the 0.04044 value. This
should be quoted to six decimal places to get the results in the table. the simplest thing is to change the value in lines
22 and 25 to 0.040444. then using the new value, you get the values in the table rounded to five decimal places.

Further details of computations for reproductive values at age x and the decomposition of
reproductive potential into current and future progeny may be found in Pianka and Parker (1975).

Box 13.1 (continued)
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conservatism is that type II statistical errors become large, thus the more precise
methods discussed in Rago and Dorazio (1984) are recommended.

The intrinsic rate of population increase is argued to integrate the age-at-first
reproduction, age-specific fecundity and survivorship, brood frequency, and lon-
gevity effects of all environmental factors acting on a population, including stress-
related factors (Walthall and Stark 1997), and to account for the apparently con-
tradictory effects elicited by compensatory effects (Daniels and Allan 1981). For
population level bioassessments, Forbes and Calow (1999) concluded that r was a
better summary measure of responses to stressors than the weakly predictive mea-
sures of individual level effect endpoints typically obtained from laboratory ex-
perimentation (e.g., acute survival and chronic survival). This is because r inte-
grates potentially complex interactions among life history variables and provides
a more ecologically relevant measure of population level impacts. As a result, life
table analysis can provide important insights into the population level consequences
of stressors and can be used to generate testable hypotheses to explain why cer-
tain species are dominant in stressed habitats while others disappear (Forbes and
Calow 1999).

13.3.1.3 Examples of Life Table Studies

McFadden et al. (1967) provide an early example of the use of life tables in fish
population analysis. Using 14 years of data tracking numerical changes in brook
trout populations in Hunt Creek, Michigan, McFadden and coworkers were able
to construct life tables and age-specific fecundity schedules for 11 successive cohorts
of brook trout. The study demonstrated the relative importance of variability in
mortality over natality for the determination of population abundance, indicat-
ing that changes in mortality rates rather than fecundity was the proximate cause
of observed fluctuations in population abundance.

Jensen (1971a) subsequently used data from the literature to construct life
tables for seven trout populations as a means of studying mechanisms responsible
for the re-establishment of the birth–death equilibrium upset by fishing. Although
fishing was found to alter population age structure by increasing juvenile abun-
dance, increased fishing did not directly affect age-0 mortality. The analysis sug-
gested fishing mortality could be compensated for by higher age-specific fecun-
dity, with reproductive adjustments being the apparent compensatory mechanism
determining the dynamics of brook trout population responses to fishing.

Detailed studies of Eurasian perch in Lake Windermere from 1955 to 1972
were summarized by Craig (1980), who used life table analysis to estimate a time
series of R0 for populations in the north and south basins of the lake. Net repro-
ductive rates were then related to environmental factors in the form of an expo-
nential model that could be estimated by linear regression:

loge(R0) = b0 + b1x1 + b2x2 , (13.5)

where b0, b1, and b2 were estimated model coefficients, and x1 and x2, respectively,
were temperature in degree-days above 14°C and biomass of Eurasian perch already
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present measured in energy equivalence terms (kJ/m2), both for the year of hatch.
A good fit to available data (r > 0.95) was achieved in both basins, suggesting
other environmental factors, including anthropogenic stressors, might be used to
explain variability in net reproductive rates given sufficient data.

13.3.2 Matrix Models

Where populations have been affected by disturbances such as overfishing or
chemical exposure, age-structured models may be a more appropriate means of
predicting the consequences of the stressor for future population dynamics.
Although age-specific rates of fecundity and mortality are used in the construc-
tion of life tables, the rates are summed in such a way that derived population
parameters implicitly assume every individual within the population is identical
(the average). Thus, individual differences are not allowed to influence popula-
tion dynamics. For population bioassessment the suppression of age-specific ef-
fects on population dynamics is a potential problem. Chronic and acute stres-
sors are known to be size (age) dependent (Adams 2002), and lack of knowledge
of age-specific responses can result in misplaced management efforts even when
population protection is a priority (e.g., Crouse et al. 1987). One means of over-
coming the problem of assuming a population is composed of replicate indi-
viduals is to use age-structured models that divide the population into age-classes.
Individuals within an age-class are still treated as identical, but age-class aver-
ages are allowed to differ.

13.3.2.1 Age-Based Matrix Models

A popular analytical tool that overcomes the problems associated with assuming
every individual in the population is identical is the Leslie matrix approach (Leslie
1945). Leslie noted that if a population was closed (no immigration or emigra-
tion), the number of individuals alive at time period t + 1 would depend directly
on the age-specific fecundity, aging, and mortality rates at time t. Formulating the
basic information on age-specific vital rates in the form of a matrix equation al-
lowed Leslie to predict future population abundances as a function of what was
known about existing vital rates. Assume an initial age distribution for a popula-
tion is given by the vector Nt divided into age-classes nk(t) representing the num-
ber of individuals of age k at time t as follows:

Nt = [n0(t), n1(t), . . . , nk(t)]. (13.6)

The initial age distribution can be multiplied by a matrix containing age-spe-
cific survival probabilities and fecundities to determine the age distribution of the
survivors and descendants in the next time period (t + 1) as follows:

Nt + 1 = MNt. (13.7)

The elements of the Leslie matrix, M, are the age-specific survival probabilities
(Pi ) and fecundity rates (bi ) arranged as follows:
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(13.8)

It follows that the number of individuals alive in different age-groups at an
arbitrary time (t) depends on the number initially alive, N0 as follows (Leslie 1945;
Caswell 1989):

Nt = Mt N0 . (13.9)

The changing size and age distribution of the population is thus calculated by
a process of successively multiplying the age distribution by the Leslie matrix, on
the assumption that the age-specific survival and fecundity rates remain constant
from period to period. As the population size increases, the relative number of
individuals in each age-class will vary until a distribution (i.e., stable age distribu-
tion) is reached (Manly 1990). Although the number of time periods required to
reach a stable age distribution will depend on the initial age distribution, a stable
age distribution will be reached regardless of the initial number of individuals in
each age-class.

Once the stable age distribution is reached, the proportion of individuals in
each age-class will remain constant, and the ratio of population sizes at successive
intervals, (Nt + 1/Nt), becomes constant and is known as the finite rate of popula-
tion increase (�). The ratio is used to define the proportion by which the popula-
tion will change in each successive time period and may be related to the intrinsic
rate of population increase (r) as � = e r. Values of � greater than 1 are indicative of
an exponentially expanding population; values of � equal to 1 define an equilib-
rium population; and values of � less than 1 are characteristic of populations
decreasing to extinction. The finite rate of population increase, therefore, deter-
mines the long-term behavior of the population and may be equated to a measure
of fitness for the population (Roff 1992). The value is derived mathematically as
the dominant eigenvalue of the Leslie matrix (Caswell 1989). Further details on
the underpinning mathematical theory, construction, and estimation of matrix
models can be found in Caswell (1989) or Manly (1990). A simple working ex-
ample is presented in Box 13.2.

When building a Leslie matrix model it is important to select a time step (e.g.,
days, weeks, or years) for which adequate biological data are available. Any time
step may be used, but the selected time step must be kept identical for all age-
classes and should correspond to biologically meaningful time increments. Where
incomplete biological data are available, the closely related stage-based modeling
frameworks developed by Lefkovitch (1965) and Usher(1966, 1969) may be used.

One advantage of building any model to assess population level effects is that
the model may be used as a surrogate experimental framework. Thus, with a Leslie
matrix model it is possible to test the sensitivity of the population growth rate to

M = [ [b0 b1 b2 . . . bk – 1 bk

P0 0 0 . . . 0 0
0 P1 0 . . . 0 0
0 0 P2 . . . 0 0

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

0 0 0 . . . Pk – 1 0

.
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Box 13.2 Leslie Matrix Model Analysis

Consider a simple two-age-class population (age-0 and age-1) with age-class abundances as
follows:

N0 = 10, and
N1 = 5.

Age-specific fecundities are

b0 = 10, and
b1 = 25,

and age-specific mortality rates expressed as survival probabilities as follows:

P0 = 0.5, and
P1 = 0.

Then the number of new age-0 individuals at t + 1 will depend on the age-specific fecundity rates
(bi ) and the abundances in each age-class (Ni ) as follows:

b0 N0 + b1 N1 = (10 × 10) + (25 × 5) = 225.

The number of age-1 individuals at t + 1 will depend on N0 and the probability of their surviving to
age-1 (P0 ) given, for example, P0 = 0.5:

P0 N0 = 0.5 × 10 = 5.

The total population at t + 1 equals the number of new age-0 individuals (225) plus the number of
individuals surviving from age 0 to age 1 (5), or 230.

Leslie (1945) noted that the above problem of determining the number of individuals alive in a
subsequent time period could be more simply solved by re-casting the problem as a matrix algebra
problem where the coefficients bi and Pi are arranged in what is called a projection matrix as
follows:

b0 b1

P0 0[ ] = M .

The current age-class abundances are arranged in a column vector (age-structure vector) as
follows:

N0

N1[ ] = Nt .

The solution to the question of how many individuals there are at t + 1 can then be found by
multiplying M by Nt as follows:

Nt + 1 = MNt ,
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where the multiplication is accomplished through row and column multiplication to define the
new vector of age-specific abundances as follows.

Row 1 of M × Nt = 1st element of Nt + 1

= (10 × 10) + (25 × 5) = 225.

Row 2 of M × Nt = 2nd element of Nt + 1

= (0.5 × 10) + (0 × 5) = 5.

In matrix notation the above may be expressed as follows.

b0 b1

P0 0[ ] =�
N10

N11[ ] N20

N21[ ] , or

10 25

0.5 0[ ] =�
10

5[ ] 225

5[ ] .

In general the numbers in each age-group at any arbitrary time t are determined by the numbers in
the age-groups at t = 0 and the projection matrix (also known as the Leslie matrix) raised to the
power t

Nt = Mt × N0 .

Consider a more complicated case given as follows:

  0 5 10

  0.5 0 0

  0 0.2 0[[ ] = Nt + 1 .�

0

0

10[ ]
This yields the following on repeated multiplication for the first seven time periods.

100

0

0[ ] ➾
0

50

0[ ] ➾

250

0

10[ ] ➾
100

125

0[ ] ➾

625

50

25[ ] ➾
500

312.5

10[ ] ➾
1,662.5

250

62.5[ ] .

Population totals of 2,756.25, 5,760, and 8,865.625 are obtained by extending the analysis to 10 time
periods. Note that as the population size increases, the relative numbers of individuals in each age-
class vary. Extending the analysis to 100 time periods allows computation of the finite rate of
population increase (�) as the average of the ratio of Nt + 1/Nt or as the dominant eigenvalue of the
Leslie matrix following procedures outlines in Caswell (1989). Here � = 1.752. In turn, the instanta-
neous rate of population increase (r ) is computed as loge(�) = 0.5609.

(Box continues)
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The value of Leslie matrix models is that parameters within the Leslie matrix may be varied to
examine the implications of stress or changes in fishing policy for population abundance. For
example, assume a pollutant stress reduces survival probabilities for the youngest (age-0) age-class
but has no effect on older age-classes. Reduction of age-0 survival to 0.4 yields the following:

  0 5 10

  0.4 0 0

  0 0.2 0[[ ] = Nt + 1 .

0

0

10[ ]
Population estimates of N1 through N10 are 100, 40, 208, 160, 448, 486.4, 1,024, 1,331.2, 2,437.12, and
3,481.6. Abundance values are plotted below in comparison to the base-case scenario. The
associated � and r values for the population under this scenario are 1.5829 and 0.4592.

stressor-induced variations in the fecundity and survivorship values used to con-
struct the model. Model experiments are completed by repeated estimation of
the model holding all elements in the projection matrix constant but one and
varying the selected element to determine its effect on � and r (loge�). The pro-
portional sensitivity of the model to changes in the matrix elements may then be
measured by the elasticity of � (�ij) as follows:

Box 13.2 (continued)

Figure Population abundance of an hypothetical population over time based on a Leslie matrix
model.
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Remediative strategies may also be considered. For example, stocking may be considered as one
means of offsetting age-0 losses by adding 10 age-1 and 2 age-2 individuals to the population at
each time step. Note that survival probability and fecundity parameters remain the same. Under
this scenario the following abundances (also plotted above) are obtained: 112, 124, 340, 445.6, 887.2,
1,271.2, 2,238.88, 3,360.16, 5,602.72, and 8,619.424.

Alternatively, implementation of catch-and-release regulations for the largest (oldest) individuals
may have the effect of raising age-2 survival from 0 to 0.05. Re-computation of the period-to-period
abundances and the dominant eigenvalue of the Leslie matrix here yield � and r values, respec-
tively, of 1.5875 and 0.4622. Raising the survival of age-1 individuals to 0.25 through the use of
catch-and-release regulations but allowing the oldest individuals to be removed yields � and r
values, respectively, of 1.618 and 0.4812. Estimates of r resulting from a series of experiments that
raise age-1 survival are plotted below in comparison to the base case to demonstrate the way in
which comparative Leslie matrix model scenario results may be generated and used.

� ij = ,aij ��

��aij
(13.10)

where aij is the jth element of the ith row in the projection matrix, and �aij and
��, respectively, define the experimental change in aij and resultant change in �.
The elasticities with respect to the fecundity and survival probabilities sum to 1

Figure Changes in the intrinsic rate of increase (r) with changes in age-1 survival in an
hypothetical population.

0.60

0.55

0.50

0.45

Ra
te

 o
f p

o
p

u
la

ti
o

n
 in

cr
ea

se
 (r

)

0.1 0.2 0.3 0.4 0.5 0.6

Age-1 survival probability

Basecase r



584 Chapter 13

(de Kroon et al. 1986), allowing the relative contributions of the matrix elements
to be compared. An excellent example of the application of elasticity measures to
the study of management-related issues is given in Crouse et al. (1987).

Most elements in the Leslie projection matrix can be obtained directly from
life tables. Where life tables have not been previously constructed, a variety of
standard fisheries-related techniques exist for deriving the required matrix ele-
ments. Catch-curve analysis may be used to derive survival estimates for age-classes
fully recruited to the fishery (Robson and Chapman 1961; Chapter 6), but due
attention must be paid to possible selective biases in the catch data (Ricker 1975).
Horst (1977) provides an example of the use of this technique in the estimation
of Leslie matrix elements for a population of cunner. Horst (1977) regressed the
natural logarithm of the number of fish of age (t) collected (Nt) in a sampling
program against age (t) as follows:

loge(Nt) = a + bt . (13.11)

The slope coefficient b can be used to estimate age-specific survival as e –b. Ex-
trapolation of the regression-based adult age-specific survival estimates to young
of the year, however, is not reasonable owing to the usually high, differential mor-
talities experienced in this age-class (Vaughan and Salia 1976). Extrapolation to
juvenile age-classes may also be unwise. Estimates of age-0 and juvenile survival
can be obtained by analogy by use of field data for a closely related species (e.g.,
Landahl et al. 1997) or by determining the values for age-0 and juvenile survival
that yield an equilibrium population size.

Typically, when age-specific mortality and fecundity are known, the Leslie ma-
trix model is used to study population trajectories over time. However, if an equi-
librium population is assumed and the age-specific fecundity schedule is known,
the mortality schedule can be determined instead. If all mortality rates but the
age-0 mortality rate are determined independently of the Leslie model, then the
model may be used to deduce the residual age-0 mortality required to yield an
equilibrium population size (� = 1) as follows (Vaughan and Salia 1976):

 �   
i = 1

K – 1P0 =
Pjbi[ �

j = 1

i( )]
1 ,

bi + 1 + (13.12)

where K is the number of age-classes in the population starting from 0, bi is the
average number of eggs produced per individual in the ith age-class, and Pj is the
probability of survival in the jth age-class. Boreman (1997) details a conceptually
similar approach based on field data whereby the survival rate from egg to spawner
(ST) is expressed as

ST = NS

NE

, (13.13)
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where NE and NS, respectively, are the total number of spawned eggs and spawners
in a given year. Assuming the population is in equilibrium implies ST will remain
constant and can be partitioned into age-specific survival rates as follows:

ST = S0 · S1 · S2 · . . .  · SN . (13.14)

The age-0 survival rate, for which data are typically scarce, can then be esti-
mated by combining equations (13.13) and (13.14) and re-arranging to obtain

S0 =
NS/NE

S0 · S2 · . . .  · SN

, (13.15)

Other methods for estimating the elements of the Leslie matrix model when
incomplete population data exist for juvenile age-classes are discussed by Aalto
and Newsome (1980), and results of computer simulations to test proposed meth-
ods are described. Although examples pertaining to lacustrine yellow perch popu-
lations are given, the mathematical complexity of the suggested approaches pre-
cludes their widespread use.

When cohort data are available, or populations in stable environments are be-
ing modeled, the instantaneous per capita rate of mortality may be used to esti-
mate survival probabilities for the unit time step of the model (e.g., days, weeks,
or years) as follows:

Z = [loge(Nt1) – loge(Nt 2)], (13.16)

where Nt1 and Nt 2 are the abundances of the cohort at times t1 and t 2 or the abun-
dances of two consecutive age-classes under the assumption the population being
studied is in a stable environment. Survivorship is then defined as

S = e –Z . (13.17)

The use of Z implies that the decline in the abundance of a cohort over the
unit time step is exponential, although the true pattern of mortality within the
time step is not known. Conceptually the method of estimating survivorship is
akin to that used by Horst (1977). Here, however, survivorship is allowed to vary
between cohorts, and the method described above allows specific recognition of
variable, age-dependent rates of mortality.

Age-specific fecundity values are best estimated directly for the species of con-
cern from field data by means of a gravimetric (Bagenal and Braum 1978) or
other suitable techniques. Fecundity, however, may be inferred in a two- or three-
step iterative process based on previously estimated relationships. First a length–
age relation (e.g., von Bertalanffy) is obtained. Then, a fecundity–length rela-
tionship is obtained and converted to a fecundity–age relationship with the use of
the age–length relationship. Alternatively, a weight–length relationship is obtained
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from which an estimated fecundity–weight relationship may be converted to a
fecundity–length relationship before being converted to a fecundity–age relation-
ship by means of the age–length relationship. Conversions from statistically ro-
bust (reasonable r2 and regression coefficients with P-values < 0.05) average age,
length, and weight relationships are permissible within the context of the Leslie
matrix model because it ignores individual variability and works with age-specific
averages.

Important assumptions involved in the application of Leslie matrix models to
fish population bioassessment problems include (1) life history parameters (Pi

and bi) are independent of time and population density; (2) parameters are con-
stant within age-classes; (3) spawning occurs over a short duration of time at ap-
proximately the same date each year; and (4) there is no appreciable net migra-
tion into or out of the population under study. Although the assumptions limit
the applicability of the modeling framework, in many instances the detailed data
required to build more complex models are not available (e.g., Crouse et al. 1987).
The Leslie matrix approach does allow the effects of stress to act separately and
differentially on critical population processes. Mortality and reproductive effects
can be directly represented via changes in the age-specific schedules. Effects on
growth can be represented indirectly via downward adjustments in the fecundity
schedule or via an increment in the mortality schedule to reflect size-dependent
survival. As a result of this flexibility there are numerous examples of the applica-
tion of Leslie matrix models to the study of population level stress.

13.3.2.2 Examples of Leslie Matrix Model-Based Studies

In an early example of the application of Leslie matrix models to the study of
possible stressor impacts on fish populations Jensen (1971b) examined the effects
of increasing juvenile mortality (age-0) by 0, 5, 15, 25, 50, and 95% by means of a
Leslie model for yield fitted to data on the brook trout population for Hunt Creek,
Michigan (McFadden et al. 1967). The analysis showed that small increases (5%)
in age-0 mortality decreased the yield of the brook trout fishery, and with 50%
additional mortality the population became extinct. The analysis further suggested
that significant lags between the initial action of a stressor and the appearance of
the effect in yield measures used to monitor population status could be especially
dangerous for sustainable fishery management.

Concerns over the possible effects of density-dependent adjustments to sur-
vival rates caused later modelers to adapt the Leslie matrix framework to include
density-dependent feedbacks explicitly. For example, Vaughan (1981) included
density dependence when attempting to determine the effects of juvenile mortal-
ity on the fate of yellow perch populations subjected to power plant entrainment
in Lake Michigan. Similarly, DeAngelis et al. (1980) used a compensatory model
that incorporated density dependence, in the form of a young-of-the-year survival
term, to predict the stability and equilibrium return times for fish populations
(striped bass, winter flounder, white perch, Atlantic menhaden, and cunner) fol-
lowing perturbations. The analysis demonstrated that the dominant eigenvalue of
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the linearized Leslie matrix (e.g., �) could be used to approximate the equilibrium
return time (TR) of the population following a perturbation as TR = loge0.05/ loge�.
Comparison of the return times for modeled fish populations did not correlate
strongly with any single parameter of the Leslie matrix model. In general, how-
ever, TR increased with increases in survival rates (Pi) and the number of age-
classes in the population (DeAngelis et al. 1980). Therefore, the greater the
relative contribution of the older age-classes to reproduction, the longer the
time it takes to return to predisturbance population values. Schaaf et al. (1987)
also examined return times from hypothesized pollutant impacts by using Leslie
matrix models of multiple stocks of eight species of estuarine-dependent fish
populations. Pollutant impacts were introduced through changes in first-year
survival, and return to predisturbance abundances were tracked. Without com-
pensation, stocks responded to a single 50% reduction in first-year survival
by taking an average of 10 years to equilibrate to 88% of their predisturbance
abundances.

Typical of pollutant-related impact studies is the work of Landahl et al. (1997),
where Leslie matrix modeling methods were used to address the question of
whether documented contaminant-related reductions in reproduction and sur-
vival rates in fish populations in Puget Sound were sufficient to affect overall fish
abundance. A model for English sole was constructed using recent historical data
for the investigation of contaminant effects. Laboratory testing data on the ef-
fects of contaminants on reproduction, including impaired gonadal development,
reduced spawning ability, and decreased egg and larval viability, were then incor-
porated into the fecundity component of the model. Results suggested that de-
clines in the fecundity component of the model equivalent to those observed in
field studies were sufficient to decrease the population growth rate (r) substan-
tially if density-dependent effects were weak or moderate. A compensation for
loss of recruits due to contaminant effects was observed when strong density-de-
pendent population regulation was assumed. Extensions of the simple pollutant–
population models described by Johnson et al. (1998) to include specific con-
sideration of spatial and local population grouping responses to a stressor are
given in Chaumot et al. (2002, 2003) and demonstrate the level of complexity to
which Leslie matrix models may be taken to mimic the complexity of actual
environments.

In addition to pollutant impacts, Leslie matrix models have been used to inves-
tigate the effects of exploitation (Hayes et al. 1995) and to understand the role of
compensatory mechanisms in the population dynamics of lake trout under vary-
ing stressor regimes (Ferreri and Taylor 1996). Hayes et al. (1995) used literature-
derived data to model the population dynamics of largemouth bass and walleye
subject to competitive fishing on the joint attainment of the management objec-
tives of maintaining population abundance and population size structure. Although
results of the analysis are case specific, the analysis does demonstrate methods for
the development of an analytical framework useful for assessing the sensitivity of
population abundance and size structure to management action.
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Ferreri and Taylor (1996) used Leslie matrix methods to explore the role of
compensatory mechanisms in the population dynamics of lake trout in lakes Michi-
gan and Superior in the pre–sea lamprey period (prior to 1950), the post–sea
lamprey, high-exploitation period (1951–1961), and a current post–sea lamprey,
moderate-exploitation period (1985–1993). Comparisons were made on the basis
of the finite rate of population increase (�) as computed from Leslie matrix mod-
els incorporating stressor-regime-specific mortalities. To estimate compensatory
potential, regime-specific mortality factors (other than natural mortality) were set
at 0, and � was re-computed. The compensatory scope of the population was then
defined as the difference between the regime-specific maximum for � and � equal
to 1 (a stable population). Individual growth rates (size) and age-specific fecun-
dity rates changed in response to the different levels of lake trout abundance
during each of the stressor periods. Lake trout during the sea lamprey dominant
period, which experienced the lowest abundance and highest mortality levels,
exhibited the fastest individual growth rates and the highest age-specific fecundi-
ties. The high rates contributed to the larger compensatory scope exhibited by
lake trout during the sea lamprey dominant period (1951–1961) as compared
with the pre–sea lamprey or current periods. As Ferreri and Taylor (1996) demon-
strate, Leslie matrix evaluations of compensatory fish population responses to
varying mortality sources can aid fisheries managers in assessing both population
level consequences of stressor action and the management of productive fisheries.

13.2.2.3 Extensions to Stage-Based Models

Leslie matrix models are not appropriate for modeling all fish populations. Spe-
cies that show developmental plasticity, for which age is a poor descriptor of de-
mographic attributes (e.g., reproduction), are not suited for Leslie-based analysis.
For example, when maturation schedules are weakly correlated with age and de-
pend on individual size and growth controlled through environmental conditions,
the Leslie model will yield inaccurate predictions of population growth rates.
Lefkovitch (1965), however, demonstrated that the Leslie matrix model was a
special case of a more general class of matrix models:

Nt + 1 = ANt , (13.18)

where the elements (aij) of the projection matrix (A) are termed transition coeffi-
cients and describe how the abundance of one stage is related to the abundance
of other stages. An element of the transition matrix can represent average stage-
specific fecundity or the average propensity of individuals to move from one stage
to the next or remain in a given stage from one time step to the next. Within the
Lefkovitch matrix framework, there is no necessary relationship between age and
stage. Like the Leslie matrix, the Lefkovitch assumes a constant time step, but the
duration of time an individual spends in each stage-class is not necessarily the
same as the time step.

In population level studies, the Lefkovitch matrix typically takes on the follow-
ing form:
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(13.19)

where bi, Pi, and Gi, respectively, define stage-specific fecundity, the probability of
surviving and remaining in the same stage, and the probability of surviving and
growing into the next stage.

The technique of mutliplying the projection matrix A by the population vector
Nt described above for the Leslie matrix modeling framework is similarly used in
stage-based modeling to forecast future population states (Caswell 1989). Fur-
thermore, the dominant eigenvalue of the projection matrix yields an estimate of
the finite rate of population increase � (= e r), just as in the Leslie matrix case.

While stage-based models overcome the conceptual difficulties associated with
modeling developmentally plastic species, they are not without some their own unique
drawbacks. The main problem is the large number of coefficients that must be
estimated to construct the model appropriately. A second is ensuring that chosen
stages make clear biological sense and are not arbitrarily imposed upon the model
for reasons of data convenience. There have been several comparative assessments
of age- and stage-based models published in the literature, though none specific to
fish populations. In general, comparative studies have favored stage-based over age-
based models for organisms whose growth and reproductive responses are strongly
driven by environmental conditions (Werner and Caswell 1977).

13.2.2.4 Summary Appraisal of the Matrix-Based Approach

The age structure detail in Leslie matrix models allows a population to be de-
scribed in terms of its long-term abundance, intrinsic rate of natural increase,
reproductive potential, resilience, extinction risks, or some combination of these
factors (Landahl et al. 1997). Application of Leslie models to the study of stressor
effects, however, requires that accurate age-specific survival and reproductive rates
under various stressor scenarios are available. Generally, these rates have been
derived based on limited laboratory tests and longitudinal studies of species ecol-
ogy (Barnthouse et al. 1990). Questions about the validity of extrapolations from
laboratory tests to field conditions exist (Power and McCarty 1997) and recom-
mend against the use of non-field-validated, laboratory-estimated stressor response
data when constructing Leslie matrix models for population bioassessment studies.

In constructing models, it is also important to remember that stressor-related
impacts on survival and reproduction will be influenced by the extent to which
stressor effects are mitigated by population regulating mechanisms such as emigra-
tion, immigration, or density dependence (Power 1997). Where migrations are likely
to increment or decrement population numbers, age-specific mortality factors must
be appropriately adjusted to reflect such effects. In addition, when recruitment
processes are known to conform to standard stock–recruitment relationships (e.g.,

A = [ [P0 b2 b3 . . . bk – 1 bk

G1 P1 0 . . . 0 0
0 G2 P2 . . . 0 0
0 0 G3 . . . 0 0

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

0 0 0 . . . Gk – 1 Pk

,
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Beverton–Holt or Ricker; Chapter 4), due consideration of these relationships in
model construction should also be given. Accordingly, Leslie matrix models with-
out appropriate density-dependent adjustment are viewed in the ecological litera-
ture as only first approximations of how population levels may vary under a given
set of conditions, appropriate only for use in studying expanding populations
that have yet to approach carrying capacity (Mendelssohn 1976).

Critical to the Leslie matrix approach is the assumption of stability in the popu-
lation age distribution over time. This is often unrealistic for populations sub-
jected to random anthropogenic or environmental disturbances, which therefore
display high variability in year-class strength. Furthermore, a Leslie matrix model
will be inappropriate when critical survival and reproductive values do not de-
pend on age but on physiological development that is independent of age. As
noted previously, Leslie matrix models have also been criticized for failing to in-
clude considerations of density dependence or temporal changes in critical sur-
vival parameters. As a result, matrix survival coefficient constants are now often
viewed as random variables or made explicitly density dependent such that the
value the coefficient takes on in any one time period is functionally dependent on
abundance in the period (Goodyear 1985; Manly 1990). An explicit example for
fish populations of the incorporation of density-dependent parameters in the con-
struction of matrix models is given in Van Winkle et al. (1978).

Drawing survival coefficients randomly from a distribution with a defined mean
and variance further allows the Leslie matrix model to mimic the impact of vary-
ing environments on populations. Although density dependence and temporal
parameter changes may be accounted for in the Leslie framework, the adapta-
tions come at the cost of increasing model complexity. Introduction of varying
parameter values limits the interpretative value of the intrinsic rate of population
increase because repeated changes in parameter values imply the stable age dis-
tribution on which the parameter depends mathematically will never be reached.
Accordingly, a detailed description of the population growth rate parameter dis-
tribution in terms of its mean, variance, and empirical density function are neces-
sary to interpret probable population level effects when models are largely sto-
chastic. Regardless of improvements, Leslie models still focus on abundance and
do not produce information on other population parameters routinely used by
biologists to assess the effects of environmental perturbations on populations,
including rates of growth, length-frequency distributions, condition factors, and
age-at-maturity (Power 1997).

13.2.3 Stock-Assessment-Based Methods

To conduct a formal stock assessment it is necessary to understand the dynamics
of the population being assessed. A key objective of stock assessment procedures
is the description of how the stock or population of interest has responded to
fishing pressure in the past. With knowledge of the relationship between stock
densities and fishing effort, it is possible to assess stock productivity and predict
future sustainable stock harvesting levels (Haddon 2001). Historical interests in
determining equilibrium harvest values for exploited stocks explain the traditional
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dichotomous representation of total mortality (Z ) in fish populations as the sum
of fishing mortality (F ) and natural mortality (M) (see, for example, Ricker 1975
and Chapter 6). Natural mortality is rarely estimated directly because of the diffi-
culties associated with gathering and interpreting appropriate field data (Shepard
1988), but it may be estimated indirectly as the difference between total and fish-
ing mortality. Conceptually, the difference between fishing-induced mortality and
mortality imposed by other forms of anthropogenic stress (e.g., pollution) are
often small. Both result in the permanent removal of individuals from the popula-
tion. Accordingly, it is possible to adapt traditional fisheries management ap-
proaches to the problem of population bioassessment, including (1) surplus pro-
duction models, (2) yield or yield-per-recruit models, and (3) stock–recruitment
models. Brief descriptions of each modeling approach, the data required to com-
plete a population level bioassessment, and the ways in which anthropogenic stres-
sors other than fishing may be incorporated into the modeling frameworks are
given below. For further theoretical details on mathematical form, estimation,
and examples of applications to the study of exploitation-related issues, readers
are referred to the detailed descriptions given in previous chapters of this book,
Hilborn and Walters (1992), and Haddon (2001), the latter being particularly
good at providing easily understood examples. A final category of aggregate mor-
tality impact-based assessment methods developed over the years for assessing
entrainment mortality impacts is also discussed in this section.

13.2.3.1 Surplus Production Models

Surplus production models aim at describing the dynamics of exploited popula-
tions with a minimum of biological information. The models assess the produc-
tion from a stock above that required to replace losses due to natural mortality by
means of the application of a logistics-based response curve. Surplus production
models are denominated in biomass and require time series data on total harvest
biomass and total fishing effort in standardized units per unit of time. Catch per
unit of standardized effort is assumed to be proportional to fishing mortality. In
the absence of fishing mortality, the changes in population biomass are a nonlin-
ear function of existing population biomass as follows (Hilborn and Walters 1992):

Bt + 1 = Bt + Bt

K
r
p Bt 1 –[ [( (P  – Ct , (13.20)

where Bt is population biomass in period t, r is the intrinsic rate of population
increase, K  is carrying capacity, p is an assymetry term, and Ct is the total catch in
period t. Catch is estimated recursively by estimating catch per unit effort (C/ft)
as qBt – 1, where q is the technical coefficient embodying fishing technology that
describes the proportion of the stock taken with each unit fishing effort (Et).
Then C/ft is substituted into the standard catch per unit effort relation to yield
Ct = C/ft × Et. Further details on fitting surplus production models to data are
given in Chapter 8, Hilborn and Walters (1992), and Schnute and Richards (2002).

The effect of stress on a population can be analyzed using surplus production
models through variations in q, Et, K, or r. Stress-related mortality losses may be
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treated as equivalent to biomass removals and analyzed through incrementing Et

or q. Declines in habitat suitability resulting from contaminant or physical distur-
bance (e.g., macrophyte removal) effects may be modeled through reductions in
K, population carrying capacity. Changes in individual growth or reproduction
are conceptually more difficult to assess. Stress ultimately affects one or more of
the three basic processes governing fluctuations in abundance: mortality, somatic
growth, and reproduction. If stress is chronic (nonlethal), individual growth-me-
diated fecundity or direct fecundity responses are likely to be induced in the af-
fected population (Adams 2002). In either case, the population growth param-
eter (r), which equals the difference in the instantaneous rates of natality and
mortality (Krebs 2001), will change. If only one of the underlying natality or mor-
tality processes is affected, the parameter r may be altered using field-derived
measures of changes in fecundity or mortality. If both natality and mortality pro-
cesses are affected, changes in r must reflect the net effect of opposing changes
on r, and a detailed life table assessment is likely to be required before surplus
production analysis can be used to infer population level changes. Example com-
putations using the above approach are given in Box 13.3.

Surplus production models have the advantage of requiring data routinely col-
lected by monitoring agencies (e.g., catch and fishing effort time series) and a
well-developed application and interpretation literature exists (e.g., Chapter 8).
Unfortunately, surplus production models make a number of strong assumptions.
For example, it is assumed that the equilibrium population and stable age struc-
ture are attained instantaneously for every level of fishing effort. Catch per unit
effort is assumed to be proportional to population biomass and determined by
the catachability coefficient (q). Net migration is also assumed to be zero. Haddon
(2001) notes that equilibrium-based surplus production models should be avoided
for detailed fisheries assessments, a view countered by Schnute and Richards (2002)
who argue surplus production models are nevertheless valuable tools for under-
standing and communicating the inevitable limits of biomass loss for a popula-
tion. Consideration of the advantages and disadvantages of surplus production
models when coupled with the general availability of software packages for model
estimation (Chapter 8) suggests surplus production models are probably best used
as a screening tool for assessing a large number of fish populations that may be at
risk from anthropogenic disturbances or as a ranking tool for assessing prelimi-
nary impact scenarios for a population known to be at risk. In either instance,
additional research can then be directed toward the selection and implementa-
tion of more complex assessment methods tailored to the specifics of the case or
cases of most concern.

13.2.3.2 Yield or Yield-per-Recruit Models

Yield-per-recruit models improve on surplus production models with a more ex-
plicit representation of the processes governing individual growth (Beverton and
Holt 1957). The general form of the yield-per recruit models is (Gulland 1988)

= FNTWT
dYT

dt
, (13.21)
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Box 13.3 Surplus Production Analysis

Consider the following data for a commercial alewife fishery used in Chapter 8 to illustrate the
application of surplus production models.

Table Catch and effort data for alewife fishery described in Box 8.7.

Year Catch (kg)

1986 90,000
1987 113,000
1988 155,860
1989 181,128
1990 198,584

The parameters initial biomass (B0), carrying capacity (K ), catchability (q), and the intrinsic rate of
growth (r) required to solve the model for biomass in period t are given as B0 = 732,506; K =
1,160,771; q = 0.0001484; and r = 0.4049 as determined in the example in Box 8.7. The resulting set
of computations form the base case scenario for determining the possible impacts of reductions in
the intrinsic rate of population increase (2% decline in r to 0.396773), with the latter scenario
requiring re-computation of the predicted biomass series by means of equation (13.19). To
determine further the offsetting reductions in catch required to compensate for changes in
biomass caused by reducing r, a third set of calculations is performed using equation (13.19) to
predict biomass. Example computations are given below for 1.1% and 1.6% reductions in the
catch rate.

Table Predicted changes in biomass of alewife fishery given changes in intrinsic rate of
population increase (r) and reductions in catch rate. The first row represents the initial biomass.

Biomass Biomass
with 2% r with 2% r

Biomass  decline, decline,
Base case with 2% r 1.6% catch 1.1% catch

Year Catch (kg) biomass decline  decline  decline

732,506 732,506 732,506 732,506
1985 90,000 751,933 749,745 751,185 750,735
1986 113,300 745,867 741,789 744,874 743,910
1987 155,860 697,954 692,172 697,408 695,773
1988 181,128 629,503 621,922 629,646 627,235
1990 198,584 547,577 537,897 548,559 545,234

The 1.1% reduction in catch is insufficient to offset the biomass reductions caused by a decline in
the intrinsic rate of populations increase, whereas a 1.6% reduction in catch eventually more than
compensates for the initial biomass reductions. Note, however, that scenario predictions are
increasingly likely to be in error as a result of the strong equilibrium and stable age structure
assumptions made by surplus production models. Due caution in making long-term predictions of
possible stressor effects, therefore, is required.
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where Yt is the yield to the fishery in period t, F is the instantaneous rate of fishing
mortality, and Nt and Wt are functions describing population numbers and aver-
age individual weight at age t. Population abundance is typically assumed to de-
cline exponentially with age as

Nt = Re –Z(t – tc), (13.22)

where tc is the age-class at which fish are recruited to the fishery, R equals N(tc)
and is the number of recruits in the exploited age-classes, and Z is the instanta-
neous rate of total mortality. The instantaneous rate of total mortality may be
decomposed into F, the instantaneous rate of fishing mortality, and M, the instan-
taneous rate of natural mortality (Ricker 1975). Average individual weight at age
t (Wt) is usually defined using a von Bertalanffy equation (Beverton and Holt
1957) as follows:

Wt = W�(1 – e –K(t – t 0)
3

), (13.23)

where W� is asymptotic weight, K is a parameter governing the rate at which maxi-
mal weight is approached, and t 0 is the theoretical age at which weight equals 0.
By substituting equations (13.22) and (13.23) into equation (13.21) and integrat-
ing over all age-classes, the following equation is obtained:

Y = FRW� �   
n = 0

3 bne –nK(tc – t0)

Z  +  nK
, (13.24)

where bn takes on the values of 1, –3, 3, –1, respectively, for n = 0, 1, 2, 3. Further
details of the model’s mathematical details are given in Ricker (1975), Hilborn
and Walters (1992), and Haddon (2001).

This model is closed, assuming no net migration. The model further assumes
all sources of mortality remain constant over the life of the fish and are indepen-
dent of population density. Estimates of mortality, von Bertalanffy growth param-
eters, recruitment to the fishery, and maximum age may be obtained using the
techniques discussed in Chapters 4 through 10.

The effects of stress may be incorporated by varying the parameters used to
estimate the model. Acute (lethal) stressors may be represented by variations in
the total mortality rate or as additions to the sum of natural and fishing mortality.
Age-specific changes in mortality can be included by altering tc, the age-class at
which fish are recruited to the fishery. Chronic effects leading to changes in indi-
vidual growth rates can easily be incorporated by varying K in the underlying von
Bertalanffy weight equation. Representation of reproductive effects, however, is
difficult and must be dealt with indirectly by decreasing recruitment. The ap-
proach has the disadvantage of having to include the effects of mortality prior to
recruitment in the adjustment made to R and the addition of a complex second-
ary assessment to partition the actual decline in R due to reductions in fecundity
and the effects of natural morality.
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Results of scenarios incorporating numerous changes to model parameters may
be plotted on isopleth diagrams defining the contours of equivalent yields result-
ing from varying combinations of selected model parameters. Isopleth diagrams
are useful for understanding the joint response of yield to possible multiple stres-
sor action (e.g., declines in both growth as presented by K and mortality as repre-
sented by Z) characteristic of cumulative impacts on fish populations (e.g., Ricker
1975). Although yield-per-recruit models provide a realistic representation of events
affecting fish during the life cycle of a particular cohort, they are clearly more
problematic when used to describe events acting on a succession of generations
(Gulland 1988). This weakness undoubtedly restricts the use of yield-per-recruit
models in population bioassessment to cases in which the consequences of single
perturbations (e.g., accidental fish kills) for fish populations are of concern.

13.2.3.3 Stock–Recruitment Models

Stock–recruitment (SR) models describe the average relationship between the
abundance of mature individuals in a population and the number of progeny
recruited to the mature population in the next generation. Where detailed life
history data are available, SR models may be used to describe the relationship
between density or abundance at any two life stages. General mathematical ex-
pressions developed to describe available observational data for fish populations
were proposed by Ricker (1954) and Beverton and Holt (1957), as follows.

Ricker: R = �Se –	S ; and (13.25)

R = S
a + bS

,Beverton and Holt: (13.26)

where R is the number of recruits, S the size of the parent (spawning) stock, and
�, 	, a, and b are parameters estimated from the stock–recruitment data. Further
detailed discussion of the derivation and estimation of stock–recruitment models
is given in Chapter 4.

Stock–recruitment models represent changes in population numbers brought
about by both density-independent and density-dependent population regulating
factors (Ricker 1973). Accordingly SR models may be used to represent the ef-
fects of a wide variety stressors (e.g., acute or chronic) on population numbers.
Density-independent causes of mortality (Zi) generally include all abiotic causes
for which mortality removes a set proportion of the population at all densities
(e.g., physiological stressors such as temperature). Density-dependent (compen-
satory) mortality (Zc) includes all biotic mortality factors for which mortality is
positively correlated with population density (e.g., predation and disease). Mor-
tality rates at the origin estimate mortality from density-independent causes. As
density-independent mortality does not change with increasing population density,
total mortality may be estimated simply as the sum of all mortalities at a given den-
sity. Instantaneous rate of compensatory mortality may be deduced by subtracting
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density-independent mortality from the recruitment rate at the given population
density (Ricker 1973) to obtain for the Ricker curve,

Zc = 	S , (13.27)

and for the Beverton–Holt curve,

Zc = loge(1 + bS/a). (13.28)

If the average number of eggs laid per fish (E ) is known (Ricker 1973), estimates
of density-independent mortality can be computed for the Ricker curve as

Zi = loge E – loge � , (13.29)

and for the Beverton–Holt curve as

Zi = loge E – loge a . (13.30)

The effects of changes in Zi on population recruitment may be determined as
discussed in Box 13.4. As with other modeling-based methods, the analysis as-
sumes a stable age structure from which an average fecundity value can be de-
rived for a closed population (Vaughan et al. 1984). In addition, it is assumed that
all population-dependent mortality occurs prior to the selected recruitment age
and that only stock size affects survivorship.

The separability of mortality into density-dependent and density-independent
factors allows stress to be incorporated separately into population level
bioassessments in numerous ways. The effects of mortality acting on a population
prior to the selected age of recruitment can be modeled by increasing 	 in the
Ricker curve or by incrementing b, or decrementing a, in the Beverton–Holt curve.
The effects of declines in reproduction can be incorporated through reductions
in E in the expression for Zi , and the effects of multiple sources of stress can be
modeled by simultaneous changes in either Zc or Zi .

A second approach to using SR models to assess possible population level im-
pacts (Savidge et al. 1988) makes no attempt to separate mortality into its density-
independent and density-dependent components. By use of models denominated
in numbers of spawners such that parents and recruits represent discrete genera-
tions, replacement stock values are determined (e.g., Ricker 1975), and the effect
of incremental mortality is introduced through proportional adjustment of Ricker
or Beverton–Holt model parameters. Two cases are considered: the case in which
incremental mortality occurs prior to the period of generational compensatory
adjustment and the case in which incremental mortality occurs after the period of
generational compensatory adjustment. Expressions for the percentage change
in the equilibrium population size (PC) of a population exposed to a stressor (m)
incremental to the stresses of natural variation in physicochemical environmental
factors may be defined in terms of SR model parameters, respectively, for the
Ricker and Beverton–Holt models as shown below (Savidge et al. 1988).
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Box 13.4 Stock–Recruitment Analysis

Table Hypothetical data for a longitudinal study of a stream-dwelling population of brown trout.

Year-class Spawning stock (S) Recruits (R)

1985 1,034 1,443
1986 505 1,705
1987 390 1,680
1988 574 1,918
1989 1,032 1,283
1990 642 1,830
1991 803 1,718
1992 1,768 550
1993 1,630 758
1994 941 1,475
1995 1,400 1,005
1996 460 1,788
1997 230 1,393
1998 160 1,193
1999 1,700 743
2000 1,768 650
2001 551 1,770

The Ricker stock–recruitment (SR) curve may be estimated from the data by means of the linear
transformation loge(R/S) = loge� – 	S to obtain

loge(R/S) = 2.2173 – 0.00185S ,

for which r 2 is 0.997 and regression coefficient P-values are less than 0.05. Transforming the
intercept of the estimated curve to � = eloge� = 9.1823 allows the Ricker SR model to be written in its
more familiar form as

R = 9.1823Se–0.00185S.

A plot of the data used to estimate the model and the estimated model is given in the plot below
with the equilibrium replacement value for the population (loge�/	) marked as point A on the one-
for-one replacement line for the population.

(Box continues)

In case 1, mortality acts prior to the period of generational compensation.

PC = 100
loge[�(1 – m)]
(1 – m)loge(�) , and{ {[ [– 1Ricker: (13.31)

PC = 100 –am
(1 – m)(1 – �) .[ [Beverton–Holt: (13.32)
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As an example of how SR models might be used to study the possible effects of hydroelectric
generation activities on fish populations, assume that average adult fecundity (E) equals 1,000. Then
the population-independent mortality term may be defined from equation (13.28) as

Zi = logeE – loge� = loge(1,000) – 2.2173 = 4.6905 .

Now suppose that the utility wishes to predict the consequences of entrainment mortality on the
population. Entrainment mortality affects only the population-independent source of mortality, Zi .
If estimates show entrainment mortality to be 10%, then Zi would increase from 4.6908 to 5.1599.
The resulting change in Zi implies, through re-arrangement of equation (13.26), a decrease in the SR
model � parameter as follows:

loge� = logeE – Zi

� = Ee –Zi

= 1,000e –5.1599

= 5.7423 .

Figure Plot of data used to estimate the Ricker SR model and the estimated model with the
equilibrium replacement value for the population marked as point A (at intersection with one-for-
one replacement line).

Box 13.4 (continued)
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If there were no change in the population-dependent mortality factor, the resulting Ricker curve
would be

R = 5.7423Se–0.00185S,

as represented by the dotted line in the figure above.

Inspection of the two recruitment curves indicates that recruitment has fallen for every level of the
spawning stock as a result of entrainment-induced mortality. Furthermore, the equilibrium size of
the population, defined by the point at which each curve cuts the 45° line, or the expression (loge�/
	), has fallen by some 21.17% from 1,198.5 to 944.8, indicating the impact of entrainment mortality
is more than proportional to the increase in population-independent mortality. The result depends
on the nonlinear nature of the SR model and highlights the dangers of assuming proportional
population effects for even small impacts. Although the varying effects of changes in density-
independent or density-dependent mortality can be incorporated into SR models, there are many
factors that recruitment models cannot take into account. Effects of changing environmental
factors, the potential effects of changes in population size structure, and the differential effects of a
human action on varying age- or size-classes cannot be readily considered by such models. The SR
relationship, therefore, cannot adequately describe the internal changes within a population that
may be important early indicators of the adverse effects of human action.
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Figure Plot of data used to estimate the Ricker SR model and the estimated model with Zi of
4.6905 (solid) and an entrainment mortality of 10% (Zi = 5.1599, dashed line). Equilibrium replace-
ment values for the population marked as points A and B (at intersection with one-for-one
replacement line).
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In case 2, mortality acts after the period of generational compensation.

PC = 100 loge(1 – m)
loge(�)

, and[ [Ricker: (13.33)

PC = 100 –m
1 – a

.[ [Beverton–Holt: (13.34)

In each case m is defined in terms of a proportional effect. A key assumption of
the approach is that compensation operates over only a brief period early in the
life cycle of the fish. Mortality added after compensation has been assumed to
occur results in larger impacts on the population. Although simple and determin-
istic in nature, the approach yields results similar to those produced by more
complicated age-structured models, except when variation in survival rates is high
and the modeled population is semelparous (Savidge et al. 1988).

In summary, SR-based approaches to assessing the population level effects of
stress have several advantages: mathematical simplicity, paucity of data require-
ments, and specific inclusion of population regulation concepts in the form of
density-dependent and density-independent mortality. Nevertheless, SR-based
methods are suited only for use with populations for which an adequate time
series of information exists from which statistically sound SR models may be esti-
mated. In addition, SR models cannot incorporate multiple sources of mortality
or age-dependent variations in density dependence unless specific age-to-age or
stage-to-stage analyses are to be conducted. Even then, interannual variations in
rates will be difficult to adjust for in model estimation and are likely to introduce
enough variability in the data required to estimate the SR model to preclude the
model from explaining a sufficiently high proportion of observed recruitment
variability.

13.2.3.4 Aggregate Assessment Methods

Aggregate assessment methods include a variety of techniques developed for esti-
mating entrainment and fishing mortality losses. As elsewhere, the analogy be-
tween population losses resulting from fishing or entrainment and population
losses resulting from the actions of other anthropogenic stressors is a good one,
and the techniques may be adapted for use in population level bioassessments.
Techniques include the equivalent adult method (Horst 1975), the production
foregone method (Rago 1984), and the reproductive potential method (Goodyear
1988, 1993).

Equivalent adult method. Developed initially to assess the effects of power station
entrainment of juveniles on eventual population abundance, the equivalent adult
methods is most suited to the study of stressors having their largest impacts on
juvenile age-classes (Horst 1975). The method attempts to translate losses in juve-
nile age-classes into the equivalent number of individuals lost in older age-classes
under the assumption of the juvenile fish having been allowed to survive to reach
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the older age-classes. As such the method directly accounts for the effects of natu-
ral mortality acting in the intervening period and may be used to express losses in
terms of the age- or size-classes of fish that are typically the focus of commercial or
recreational harvest regulations. If density-dependent mortality does not act on
the population between the age-classes impacted by a stressor and the age-class at
which the population level effects are assessed, population level effects may be
estimated as (Horst 1975; Goodyear 1978)

Na = �NiSi ,   
i = 1

n

(13.35)

where Na is the equivalent number of fish in age-group a, the age-class at which
the population level effects are judged, Ni is the number of fish in the ith age-class
that are lost, Si is the survival rate between age-class i and a, and n is the number of
age-classes between the first-impact age-class and age-class a. With additional in-
formation on population age structure and reproductive characteristics, the ap-
proach may be expanded into a Leslie matrix analysis, and the impacts on the
intrinsic rate of population increase can be measured using the dominant eigen-
value. Although the approach is useful for obtaining a first approximation of po-
tential adult population impacts of age-0 losses, significant insights into probable
long-term effects of persistent losses are not obtained using the equivalent adult
approach (Goodyear 1978).

Production forgone method. Losses of fish as a result of anthropogenic impacts
have immediate as well as future impacts on population abundance. Fish biomass
removed from an aquatic system as a result of stress reduces population biomass
and the potential prey base for predators, leading to trophic cascades. One means
of assessing the potential for trophic cascades is to determine what an individual
fish would have produced in terms of biomass over its remaining life span. Defin-
ing Pj as the production forgone due to a stressor removing a fish of age j, the loss
in biomass may be computed as (Rago 1984)

Pj = �GiBi ,   
i = j

tmax

(13.36)

where tmax is the maximal age that can be attained by any individual in the popula-
tion and Gi and Bi , respectively, are the ith age-specific instantaneous somatic
growth rates and average biomasses. The equation implies that age-specific abun-
dances (Ni) and age-specific mean weights (Wi) are known or can be estimated as
follows:

Wi = Wi – 1eGt, and (13.37)

Ni = Ni – 1e –Zt. (13.38)

In either case, simple recursive exponential decline expressions may be used
if other methods do not suffice. A detailed example of the application of the
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production forgone method is given in Rago (1984) for a hypothetical fish popu-
lation impacted by entrainment mortality.

Production forgone is argued to be more relevant for purposes of population
level bioassessment than numbers lost because it includes consideration of the
energy potentially transferable to other trophic levels through consumption or
decomposition (Rago 1984). The key assumption of the approach is that short-
term population responses to stress do not induce immediate alteration of exist-
ing survival and growth rates deducible from current population structure. Thus,
the method does not require the specification of a dynamic population model,
and the relative importance of larval versus juvenile and adult fish losses can be
compared directly (Rago 1984) in any completed analysis. Additionally, the model
requires some parameters that are difficult to estimate (e.g., juvenile age-class
survivors) and is consequently restricted in its use to species with adequate pre-
existing data sets. Finally, the production forgone methods is deterministic and
limits users to making projections about future abundances, without allowing com-
ment on the probabilities associated with those estimates.

Reproductive potential method. Although the equivalent adult method addresses
potential abundance losses, it has been criticized for failure to provide long-term
insights into the consequences of possible losses in juvenile age-classes (Goodyear
1978), and it cannot adequately deal with the nonlethal effects of chronic pollut-
ant impacts that typically include reductions in fecundity (Adams 2002). To un-
derstand the possible consequences of stressor effects for reproductive impair-
ment of the population as a whole, the reproductive output of an individual fish
recruited to the reproductive proportion of the population may be measured as
potential lifetime egg production (P) under conditions of optimal growth and
survivorship as follows (Goodyear 1988):

P = �XiRiLi �Sj ,   
i = 1

n

j = 0

n – 1

(13.39)

where Sj is the density-independent survival probability for the j th age-class, Xi is
maximum average fecundity of mature females at age i, Ri is the maximal fraction
of females of age i that are mature, Li is proportion of age-class i that is female,
and n is the number of population age-classes. Multiplication of P by the total
number of recruits to the reproductive age-classes yields the reproductive poten-
tial for the population. Under the conditions of stationary (constant year-to-year
Sj, Ri, and Li) and a 1:1 sex ratio among eggs, the age-0 survival rate (S0) is given by

S0 =
2
P

. (13.40)

Stressor-induced mortality in the first year of life would affect S0 but not P, whereas
stressor-induced mortality in the older age-classes would affect P but not S0.

Reproductive potential may also be used to compute a viability index repre-
senting the aggregate of compensatory density-dependent factors operating
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throughout the life history of the study population under the assumption that the
population is fluctuating about a long-term equilibrium (Goodyear 1988). The
viability index (v) is given by

v = 1/PS0 , (13.41)

where S0 is the probability of survival from density-independent sources of mortal-
ity between egg deposition and recruitment to an age-class of concern (e.g., typi-
cally the age-class at which the population is fully recruited to the fishery or the
reproductive age-classes of the population). For assessment of stressor-related ef-
fects S0 may be broken into two component parts, survival from density-indepen-
dent natural causes of mortality (SN) and survival from density-independent an-
thropogenic stressor-related causes of mortality (SS), such that

S0 = SN SS . (13.42)

By analogy, S0 can be decomposed into multiple sources of mortality if the im-
pact of multiple stressors on a single population is to be considered.

S0 = SNS1S2 . . . SM , (13.43)

where S1, S2, . . . , SM represent survival from density-independent anthropogenic
stressor-related mortality causes 1 through M.

From the viability index a compensation ratio (CR) may be computed. The CR
is a composite measure of the changes in survival and fecundity necessary for a
stressed population to attain a new equilibrium and is expressed relative to the
viability index of the unstressed population as follows (Goodyear 1988):

CR = vS
vU

, (13.44)

where vS and vU are stressed and unstressed population viability indices. Typically,
the CR ratio will be greater than 1 because the total survival probabilities will be
greater in the unstressed population. Differences between CR and 1, therefore,
will represent an index of the stressor impact. If cumulative stresses are consid-
ered, the differences between combinations of stressors will represent the mar-
ginal impact of the incremental stressor (Goodyear 1988).

■ 13.3 VARIANCE ANALYSIS

Populations are known to vary over a wide range of densities in response to envi-
ronmental fluctuations and disturbances, and there are theoretical reasons for
expecting the variance of life history characteristics to increase as a function of
stress (Service and Rose 1985). Accordingly, variability may provide a convenient
measure of the relative degree of population level stress. Ryder (1990) reasoned
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that whatever the inherent complexity of an ecological system, all systems were
characterized by a normative range of variability because of intrinsic homeostatic
mechanisms. Variability outside the normative range, therefore, ought to provide
an easily obtainable indicator of stress. DeAngelis et al. (1990) likewise suggested
that it was possible to compare within-species variability at different times—and
under different conditions—and use increases in variability as evidence of popu-
lation level stress.

Marshall (1978) was among the first to demonstrate the responsiveness of vari-
ability to stress with a series of laboratory experiments that examined the effects
of chronic cadmium exposure on zooplankton populations. Results showed an
exponential rise in variability, measured as the coefficient of variation for popula-
tion abundance. Inter-individual physiological variability was subsequently sug-
gested as a specific variability-based means of investigating stress effects (Depledge
1990). Forbes et al. (1995) examined the growth rate of gastropods to cadmium
exposure and found that exposure to cadmium increased the variability in popu-
lation growth rates. Results lent credibility to the use of variability as a potentially
useful indicator of exposure to environmental stress. Power (1997) examined brook
trout population responses to cumulative stresses within a modeling context by
means of an index of stressor intensity and found broad support for the notion
that variability increased as a function of stress.

To assess variation in response to stress, one must determine beforehand which
endpoint to assess and which measure of variability is most appropriate. Repro-
ductive and growth endpoints are sensitive to stress (Adams 2002) but have the
disadvantage of being equally responsive to environmental variation (Wootton
1990). Summary measures like abundance and the finite rate of population in-
crease are better insofar as they are integrative measures. Many analyses of varia-
tion in abundance choose to employ the coefficient of variation (CV) computed as

S 2(n)
X(n)

CV = , (13.45)

where s2(n) and x–(n), respectively, are the variance and mean of n abundance
observations. Simple statistical comparison between CVs computed for the same
population under differing stress regimes, or for two populations at differing sites,
may be completed for samples with n1 and n2 each equal to 30 or more by use of a
z-statistic as follows:

z = ,|CV1
2 – CV2|

CV1
2 

+
 CV2

2

2n1 2n2

(13.46)

where CVi is the value of the ith CV computed with observations ni. For an exact
test and critical values for small n see Lohrding (1975).
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Abundance-based measures of the CV, however, are sensitive to high abun-
dance values. Furthermore, in comparisons involving samples from different loca-
tions or times, a direct comparison of computed CVs may not be valid because the
coefficients would reflect the combined differences in natural and stressor-induced
variability and mean abundance. Accordingly, Williamson (1984) has recommended
the use of a measure of annual variability (AV) developed by Wolda (1983):

AV = var[log10(nt  + 1) – log10(nt)], (13.47)

where nt + 1 and nt , respectively, are the population abundances at time t + 1 and t.
If the population under study is following a trend (e.g., decreasing), as many
stressed populations may be doing, the AV measure is superior to the CV (Wiens
1989). In addition, the measure facilitates comparisons of different sites or spe-
cies without the need for awkward corrections for the effects of density (Williamson
1984). The AV may be simply related to the standard deviation of the logarithm
(log10) of population density (sD) as follows (Williamson 1984):

AV = 2sD
2(1 – r1), (13.48)

where r1 is the first serial correlation coefficient of the log-transformed abun-
dance time series. When r1 is not significantly different from 0, AV may be used to
estimate the standard deviation of population density. When r1 is greater than 0,
AV will be smaller than when estimated using population density alone. Similarly,
when r1 is less than 0, AV will be larger than when estimated using population
density alone. The significance of r1 can be simply tested at an � of 0.05 by means
of the relation (Abraham and Ledolter 1983)

n |r1| > 1.96 , (13.49)

where n is the number of samples in the time series from which r1 was calculated,
and r1 is computed as (Abraham and Ledolter 1983)

r1 =  t = 1

n – 1

�(nt – n)(nt + 1 – n)– –

t = 1

n

�(nt – n)2–
.

(13.50)

where, nt is population density in the tth time period and n– is the mean of the
population density observations.

Whittaker (1975) proposed a coefficient of fluctuation based on sequential
abundance measures (N) that may be adapted for broader use in population
bioassessment as follows

(log10ni – log10ng)
2

i = 1

N

�
.antilog

t – l
(13.51)
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Here ni is the ith species abundance, or other population endpoint measure,
and ng is the geometric mean of the samples:

ng =   n1 · n2 · . . . · nN
N . (13.52)

The use of logarithms implies that the measure is less sensitive than the CV to
differences in absolute measures of the observations used to assess variability.

All approaches to using variability as a measure of stress suffer from the poten-
tial problem of temporal autocorrelation. Sequential measures of any endpoint
are unlikely to be completely independent because of the persistence of either
resident individuals or, in the case of many stress exposure problems, physiologi-
cally resistant individuals. One suggested solution is the assessment of stress in
populations over periods of time in excess of generational length (Connell and
Sousa 1983). Although multiperiod occupancy of a location by individuals violates
the requirements of statistical independence, it does represent the biology of the
system under study (Wiens 1989). Furthermore, there is comparative value in the
information for population bioassessments if a population at one location is less
variable than a population at another location when both are subjected to similar
stress regimes.

■ 13.4 KEY-FACTOR ANALYSIS

When studying any fish population, it is often desirable to measure the effects of
all mortality factors acting on the population and to select among them to deter-
mine which factor (or factors) is most important for the observed variability in
population abundances through time. Morris (1959) introduced the term key
factor to describe mortality factors that contribute to variable mortality through-
out the life cycle and appear to be largely responsible for observed changes in
population density in successive generations. Key-factor analysis is based on the
concept that it is the variation in survival rates at different life stages, and the
manner in which variations in survival rates in one stage affect abundance in later
stages, that determine overall population dynamics. Accordingly, appropriate use
of key-factor analysis allows determination of which life stage mortality factors
have been most affected by stress. The key-factor concept was subsequently devel-
oped by Varley and Gradwell in a series of papers (1960, 1963, and 1968) and
Varley et al. (1973). Southwood and Henderson (2000) describe the method of
key-factor analysis in detail. Elliott (1994) provides an excellent example of the
application of the analysis to a fish population, and Stiling (1988) and Royama
(1996) discuss the application of key-factor analysis.

The method requires data from a series of successive age- or stage-specific life
tables. Consider a single generation of a population whose abundances entering
age-classes or developmental stage-classes 1 to m are N1, N2, . . . , Nm. The stage-
specific survival rates (wj) can be expressed as the number alive in stage j + 1
divided by the number alive in stage j, or
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wj = Nj + 1/Nj . (13.53)

Total survival to the final stage (generation survival), K, is the product of the
stage-specific survival rates:

 �wj .   
j = 1

m – 1

K =
Nm

N1
= (13.54)

Taking the logarithms then yields

log10(Nm/N1) = log10(w1) + log10(w 2) + . . . + log10(wm – 1), (13.55)

or

K = k1 + k2 + . . . + km – 1 . (13.56)

The resulting values are typically multiplied by –1 to avoid expressing the key
factors as negative values, thus K = –log10(Nm/N1) and ki = –log10(wi). Finally, the
values K and kj are plotted against the same time axis for a series of generations
and the key factor is identified by visual inspection as the stage-specific k-value
whose variation most closely resembles that of K. See, for example, Elliott (1985).
Caution in interpreting significance, however, is advised, as the ki values obscure
the effects of sampling errors, which may lead to misinterpretation of the data
(Kuno 1971).

The graphical Varley and Gradwell method often identifies key factors, but
ambiguities in interpretation can arise (Manly 1990). In particular, the visual in-
spection approach has been criticized on the grounds that no key factor may be
immediately obvious and the relative importance of mortality factors other than
that identified as the key factor are ignored (Podoler and Rogers 1975). To ac-
count for situations in which the key factor may not be obvious, or when there is a
need to investigate the relative importance of changes in each mortality factor to
changes in total mortality, regression of the ki values against K and the use of the
resulting regression least-squares estimates of slope has been suggested as one
means of determining the relative importance of each ki value (Podoler and Rogers
1975). The regression slope of kj on K is given by the least-squares estimator bj as
follows:

bj =  i = 1

G

�(kij – kj)(Ki – K)– –

i = 1

G

�(Ki – K)2–
,

2

(13.57)

where kij is the k-value for the survival in the j th stage of the ith generation; k
–

j is
the mean k-value for survival in the j th stage; Ki is the K-value in the ith generation;
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K
–
 is the mean of K for all generations; and G represents the generations of data.

From the above it follows that

j = 1

m – 1

� bj = 1, (13.58)

which implies that the bj values have an immediate use for interpreting the contri-
bution of the j th k-value to explaining the total variation observed in K. Normal-
ization also allows direct comparison of two or more populations for detection of
differences in key factors. See, for example, Box 13.5.

Although the proposed methodology allows quantitative determination of the
key factor, it is not without its drawbacks. Podoler and Rogers (1975) report a
number of methodological short-comings, as follows.

1. The variables k and K are not statistically independent because errors in the
estimates of the k-values will be reflected in the estimate of total mortality.

2. The test cannot be used to draw conclusions about the real contributions of
each k-value to changes in population density.

3. Normal regression techniques cannot be used to estimate the level of sig-
nificance associated with a particular line because the ki values are function-
ally related to K.

The procedure, therefore, can be used only to select the factor that most con-
tributes to changes in the value of total generational mortality and does not re-
place the need to use subsequent statistical testing procedures to establish the
existence of density relationships for each mortality factor.

The various ki values may be tested for density dependence by plotting each ki

value against the number of individuals entering the age or stage interval (Ni) on
which it acts and determining the significance of the regression. If significance is
found, density dependence is suspected. The method has been criticized because
initial density appears on both sides of the regression equation (Elliott 1994).
The problem may be overcome by first regressing the logarithm of the initial age
or stage density (log10Ni) on which ki acts against the logarithm of survivor density
(log10Ni + 1) and then regressing the logarithm of survivor density against loga-
rithm of initial density. If both regression lines plotted on a single graph lie on the
same side of unity, and have slopes significantly different from one, the relation-
ship is concluded to be density dependent (Varley and Gradwell 1968). Southwood
et al. (1989), however, have noted that regression of k-values against initial density
has been shown to be a much less biased technique for detecting density depen-
dence than initially thought. Accordingly, Elliott (1994) adopted the method for
use in examination of density dependence in a stream-resident population of
brown trout in the English Lake District. Kuno (1971) and Bulmer (1975), how-
ever, provide detailed statistical critiques of the problem of testing for density
dependence with key factors, and Bulmer (1975) provides statistical tests that
address the critical problems of measurement error and serial correlation that
plague key-factor detection of density dependence.
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Box 13.5 Key-Factor Analysis

Consider the data used in Box 13.1 for the 1954 cohort of brook trout from Hunt Creek, Michigan,
expanded to include 1952 and 1953 (McFadden et al. 1967).

Table Data for the cohort of brook trout from Box 13.1 expanded to include 1952 and 1953.

Age-class 1952 1953 1954

Age 0 51,000 40,000 52,000
Age 1 2,694 3,162 2,118
Age 2 1,052 1,160 779
Age 3 199 183 159
Age 4 26 17 13

Defining stage-specific survival rates (wi ) as in equation (13.52), converting to log10 values, and
summing as in equations (13.54) and (13.55) yields the following table of ki (stage-specific survival)
and K (generation survival) values. Note the values are multiplied by –1 to avoid expressing the key
factors as negative values.

Table Stage-specific (ki ) and generation (K ) survival for 1952–1954 cohorts of brook trout from
Hunt Creek, Michigan (McFadden et al. 1967). Values are multiplied by –1 to avoid expressing the
key factors as negative values.

Survival value 1952 1953 1954

k0 1.2772 1.1021 1.3901
k1 0.4084 0.4355 0.4344
k2 0.7232 0.8020 0.6901
k3 0.8839 1.0320 1.0875

K 3.2926 3.3716 3.6021

Repetition of the computations for the data given for the years 1949 to 1951 and 1955 to 1959
yields estimates of the ki and K values given in the table below.

Table Estimates of ki and K for an expanded brook trout data set.

Survival
value 1949 1950 1951 1955 1956 1957 1958 1959

k0 1.4801 1.4469 1.3436 1.4699 1.3008 1.3610 1.5728 1.5994
k1 0.3246 0.3765 0.4637 0.4339 0.3956 0.3478 0.2685 0.4169
k2 0.9017 0.9770 0.8197 0.6740 0.6497 0.6967 0.7186 0.6848
k3 1.2231 1.1996 1.0381 0.7541 1.0998 1.2478 0.9031 1.0223

K 3.9294 4.0000 3.6651 3.3318 3.4459 3.6532 3.4630 3.7234

Combining the data in the two tables and plotting them yields the following figure.

(Box continues)
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Box 13.5 (continued)

Figure Combined data for brook trout from Hunt Creek, Michigan (McFadden et al. 1967).  The
series of ki values are plotted as dashed lines and the K-value series is plotted as a solid line with
gray circles.
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Inspection of the graph suggests that the variation in k3 most closely resembles the variation in K.
The relative importance of k3 may be confirmed by regressing the ki values against K as suggested
by Podoler and Rogers (1975).

Table Regression of ki versus K for combined data for brook trout.

Survival  value and summation Slope (bj ) r 2

k0 0.258 0.182
k1 –0.060 0.059
k2 0.312 0.489
k3 0.490 0.567

� bj =
j = 0

3

1.000

If regressions of initial on final density as log10(Ni ) on log10(Ni + 1) and log10(Ni + 1) on log10(Ni) yield
slopes that are significantly different from 1 and are on the same side of unity, then density
dependence in the life stage i to i + 1 may be taken as demonstrated (Varley and Gradwell 1968).
Significance is established using standard regression testing techniques as follows:

bi – 1
SE(bi)

t = ,
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where bi is the estimated regression slope and SE(bi ) is the standard error of the slope. Significance
is determined with reference to the Student’s t-table with n – 2 df. For the data used in this
example, repeat application of the suggested regressions yields the results given in the table
below.

Table Regressions of initial on final density as log10(Ni ) on log10(Ni + 1) and log10(Ni + 1) on log10(Ni ) to
determine density dependence in the life stage i to i + 1. Significance is determined with reference
to the Student’s t-table with n – 2 df.

Ni versus Ni + 1 Ni + 1 versus Ni

Regression Slope t-statistic Slope t-statistic

Age 0 and age 1 –0.159 –4.98 –0.310 –2.89
Age 1 and age 2 0.618 –1.72 0.745 –0.95
Age 2 and age 3 1.500 1.03 0.345 –5.90
Age 3 and age 4 1.340 1.01 0.474 –4.40

With 9 df, only regressions with t-statistics of an absolute value greater than 2.262 are significant.
Using the criteria of Varley and Gradwell, only the age-0 to age-1 interval yields evidence of density
dependence. The simpler approach applied by Elliott (1994) to the study of brown trout yields
similar results when applied to the McFadden et al. (1967) brook trout data, with only the regression
of k0 on initial density yielding a significant result as shown below.

Figure Regression of k0 on initial density of brown trout. Application of Elliott’s (1994) method to
the McFadden et al.’s (1967) brook trout data.
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Smith (1973) argued that the graphical approach was necessarily subjective
due to the problem of scale variation and suggested an analysis of variance ap-
proach, where total variation in K was systematically apportioned to the different
sources of mortality in a manner similar to that proposed by Podoler and Rogers
(1975). Smith (1973) also suggested that once the key factor had been deter-
mined there was further utility in ascertaining the relative importance of the re-
maining k-values. This involves defining the residual killing power, KR, in ages or
stages other than that identified as the key stage as follows:

KR = K – ki . (13.59)

 The remaining stage-specific k-values are regressed on KR to determine which
is the most important determinant of KR. Repeated use of the procedure allows
the age- or stage-specific k-values to be rank ordered in terms of their relative
contributions to K as detailed by Smith (1973). Manly (1990), however, has noted
that significance testing of the ki values is not straightforward because sampling
errors in the ki values may induce apparent regression relationships.

None of the methods described above makes direct use of the known order in
which mortality operates on the age or life stages. If mortality is highly density
dependent in a given life stage, it can remove most of the variation in abundance
induced by the action of variable mortality in previous stages such that density-
dependent k–values may show little relationship to K, even though they are im-
portant for the determination of overall population dynamics (Manly 1990). By
estimating a population model that includes density-dependent mortality, it is
possible to estimate the contribution of each life stage to the variation in final
stage abundance under the assumption that the ki values are linear functions of
the numbers entering the stage (ki = a + bNj). Accordingly, a key factor may be
defined as the life stage that substantially increases or decreases the variation in
the final stage (Manly 1990).

Statistical details of model estimation and the determination of k-value signifi-
cance, along with associated computation programs, are given in Manly (1990).
Although the method has great promise, it is limited in application to cases in
which sufficient data exist to estimate adequately the underlying regressions re-
quired to drive the model. It is also important to note that the method assumes
that k-values are linear functions of the numbers entering each stage, which may
not be true. Accordingly, the validity of the model and its conclusions concerning
the influence of each life stage on variation observed in the final stage will de-
pend on the extent to which the linear model approximates any nonlinear rela-
tionship between the k-values and the numbers entering the stage (Manly 1990).

■ 13.5 SUMMARY

There are numerous methods for assessing the possible impacts of stressors on fish
populations. The basic decision in the use of population bioassessment methods is
the choice between field-based and modeling-based studies. Both approaches have
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their relative strengths and weaknesses and neither should be considered supe-
rior. An approach that combines the two is highly recommended, though prac-
tical for only a select few populations of high conservation concern. It is impor-
tant not to regard population bioassessment as an activity separate from the
routine collection and analysis of fishery data. A population bioassessment will
only ever be as good as the care and attention that goes into the routine collec-
tion and analysis of population monitoring data. In that regard, population
bioassessment should be looked on as the natural extension and joint consider-
ation of the numerous methods elaborated in previous chapters of this book.
The key difference between population monitoring and population
bioassessment is that population bioassessment draws its conclusions from mul-
tiple lines of evidence, whether informally as in the case of field-based methods
or formally as in the case of modeling techniques that explicitly combine sur-
vival, growth, and reproductive information. A summary of the approaches dis-
cussed here is given in Table 13.3.

A basic requirement of approaches to population bioassessment is the avail-
ability of adequate data. For field-based methods, the requirement can be prob-
lematic insofar as available data must be sufficient to allow investigators to parti-
tion natural variability from stressor-induced variability. Numerous modeling-based
studies have made this point. For example, a Leslie-matrix-based analysis of the
significance of reducing brook trout population biomass by increasing age-0 mor-
tality by 50% indicated the first appearance of a significant change in yield statis-
tics did not occur for at least 2–3 years (Jensen 1971b). Attempts to determine the
number of years of data required to detect entrainment reductions in Hudson
River white perch year-class strength concluded that at least 20 years of data would
be required to detect a greater than 50% reduction in mean year-class strength
(Van Winkle et al. 1981; Vaughan and Van Winkle 1982). Power and Power (1995)
further demonstrated that despite stressor-induced monotonic declines in age-0
abundances, adult brook trout abundances displayed a subsidence response as
predicted by Odum et al. (1979). The subsidence-induced lag between the ini-
tiation of stressor action and the ability to detect significant stressor-induced
changes in an endpoint response poses a critical challenge to field-based assess-
ment approaches, particularly if they do not include considerable detail on prior
natural history and an understanding of the population regulating processes
(Underwood 1989).

The field detection and measurement of stresses acting on natural populations
would appear to be beset with considerable difficulties. If it were already estab-
lished that a population of interest was at equilibrium, and the equilibrium level
was known, then the detection of stress would simply involve determining that a
known perturbation had caused the endpoint of interest (e.g., abundance) to
deviate from the equilibrium value (Underwood 1989). The simple comparison,
however, cannot be made because populations rarely, if ever, exist at equilibrium.
Even if there are no temporal fluctuations in abundance, equilibrium cannot be
established unless observations are available for a period of time exceeding the
natural life expectancy of the species (Frank 1968). In cases in which the sampling
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of natural populations has been carried out over a sufficiently long period, there
are few indications that populations exist at equilibrium (Connell and Sousa 1983).

Establishing the effects of stress on a population, therefore, requires more than
demonstrating changes in population abundance endpoints. For stress to have
had a significant effect, measured population level changes must exceed those
that would normally be expected based on knowledge of inherent population
variability and the routine operation of population regulating mechanisms
(Underwood 1989). Unfortunately, sampling imprecision complicates attempts
to gather the required data. Census approaches to estimating population param-
eters are typically not feasible except in cases where population abundances have
declined to the point at which it is clear a population is threatened with local
extinction. As a result, random sampling is used to establish a probabilistic pa-
rameter estimate that carries with it a variance and the associated problem of
sampling error. Accordingly, if field-based methods are to be used, the graded-
exposure–response (Adams et al. 1994) or sequential sampling (Mills 1985; Mill
et al. 1987) approaches that specifically accommodate statistical tests of signifi-
cance based on estimated variability are preferable to static compare-and-contrast
approaches that eliminate consideration of variability on the pretense of diag-
nostic power.

Modeling approaches to population bioassessment are likely to help in identi-
fying and quantifying the effects of stressor-induced changes in key population
regulating processes. There is a long history of model development and use, but
application of models to studying the specifics of stressor induced changes has
not always been easy owing to the paucity of good, long-term data sets. Well-de-
signed and executed monitoring programs can provide the information neces-
sary to postulate and test stressor cause–effect relationships and, in the future,
should redress this problem. Nevertheless, modeling studies will always rely on
field data and cannot be viewed as an acceptable surrogate for field studies. In-
stead, modeling and field approaches to the study of population bioassessment
must be viewed as mutually supportive means of study, requiring connected and
parallel programs of study. The achievement of approach integration will require
substantial interdisciplinary cooperation but should improve abilities to assess the
ultimate effects of stressor action on fish populations.
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■ 14.1 INTRODUCTION

Telemetry in freshwater environments began in the 1950s (Trefethen 1956; Stasko
and Pincock 1977; Mitson 1978), and a fairly extensive body of literature has de-
veloped since then. Unfortunately, the literature contains very few rigorous treat-
ments of telemetry data. The data sets generated during a telemetry project quickly
become so massive that analyses could not really flourish until personal comput-
ers became widespread. Now that personal computers are pervasive, the absence
of complex analyses that produce quantitative results cannot be blamed on a lack
of processing power. Though fish telemetry projects continue to proliferate, the
dearth of quantitative analyses used in them is perhaps due to the absence of a
readily available synopsis of the various approaches that can be employed and
exposure to the various software packages that have been developed to perform
such analyses. Fortunately, sophisticated personal computer programs that run
on a variety of platforms are available free of charge from a variety of sources
(e.g., White and Garrott 1990; Kenward 1992; Larkin and Halkin 1994; Hooge et
al. 2001). Our objective for this chapter is to help provide a foundation for syn-
thesizing some of the many divergent approaches and software that can be used
in the analysis of telemetry data.

While we recognize that the emphasis of this book lies with data analysis,
tackling telemetry analyses without first carefully considering an adequate study
design can lead to untrustworthy results. Perhaps the first question that should
be asked regarding proposed telemetry-based research is whether telemetry is
really necessary to answer the question of interest. Some have implemented
costly and labor intensive telemetry studies because of the high-tech allure when
a more mundane approach would have yielded better results and been consid-
erably less labor intensive. For instance, course-scale movement and range ex-
tent can often be examined with conventional mark–recapture programs that
allow for the tagging of thousands of individuals. However, there are certainly
many situations in which telemetry is the only realistic option for addressing the
questions of interest. Fine-scale movement and habitat use studies often fall
into this latter category.

14
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If one is certain that all other options have been explored, one can find details
on telemetry equipment in Henderson et al. (1966), Stasko and Pincock (1977),
and Winter (1996). Specific methods of transmitter attachment are discussed in
Hart and Summerfelt (1975), Ross (1981), Schramm and Black (1984), and Pe-
tering and Johnson (1991). Both radio and ultrasonic transmitters are used in
fisheries work, each with its own benefits and limitations. In addition to the stan-
dard transmitters that provide horizontal locations of a fish’s position, many spe-
cialized transmitters exist that can provide additional information. Perhaps the
most commonly used specialized transmitters are temperature sensitive (Kelso
1978; Schulz and Berg 1992). Not only is ambient temperature important for
bioenergetics work (see Chapter 12), but generally, if the lake is stratified, the
depth of the fish can be inferred as well if a temperature profile of the lake has
been obtained. Alternatively, several authors have used pressure-sensitive trans-
mitters that measured depth directly (Warner and Quinn 1995; Lee and Bergersen
1996; Baldwin et al. 2002). Numerous authors have explored the use of heart rate
telemetry (Priede and Young 1977; Armstrong et al. 1989; Lucas et al. 1991, 1993)
and tail beat frequencies (Stasko and Horrall 1976; Ross et al. 1981; Johnstone et
al. 1992) to try to assess energy budgets of host fish. Because heart rate can be
affected by stimuli other than exercise, electromyogram transmitters have become
increasingly popular for indirectly assessing oxygen consumption (Weatherley et
al. 1982) and swimming speed and activity (Demers et al. 1996; Økland et al.
1997). Because these specialized techniques generally require specialized analy-
ses, they will not be discussed here. Interested readers should consult the litera-
ture cited for each topic.

■ 14.2 FUNDAMENTAL CONSIDERATIONS IN TELEMETRY-BASED RESEARCH

14.2.1 Representative Samples

Paramount to any telemetry project is the underlying assumption that those
animals carrying transmitters are representative of the population as a whole.
Historically, this has been evaluated subjectively as in “the animals appeared
normal.” More rigorous treatment of this assumption is warranted, however, as
the repercussions can be severe if this assumption is violated. If, for example,
the implantation procedure resulted in substantial internal infections of most
fish that received transmitters and infection induced extreme lethargy, one would
expect these fish to move significantly less than their untelemetered counter-
parts. If movement and habitat use by telemetered fish is uncharacteristic, then
there is little point in conducting the study, as it will be uninformative about the
population of interest. Unfortunately, this dilemma is difficult to resolve and is
usually complicated by the absence of controls (Doerzbacher 1980). The as-
sumption is difficult to test because telemetry is used presumably to gather in-
formation that one cannot obtain any other way, making it difficult to compare
data with untagged controls. Numerous studies have been conducted with dummy
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transmitters in laboratory settings and have failed to document negative effects
on growth, feeding, condition, or swimming behavior (e.g., Moore et al. 1990;
Martin et al. 1995; Swanberg and Geist 1997; Brown et al. 1999; Cote et al. 1999;
Cooke and Bunt 2001). The program MARK (White and Burnham 1999) can be
used to compare survival rates between fish carrying transmitters and those
monitored with conventional tag recovery studies, allowing estimation of the
impact of the transmitter on survival of telemetered fish compared with fish
tagged in a conventional manner. Now that transmitter battery life has been
greatly enhanced, merely documenting survival of fish carrying transmitters over
an extended period of time may lend some support to the notion that they are
behaving normally. Additionally, if no differences in growth or condition can be
detected in the same waters between telemetered fish and conspecifics tagged
with conventional methods, then transmitters are probably not negatively af-
fecting the host fish.

There are several things one can do in order to minimize the potential nega-
tive influence of the transmitter, including using the smallest possible transmitter
that will still allow collection of the required data. Some have advocated keeping
the weight of the transmitter to less than 2% of recipient’s body weight (Gallepp
and Magnuson 1972; Ross and McCormick 1981), although Brown et al. (1999)
found that transmitters weighing up to 12% of the body weight did not affect
swimming performance. The transmitters, if not internal, should be inconspicu-
ous and unobtrusive. Finally, data acquisition should be delayed until animals
have had a chance to become accustomed to the extra ballast afforded by the
transmitter, so that fish behavior can become representative. Activity patterns,
growth, and condition may be abnormal at least 2 weeks following surgery (Smith
1974; Manns and Whiteside 1979; Knights and Lasse 1996; Paukert et al. 2001). If
resources permit, monitoring the behavior and health of captive fish carrying
transmitters in a controlled setting can also be helpful.

Additionally, one must be concerned that the approach used to capture fish
will not lead to an unrepresentative sample and thereby biased statistics. For in-
stance, gill nets sample moving fish more than they do stationary ones. If all fish
used in the study were acquired from gill-net sets, one might run the risk of im-
planting transmitters in a more mobile subpopulation, biasing movement esti-
mates for the population as a whole. The radio-marked sample must be represen-
tative of the entire population if correct inferences from radio-marked fish are to
be applied to the entire population.

Timing of the study and data collection is critical as well; fish should be ob-
served over a time frame that is representative of the question of interest. One’s
inference regarding behavior patterns is limited to the seasons in which one ob-
served the fish. If one is exploring habitat use but only locates telemetered fish in
the middle of the day, then one cannot infer what habitats these same fish use at
night. This notion seems trivial, but telemetry studies have often extrapolated
behavior patterns outside the window of observation. To do so is simply not sup-
ported by the data.



628 Chapter 14

14.2.2 Data Format

Analysis of telemetry data requires that information be stored in a readily usable
digital database because rigorous treatment of telemetry data cannot be addressed
without a computer. The pervasiveness of geographic information systems (GISs)
has greatly facilitated the analysis of spatial telemetry data (Rogers and Bergersen
1996) for both map generation and analysis. Conventional spreadsheet programs
(e.g., Microsoft’s Excel or Corel’s Quattro Pro) are also very capable platforms for
compiling data and performing some of the more rudimentary data analyses.

Basic telemetry data are at least three-dimensional (x and y in space and z in
time), so that in addition to the tag number and date and time, some metric of
horizontal position must be recorded in the database. A variety of mapping sys-
tems have been used for describing position, such as the township-range land-
mapping system, the latitude–longitude system, and the Universal Transverse
Mercator (UTM) system. The township-range land-mapping system is difficult to
work with, and because of survey errors, distances between locations cannot be
computed reliably (White and Garrott 1990). The latitude–longitude system is
not rectangular, making calculation of the distance between any two points less
intuitive. The UTM system is the coordinate system of choice for mapping loca-
tions in inland waters because subsequent analysis is so much easier than it is in a
latitude–longitude system. The UTM approach is based on the metric system,
which is the universal standard for science. It provides a Cartesian coordinate
system within each zone, allowing easy calculation of distances between points
and greatly simplifying triangulation to locate animals. Now that global position-
ing systems (GPSs) are widely used in telemetry projects, obtaining UTM coordi-
nates is trivial as well.

In the UTM system, the world is divided into 60 zones between 80°S latitude
and 84°N latitude that each span 6° of longitude and are bisected by a central
meridian. The polar ice caps are not included because the width of the zones
becomes zero at the North and South poles. In addition, the coordinate system is
not continuous because coordinates from a spherical surface cannot be plotted
on a Cartesian coordinate system without breaks. Though this projection spans
the globe, its power lies in mapping finer scales because error and distortion in-
crease for regions that cover more than one zone. The UTM coordinates consist
of a zone descriptor and two seven-digit numbers with units in meters. The y-
coordinate increases with distance from the equator. The x-coordinate describes
the distance from the central meridian. Five hundred thousand meters (3° longi-
tude) are added to each x-coordinate within each zone so that negative x-values
don’t result. As one heads east within a zone, x-coordinates increase; y-coordi-
nates increase as one heads north.

14.2.3 Study Design

There are basically three kinds of telemetry studies that can be conducted. The first
are exploratory descriptive studies that are very common in the early literature.
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Usually there is no attempt at formulating testable hypotheses. Some include evalu-
ations of home range size and movement, but they are limited to learning about
what an animal does but not why (Sanderson 1966; White and Garrott 1990).
Descriptive studies that simply map fish locations are of limited value. The second
variety of telemetry studies are correlative in nature and are becoming increas-
ingly prevalent. These studies try to link movement or habitat use to environmen-
tal features that may be important to the well being of the fish. Although relation-
ships can be documented, they do not necessarily imply cause and effect.
Manipulative experiments with both spatial and temporal controls make up the
third type of telemetry study. These are the only ones that can establish why ani-
mals do what they do and are therefore preferred.

Careful study design is critical if useful results are to be obtained. The notion
that analyses are restricted to summarizing data that has already been gathered is
a major misconception. Consideration of analysis goals should precede data col-
lection to ensure that the study is worthwhile and to ensure that the appropriate
data will be collected (Kenward 1992). If the parameters to be estimated or hy-
potheses to be tested are not defined, then an optimum strategy for data collec-
tion cannot be formulated and sample sizes cannot be determined. Sample size
and power calculations (see Chapters 1 and 3) are mandatory before initiating a
study because they determine whether or not proposed experiments will adequately
address the questions that are posed. Either literature searches or pilot experi-
ments can provide the background information needed to make these calcula-
tions. Simply employing the latest technology does not guarantee that quality
research will follow. If funding or time constraints will prevent one from achiev-
ing the sample sizes necessary to detect a biologically significant difference, then
there is no point in conducting the study. Unfortunately, cost and labor must be
factored in, as transmitters are expensive and monitoring them has historically
been labor intensive. Precision of estimates should be adequate to answer the
questions being addressed, even if attaining adequate precision means focusing
on a narrower set of questions, such as a portion of the population (e.g., one
species, one sex, or a single basin). To answer one question well is far better than
to address many questions poorly. Experiments with low sample sizes can lead to
variable results with little power to detect differences in metrics of interest.

14.2.4 Pseudoreplication

The independence of successive observations of a given fish has always been a big
concern in telemetry work (Byers et al. 1984; Swihart and Slade 1985; Alldredge
and Ratti 1986; Thomas and Taylor 1990; Cresswell and Smith 1992). The closer
in time two locations occur, the more likely they are to be autocorrelated.
Autocorrelation has received much attention because many of the statistical tech-
niques used in telemetry work require that observations be independent. The
assumption of independence is violated on two levels when locations are taken as
the sampling unit and records for all individuals are combined or pooled (Aebischer
et al. 1993), as is common in fish telemetry analyses. If locations are taken to be
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the sampling unit, then points close in time are serially correlated (Swihart and
Slade 1985). In addition, if locations are pooled across individuals, then the natu-
ral heterogeneity found between individuals is eliminated, resulting in statistical
tests that yield significant results more often than they should. Pooling data across
individuals is only justified if all individuals being monitored act similarly (Aebischer
et al. 1993), which is rarely the case in natural systems.

This violation of observation independence, however, is largely an artifact of
how the telemetry data are analyzed. If inferences are to be made about the popu-
lation of animals, the experimental units in a telemetry project are the individual
animals, not the individual location estimates (Aebischer et al. 1993; Winter 1996;
Otis and White 1999). Though precise estimates of an animal’s movement can be
achieved by intensive sampling of an individual, we are generally interested in
how the population as a whole behaves. Hypothesis tests should use the variation
among individuals to assess significant effects. As such, the power of a given study
will then be driven by the number of fish monitored more than the number of
locations obtained for each fish (Otis and White 1999). Using each location as a
sampling unit while analyzing telemetry data is pseudoreplication and is the equiva-
lent of “statistical malpractice” (Hurlbert 1984). The perceived dilemma associ-
ated with autocorrelation is mitigated when the data are analyzed correctly and
experimental unit assignment is restricted to individual fish only (Kenward 1992).
In fact, serial correlation between locations of an individual fish is not necessarily
a bad thing if sampling is representative, as increased sampling effort (resulting
in points closer in time) will better describe what an animal is actually doing
(Aebischer et al. 1993). The emphasis on obtaining uncorrelated location esti-
mates has been misguided and has allowed the more egregious violation of
pseudoreplication to persist.

■ 14.3 ESTIMATION OF TELEMETRY ERROR

Telemetry error is introduced into fish telemetry projects from two sources. The
first potential introduction or error occurs when trying to determine the actual
position of a telemetered fish. Unlike radio telemetry, ultrasonic telemetry can
make this source of error negligible, especially in small basins. The second poten-
tial introduction occurs when converting that fish position to a pair of coordi-
nates that can be used to plot the location on a map. The advent of GPS technol-
ogy has greatly simplified this task. If fine-scale habitat work is needed, then one
might consider setting up a differential GPS (Rogers and Bergersen 1996). By
deploying a fixed GPS base station, one can subtract erroneous deviations in posi-
tion recorded on the stationary unit from positions registered on a mobile unit to
achieve added accuracy. For deeper-dwelling fishes living in lentic systems, one
can maneuver the monitoring boat directly over the fish while obtaining a GPS
reading (Wilkerson and Fisher 1997; Paukert and Fisher 2000). The primary con-
cern with this approach in shallow systems is that continual harassment of the fish
may actually alter the very behavior that one is hoping to monitor. In these situa-
tions, it may be advisable to maintain some distance between the observer and the
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subject by employing a triangulation technique to determine fish location (Springer
1979; Lenth 1981; Nams 1989; Saltz and White 1990; White and Garrott 1990).
For both approaches, it is imperative that experiments are conducted to verify the
methodology and evaluate what accuracy can be expected (Box 14.1).

In addition to legitimate sources of error, simple data entry errors can dramati-
cally alter the results of an analysis. It is imperative that the data sets are first
subjected to algorithms that can identify potentially erroneous data points (White
and Garrott 1990). Dates and times should increase chronologically, and move-
ment between fish locations should be assessed to ensure that they are reason-
able. Finally, the location of a fish should be reasonable as well (e.g., if a recorded
observation has a fish on dry ground, then the raw data forms should be reviewed).

■ 14.4 SPATIAL DISTRIBUTION

The first step in the analysis of telemetry data should be the creation of location
maps. With the rapid expansion of GIS technology, the generation of maps is
trivial and greatly facilitates subsequent analyses. Generally, the time dimension is
eliminated, and fish locations are overlaid on a map of the perimeter first, then
on maps of other habitat features (e.g., depth, habitat type, and temperature) to
evaluate use. Many of the subsequent analyses of telemetry data will focus on
fusing spatial information into one dimension, which results in a loss of informa-
tion. Often an examination of the raw data can be more revealing in terms of
illustrating the importance of habitat features that do not show up in conven-
tional summary statistics. This examination can lead to a better understanding of
the system as a whole. In many packages, animated graphics can reintroduce the
time dimension by portraying movement through time. Although it can be diffi-
cult to do quantitative work with these graphics, they can be instructive when
combined with maps of habitat features.

Of interest is whether the distribution of fish locations on the map is random.
Samuel and Garton (1985) propose a Cramér–von Mises statistic to test whether
the distribution of fish locations follows a bivariate uniform distribution. White
and Garrott (1990; their Appendix 7) provide SAS code to perform the test. An-
other conceptually simple approach to evaluate randomness compares the distri-
bution of the fish locations to an equal number of random locations placed in the
same basin (Rogers 1998), which is analogous to a randomization test. One met-
ric to use as a test statistic would be the variance of the distances from each ran-
dom point to the nearest fish location. If the distribution of the fish locations is
fairly random, then the distances between fish locations and random locations
should not be highly variable. On the other hand, if fish locations are highly
clustered, then distances from each random point will be highly variable, depend-
ing on whether the point is near or far from the cluster. The entire process of
generating the variance of these distances is then iterated 1,000 times to generate
a mean variance estimate that is then used as a test statistic (Figure 14.1). Replac-
ing the fish locations with an equal number of randomly placed “pseudolocations”
generates the distribution of this test statistic. This process should be iterated at
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Box 14.1 Estimation of Telemetry Error

Prominent landmarks were used to assess the location of 31 largemouth bass carrying ultrasonic
transmitters in two small impoundments near Denver, Colorado, over a 4.5-year period (Rogers
1998). Because these landmarks were associated with the shoreline, it was assumed that error
would be a function of distance to shore. This error was quantified by locating 50 random points on
each lake’s surface by means of prominent landmarks and by means of a differential global
positioning system (GPS) with better than 1-m accuracy. If the GPS readings reflect true position,
then error associated with using prominent landmarks was taken to be the distance between each
pair of locations generated for each point by the two methods.

Distance from the 50 random locations to shore was calculated with the program FishTel (available at
http://wildlife.state.co.us/Research/Aquatic/Software/) and a digitized map of the lake perimeter.
Distance between each pair of locations (prominent landmark and GPS) was generated in a simple
spreadsheet by use of the Pythagorean relation. As expected, error generally increased with distance
from shore (see figure) with fitted regressions for both lakes having positive slopes (P = 0.002 in Lake
Ladora and P � 0.001 in lower Derby Lake). Because fish tended to congregate offshore in winter
seeking deeper warmer water, this analysis suggested that greater error was incorporated in
estimates of winter movement than those movement estimates generated in summer.

Figure Fifty random coordinates were located conventionally and with a differential GPS in each
lake. The distance between these points was assumed to be a measure of telemetry error (in meters).
This error was then plotted as a function of distance from shore in meters (from Rogers 1998).
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Figure 14.1 A flowchart demonstrating the process for evaluating if n fish locations are
distributed randomly around a lake. The left arm calculates the mean of variance estimates for
the each telemetered fish, whereas the right arm is used to generate the distribution of the test
statistic so that a P-value can be assessed. If randomness of the population of fish is to be
evaluated, then a grand mean can be calculated and compared to the same test statistic
distribution.
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least 1,000 times to generate a distribution for the expected mean variance statis-
tic under the null hypothesis of random distribution. The actual mean variance
statistic generated from the fish location data can then be compared with this
distribution to determine the appropriate P-value (Box 14.2). Comparisons can
be made between individuals, seasons, or basins, the only caveat being that the
same number of fish locations must be considered in each group. If not, the group
with more locations will display shorter distances on average than those groups
with sparser data. A quick way to remedy this dilemma is simply to have a com-
puter randomly drop fish locations out of each group to be compared until all
groups have the same number of locations (Rogers 1998).

Usually, one is more interested in how the locations of all telemetered fish are
distributed (population level). This can be achieved by averaging the mean vari-
ance for each fish across the population of telemetered fish to generate a grand
mean variance that can then be compared with the sampling distribution (see
figure Box 14.2) to yield a P-value. For this approach to be valid, one only has to
ensure that all fish are located the same number of times. As mentioned previ-
ously, that goal can be easily achieved by randomly dropping observations from
each data set until all fish register the same number of locations. Several alterna-
tive approaches are possible and could be substituted for this one based on the
following considerations. The mean distance to the nearest fish location should
be the same as the mean distance to a random location if fish locations are ran-
domly distributed. Alternatively, the probability that the nearest location is a fish
location should be 0.5 if fish locations are randomly distributed.

■ 14.5 MOVEMENT PATTERNS

Evaluations of movement by telemetered fish are pervasive in the literature, yet it
is very difficult to compare metrics across studies because observed movement is a
function of how often a fish was located (Baras 1998). Estimates of fish movement
are minimum estimates of displacement. Fish do not move in a straight line (Guy
et al. 1994; Rogers and Bergersen 1995), so the more times a fish is located in a
day, the greater total movement will appear. Better estimates of true movement
can therefore be obtained if continuous tracking schedules are employed or if
fish are at least monitored frequently over a 24-h period.

If one wishes to compare movement between studies or lakes, or even within a
population, it is critical that subjects be located the same number of times and the
time interval between locations be approximately equal. Because fish movement
is usually heterogeneous among individuals (Rogers 1998), if fish are not located
consistently over a given time frame, contact bias can result (Jones and Rogers
1998). This bias can dramatically affect the outcome of a study if search routines
are not rigorously applied to give all telemetered fish the best chance of being
located every time they are sought. If more mobile fish tend to spend more time
in open water while moving, they might be located more often than are their
sedentary brethren. Movement estimates for the population would therefore be
biased upward. If, on the other hand, sedentary fish are easier to locate because
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Box 14.2 Evaluation of Spatial Distribution

In this example, we will explore the distribution of northern pike in Lake Ladora, Colorado, in
summer (Rogers 1998). Colorado’s plains’ reservoirs represent the southern limit of this species’
range, as water temperatures frequently approach the species’ tolerance limits in summer. A spring
that feeds a slough of this lake ensures that water temperatures in this shallow arm are cooler than
the remainder of the lake basin. As the northern pike begin to experience thermal stress, they
congregate in this region despite the marginal habitat that is available (Rogers 1998).

To quantify the nonrandom nature of this spatial distribution, we will examine the locations of a
northern pike (number 96) that was observed on 43 occasions over a 3-month period in Lake
Ladora. A data file containing the x–y positions on a Universal Transverse Mercator (UTM) grid were
read by the program FishTel, which performs the functions described in Figure 14.1. The mean
variance statistic generated for this fish was 6,095 m2. Using the spatial test statistic module of
program FishTel and 43 random pseudolocations, a distribution of the test statistic was generated
under a null hypothesis of random distribution (see figure).

The probability of obtaining a mean variance value of 6,095 m2 or larger by chance was remote
(P = 0.008). The distribution of northern pike 96 observations was therefore nonrandom.

Figure The variance in distances from 43 random points to 43 randomly generated
pseudolocations was calculated and iterated 10,000 times to generate a distribution of the mean of
variance estimates under a null hypothesis of random distribution. The P-values for mean variance
statistics calculated from fish locations can be assessed by determining where that value falls on
this graph and evaluating what percent of the area under the curve falls to the right (or left) of the
value calculated for the fish. The area under the curve in the shaded regions represents a two-tailed
alpha of 0.05 (2.5% of the observations under each tail).
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one already knows about where they are from the previous observation, then ap-
parent movement may be biased downward.

Units of measure should reflect the precision that was conferred when the data
were acquired. For instance, if fish were located numerous times over a 24-h pe-
riod, then it might be fair to express movement as minimum displacement per
hour (MDPH). If fish were located only several times per week, then movement
should not be expressed in units of finer resolution than meters per day. The
common practice of expressing fish movement in centimeters per second is usu-
ally absurd and implies precision that is simply not possible. Positional informa-
tion cannot be accurately measured in centimeters, and reporting movement in
seconds suggests that fish were followed (and locations recorded) continuously,
which is rarely the case.

Quite often, as the values that describe various aspects of telemetry data, such
as MDPH, increase in magnitude, the variance associated with those values in-
creases as well. Because increasing variance conflicts with the equal variance as-
sumption of many of the parametric statistics used in telemetry analysis, the data
may first need to be transformed. A simple natural log transformation is usually
all that is required (Jones and Rogers 1998; Rogers 1998) because the variance is
a constant multiple of the mean. That is, the coefficient of variation is constant,
and the natural log transformation creates a new variable that has constant vari-
ance. Other options exist (Ott 1988; Wilkerson and Fisher 1997). The important
thing is to check to make sure that the variances have stabilized, and that they are
no longer increasing with the metric of interest before the analyses are conducted.

14.5.1 Evaluation of Movement with Categorical Data

General linear models (GLMs) are very conducive to exploring variation in move-
ment and allow for a broad spectrum of relationships to be examined (Ott 1988;
Box 14.3). Heterogeneity among fish, or between seasons, years, and diel periods,
can easily be evaluated in this fashion. Fish do not expend energy for swimming
needlessly, so relationships between movement and other factors give some in-
sight into which factors are associated with fish movement. As with all analyses
presented here, it is important to remember that the fish carrying transmitters
are the sampling units (Otis and White 1999).

14.5.2 Evaluation of Movement with Continuous Data

A variety of parameters are thought to influence movement. Because fish are
poikilothermic, they tend to move less in winter when their metabolisms slow
down (Casselman 1978; Cook and Bergersen 1988; Schulz and Berg 1992; Rogers
1998; Snedden et al. 1999; Bramblett and White 2001). Rogers and Bergersen
(1995) documented more movement during a mild reservoir water level draw-
down. Several authors have shown barometric pressure to influence fish move-



Analysis of Movement and Habitat Use from Telemetry Data 637

Box 14.3 Evaluation of Seasonal Movement Patterns

Variation in movement by largemouth bass in Lake Ladora, Colorado, is evaluated with a mixed-
model analysis of variance (ANOVA). Seventeen largemouth bass carried transmitters during a 4.5-
year study, and their movement (m/h) was evaluated on 49 consecutive full-moon 24-h tracks
(Rogers 1998). Analyses were conducted with SAS version 6.

Table Portion of data set of minimum displacement per hour (m/h) by 17 largemouth bass in
Lake Ladora.  Fish represents unique largemouth bass; year is the last digit in 199*; seasons are
given as (1) spring (March–May), (2) summer (June–August), (3) fall (September–November), and (4)
winter (December–February); and minimum displacement per hour (MDPH) is given in m/h. The full
data set is included in the Chapter 14 CD folder.

Fish Year Season MDPH

1 4 2 18.74
1 4 3 34.55
1 4 3 32.05
1 4 3 17.76
1 4 4 0.68
1 5 4 4.83

The following SAS program is used to evaluate whether largemouth bass move differently between
seasons and years (fixed effects), with the sampling unit of individual fish taken as a subject or
random effect. Interactions between fish and season and fish and year are also treated as random
effects. Notice that MDPH has been transformed by the natural logarithm to stabilize increasing
variance found with increasing MDPH. Bonferroni’s multiple-comparisons procedure was used to
assess differences in MDPH between seasons.

Program

Options nodate ps = 40;

data LMB;

input FISH YEAR SEASON MDPH;

LNMDPH = LOG(MDPH);

proc mixed;

CLASS FISH YEAR SEASON; * These variables are categorical;

MODEL LNMDPH = SEASON YEAR; * Fixed effects in the model;

RANDOM FISH*SEASON FISH*YEAR/subjects = fish;

/* Above specifies which effects in the model are random */

lsmeans SEASON/ADJUST = BON;

run;

(Box continues)
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ment (Warden and Lorio 1975; Markham et al. 1991; Guy et al. 1992; Jones and
Rogers 1998). Jones and Rogers (1998) also documented a link between water
clarity and movement. A simple way to explore the influence of these continuous
variables is to model them against MDPH in a multiple regression framework
(Box 14.4).

The Akaike’s Information Criteria (AIC) model selection procedure (Burnham
and Anderson 1998) provides an elegant way to resolve which variables are really
important in describing movement. However, one should ensure that fish used in
this sort of analysis are exposed to a biologically meaningful cycle or spectrum of
values for each variable included in the model. One might not detect a significant
relationship between water temperature and movement if fish were followed for
only a couple of months when water temperatures were stable, and that result
might have little biological relevance. Failure to detect a relationship does not
imply that no relationship exists, especially in this scenario.

Descriptive Output

Table Mixed model output (partial) to evaluate whether largemouth bass move differently
between seasons and years. Akaike’s Information Criteria (AIC), small-sample corrected AIC (AICc),
and Bayesian Information Criteria (BIC) are model fit statistics, for which smaller values reflect
better fit (see Box 14.4 for additional explanation of AIC).

Covariance Parameter Estimates

Covariance parameter Subject Estimate

Fish*Season Fish 0.04282
Fish*Year Fish 0.07549
Residual 0.6042

Fit Statistics

–2Residual log likelihood 414.4
AIC 420.4
AICc 420.5
BIC 422.9

Type 3 Tests of Fixed Effects

Effect Numerator df Denominator df F-value P > F

Season 3 45 7.00 0.0006
Year 4 10 0.98 0.4629

Box 14.3 (continued)
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Least-Squares Means

Effect Season Estimate SE df t-value P > |t|

Season 1 2.5819 0.1642 45 15.72 <0.0001
Season 2 2.8455 0.1563 45 18.20 <0.0001
Season 3 2.7107 0.1750 45 15.49 <0.0001
Season 4 1.9358 0.1686 45 11.48 <0.0001

Differences of Least Squares Means

Season–
Effect season Estimate SE df t-value P > |t| Adjusted Pa

Season 1–2 –0.2636 0.2082 45 –1.27 0.2121 1.0000
Season 1–3 –0.1288 0.2180 45 –0.59 0.5577 1.0000
Season 1–4 0.6461 0.2057 45 3.14 0.0030 0.0179
Season 2–3 0.1348 0.1974 45 0.68 0.4982 1.0000
Season 2–4 0.9096 0.2105 45 4.32 <0.0001 0.0005
Season 3–4 0.7748 0.2186 45 3.55 0.0009 0.0056

a Bonferroni adjustment for experimentwise error rate.

Interpretation
From this output (type 3 tests of fixed effects), it is clear that movement observed is very different
between seasons (P < 0.001) but not from year to year (P = 0.463). The conservative Bonferroni
multiple-comparisons test (controls experimentwise error rate) demonstrates that movement in
winter (4) was significantly less than during the ice-free seasons.

■ 14.6 HABITAT USE

Interest in evaluating the habitat used by fishes has been a cornerstone of te-
lemetry projects. The overriding question is whether fish spend more or less
time in some habitats than would be expected based on the availability of those
habitats. When this disproportionate allocation of time occurs, the behavior is
said to be selective. Although selection and preference are often used synony-
mously, selection is the process by which an animal chooses a habitat. Prefer-
ence is the likelihood that a resource will be chosen if all habitats are offered up
equally (Johnson 1980; Manly et al. 1993). Animals are presumed to use habi-
tats that confer fitness, so by studying habitat use biologists can hope to assess
what habitat features may be limiting. By studying where animals allocate their
time, one can gain insight into how they meet their requirements for survival.
Such information is useful when considering the introduction of a species and



640 Chapter 14

Box 14.4 Evaluation of Environmental Effects on Movement

The potential influence of water temperature, surface elevation, barometric pressure, and change in
barometric pressure are modeled against MDPH (natural log transformed) of northern pike in a
Colorado reservoir. Fish in this population were monitored on consecutive full-moon 24-h tracks for
at least 1 year (Rogers 1998). A mixed-model ANOVA with a random coefficients model (Littell et al.
1996) and an AIC model selection (Burnham and Anderson 1998) was used to isolate significant
effects. Akaike’s Information Criteria is a useful tool for selecting the model that most closely fits the
theoretical distribution of the data without overparameterization (Schisler and Bergersen 1996).
This metric can be thought of as the relative distance between pairs of multiple candidate models
(Burnham and Anderson 1998) and allows model selection to occur in an optimization framework
similar to parameter estimation. By formulating the problem of model selection across a set of
candidate models, AIC provides an objective means for the selection of the best approximating
model for inference (Burnham and Anderson 1998), as well as allowing the user to rank other
candidate models. This minimizes the practice of data dredging and overfitting models and
provides an alternative to the traditional null hypothesis testing approach. For a complete analysis
of these data, additional models would likely have been considered a priori, and values of AIC
would be useful in selecting the most parsimonious model supported by the data.

Table Data for northern pike being located during a 24-h track in lower Derby Lake, Colorado
(partial data set). Provided are the individual fish identification (Fish ID), the water temperature
(temp, °C), the maximum lake depth (depth, m) for that date, the mean barometric pressure (BP,
mm), the change in barometric pressure (DBP, mm) over the 24-h period, and the mean minimum
displacement (MDPH, m/h). The full data set is included in the Chapter 14 CD folder.

Fish ID Temp Depth BP DBP MDPH

2 21 4.4 630 –1.8 31.22
2 25 5.0 630 –2.3 43.25
2 23 4.6 634 0.2 28.06
2 27 4.1 630 –1.3 23.21
2 21 3.7 633 –2.8 16.72
2 12 3.5 630  –1.3 38.52

The following SAS program evaluates whether fish movement is correlated with the environmental
variables listed. Again, we must transform the MDPH to stabilize increasing variance found with
increasing MDPH. As AIC values will be used to isolate the most parsimonious model, all possible
models should be entertained (or at least all that make biological sense).

Program

OPTIONS NODATE PS = 40;

data NOP;

INFILE ’DNOPENV.TXT’ FIRSTOBS = 3;

input FISH TEMP DEPTH BP DBP MDPH;

LNMDPH = LOG(MDPH);

PROC MIXED DATA = NOP;
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CLASS FISH;

MODEL LNMDPH = TEMP DEPTH BP DBP/Solution;

/* Prints the solution to the model */

RANDOM INTERCEPT TEMP DEPTH BP DBP/TYPE = VC SUBJECT = FISH;

/* TYPE = VC sets the Variance–Covariance for each subject to a variance

components type*/

MAKE ’FitStatistics’ OUT = ModelFit;

/* Saves the AIC value into the file MODELFIT */

DATA ModelSelection;

LENGTH MODEL $ 18;

SET ModelFit;

MODEL = ’TEMP DEPTH BP DBP’;

/* The above DATA step adds the model name to the file

Now the process is repeated for another model */

PROC MIXED DATA = NOP;

CLASS FISH;

MODEL LNMDPH = TEMP/Solution;

RANDOM INTERCEPT TEMP/TYPE = VC SUBJECT = FISH;

MAKE ’FitStatistics’ OUT = ModelFit;

DATA ModelFit;

LENGTH MODEL $ 18;

SET ModelFit;

MODEL = ’TEMP’;

PROC APPEND BASE = ModelSelection DATA = ModelFit;

/* Append the new model’s statistics to the file MODELSELECTION */

PROC MIXED DATA = NOP;

CLASS FISH;

MODEL LNMDPH = TEMP DEPTH/SOLUTION;

RANDOM INTERCEPT TEMP DEPTH/TYPE = VC SUBJECT = FISH;

MAKE ’FitStatistics’ OUT = ModelFit;

DATA ModelFit;

LENGTH MODEL $ 18;

SET ModelFit;

MODEL = ’TEMP DEPTH’;

PROC APPEND BASE = ModelSelection DATA = ModelFit;

Iterate last 10 lines here for all models entertained.

PROC SORT DATA = ModelSelection;

BY Value;

/* Sort by AIC value */

PROC PRINT DATA = MODELSELECTION;

WHERE DESCR = ’AICC (smaller is better)’;

/* Print the summary table of sorted AICC values */

RUN;

(Box continues)
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Descriptive Output

Table Small-sample corrected Akaike’s Information Criteria (AICc) model selection for dependent
variable logeMDPH (LNMDPH). Smaller values of AIC, AICc, and BIC reflect better fit. Results for two
best models are shown.

Selection method

Model AICc value

TEMP 384.4
TEMP DEPTH 387.5
TEMP BP 388.3
TEMP DEPTH BP 389.7
TEMP DBP 390.6
TEMP DEPTH DBP 393.6
TEMP BP DBP 394.4
TEMP DEPTH BP DBP 395.8
DEPTH 403.4
DEPTH BP 409.1
DEPTH DBP 409.4
DBP 409.9
BP 410.4
DEPTH BP DBP 415.1
BP DBP 416.3

Covariance Parameter Estimates

Covariance parameter Subject Estimate

Intercept Fish 0.1816
Temp Fish 0
Residual 0.5929

Fit Statistics

–2Residual log likelihood 380.4
AIC 384.4
AICc 384.4
BIC 384.8

Solution for Fixed Effects

Effect Estimate SE df t-value P > |t|

Intercept 2.4878 0.1839 8 13.53 <0.0001
Temp 0.03906 0.007112 8 5.49 0.0006

Box 14.4 (continued)
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Type 3 Tests of Fixed Effects

Effect Numerator df Denominator df F-value P > F

Temp 1 8 30.17 0.0006

Covariance Parameter Estimates

Covariance parameter Subject Estimate

Intercept Fish 0.1655
Temp Fish 0
Depth Fish 0.003149
Residual 0.5870

Fit Statistics

–2Residual log likelihood 381.4
AIC 387.4
AICc 387.5
BIC 388.0

Solution for Fixed Effects

Effect Estimate SE df t-value P > |t|

Intercept 3.0604 0.5955 8 5.14 0.0009
Temp 0.04392 0.008580 8 5.12 0.0009
Depth –0.1517 0.1501 8 –1.01 0.3417

Type 3 Tests of Fixed Effects

Effect Numerator df Denominator df F-value P > F

Temp 1 8 26.20 0.0009
Depth 1 8 1.02 0.3417

Interpretation

The best model to predict loge(MDPH) based on the AIC model selection criterion is temperature
and is better by 3.1 AIC units than the second-best model (it is the absolute rather than relative
difference in values that matters). Temperature appeared in the top eight models, demonstrating
the importance of this variable in the model. Depth appears in four of the top eight. For the best
AIC model, temperature is positively related to loge(MDPH) with a slope of 0.0391 (SE = 0.0071).
Thus, northern pike moved more at warmer water temperatures. In the second best model, in
addition to temperature being positively correlated with movement, depth was negatively related
with a slope of –0.1517 (SE = 0.1501). Under this model, northern pike moved more in warmer
water but less as water levels were reduced.
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its ability to persist or potentially explaining why a species is in decline. Note,
however, that just observing how fish use habitat does not allow cause and effect
to be inferred. Rather, inferences from these observational studies are strictly
correlational. Cause and effect can only be isolated from experiments involving
manipulation of habitat.

In order to assess habitat use, one must first document what habitat is available
to the fish. Often, what the biologist perceives as available and what the fish deems
as available may be quite different. Biologists typically consider the contiguous
wetted area as available habitat for limnetic fish, though this may not always be
warranted, as restrictions in fish movement may occur based on physical barriers
such as inhospitable water temperatures, excessive aquatic vegetation growth, pres-
ence of other species, or shallow waters. The advent of GPS and GIS technologies
has greatly enhanced the process and accuracy of mapping habitat types and has
simplified the estimation of availability.

Typically, the habitat type a fish is using is recorded either when the fish is
observed in the field, or it is determined in a GIS by overlaying fish distribution
maps on habitat maps (Rogers and Bergersen 1996). A broad array of approaches
can be used to evaluate habitat use and resource availability at the population and
individual level. Some of the more prominent methods of evaluating whether fish
spend more time in some habitats than would be expected based on the availabil-
ity of those habitats are discussed elsewhere (White and Garrott 1990; Alldredge
and Ratti 1992; and Manly et al. 1993). Here our focus will center on methods for
which individual use is known (monitoring fish carrying transmitters) and the
proportion of available resource units is also known. Though similar methods
exist to evaluate resource selection when resource availability is only estimated or
sampled (Thomas and Taylor 1990; Manly et al. 1993), the proliferation of map-
ping technologies (GIS and GPS) has probably limited the need for discussion of
those approaches here.

14.6.1 Chi-Square Tests

The simplest and most pervasive approach to assessing whether fish are using
habitats in proportion to their availability is the use of chi-square tests. Though
the Pearson statistic is more common, the log-likelihood statistic is preferred be-
cause model selection based on AIC (Burnham and Anderson 1998) can be used
and because more sophisticated models using logistic regression can be built com-
pared with the use of simple contingency tables. In practice, both often yield
similar results and are asymptotically equivalent.

Researchers traditionally pooled use data and did not maintain unique identifi-
cation for each animal (Neu et al. 1974). For example, Rogers (1998) followed
seven adult largemouth bass over a summer in a Colorado reservoir, locating these
fish, in total, 128 times (Box 14.5). Historically, these observations might simply
have been analyzed as 128 independent observations, though this clearly was not
the case. Locations by the same individual are correlated in time and must be treated
accordingly (section 14.2.4; Otis and White 1999). Pooling may be justified if a few
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Box 14.5 Evaluation of Habitat Use

This example reports habitat use by seven largemouth bass carrying transmitters during the
summer of 1994 on 27-ha Lake Ladora, Colorado (Rogers 1998). Maps of individual fish locations
were overlaid on a 10 × 10-m raster map of bottom type in a GIS to evaluate habitat use by
individual fish and to quantify available habitat. The frequency of habitat use along with the
availability of the habitat is shown in the table below.

Table The number of locations each of seven largemouth bass frequented by habitat type in Lake
Ladora. Fish are identified by transmitter identification numbers, habitat types are listed in the first
column, and the last column represents the number of 10 × 10 m cells of a given habitat type that
were available in the lake.

Habitat type and Total for Available
individual total 105 132 17 2,263 2,353 285 510 habitat type habitat type

Silt 0 2 3 22 4 9 9 49 959
Chara 0 0 1 2 0 0 0 3 155
Pondweed 0 0 0 0 2 10 1 13 57
Milfoil 1 0 2 3 4 0 1 11 988
Coontail 9 9 3 3 0 28 0 52 503

Total for fish 10 11 9 30 10 47 11 128 2,662

The following SAS code can be used to evaluate both relevant chi-square tests.

Program

data VEG;

length Habitat $8;

input Habitat fish1 fish2 fish3 fish4 fish5 fish6 fish7 Available;

cards;

Silt   0   2   3  22 4 9 9 959

Chara   0   0   1  2 0 0 0 155

Pondweed   0   0   0  0 2 10 1 57

Milfoil   1   0   2  3 4 0 1 988

Coontail   9   9   3  3 0 28 0 503

;

data VEG1;

/* The following rows read in the above data table and format it for

analysis */

array cnt{7} fish1-fish7;

set VEG;

do i = 1–7;

Fish = i;

Count = cnt[i];

keep Habitat Count Fish;

output;

end;

proc freq;

weight Count;

(Box continues)
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locations are obtained from many fish, but generally just the opposite is true, and
many locations are obtained from just a few individuals. Use of habitat among fish
in the same population can be highly variable. Not only can the availability of habi-
tat to each individual vary, but there is inherent heterogeneity in use among indi-
viduals as well. This heterogeneity among individuals is eliminated if the location

tables Fish*Habitat/chisq;

proc transpose data = VEG out = TransposeVeg;

proc sort;

by _NAME_;

data Availablity;

/* This portion determines the amount of habitat available */

array Habitat{5} COL1-COL5;

/* The data table is transposed, so habitat is given in columns */

array Available{5} Avail1-Avail5;

retain Avail1-Avail5;

retain ChiSq TotalChiSq TotalDF TotalLocs 0;

set TransposeVeg end = Last;

if _NAME_ = ’Available’ then do;

SumAvailable = sum(of COL1-COL5);

do i = 1 to dim(Available);

Available[i] = Habitat[i]/SumAvailable;

end;

end;

else do;

/* The following generates the chi-square for the first test */

ChiSq = 0;

TotalLocations = sum(of COL1-COL5);

do i = 1 to dim(Available);

if Habitat[i]>0 then

ChiSq = ChiSq+Habitat[i]*log(Habitat[i]/

(TotalLocations*Available[i]));

end;

df = Dim(Available)-1;

Prob = 1-ProbChi(ChiSq, df);

format Prob PVALUE.;

keep _NAME_ TotalLocations ChiSq df Prob;

output;

/* Chi-square for the second test */

TotalChiSq = TotalChiSQ+ChiSq;

TotalDF = TotalDF+df;

TotalLocs = TotalLocs+TotalLocations

if Last then do;

_NAME_ = ’Total’;

TotalLocations = TotalLocs;

ChiSq = TotalChiSq;

df = TotalDF;

Box 14.5 (continued)
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Prob = 1-ProbChi(ChiSq, df);

output;

end;

end;

proc print;

Descriptive Output (Partial)

Table Statistics for fish by habitat.

Statistic df Value Probability

Chi-square 24 93.6632 <0.0001
Likelihood ratio chi-square 24 107.1104 <0.0001
Mantel–Haenszel chi-square 1 6.5549 0.0105
Phi coefficient 0.8554
Contingency coefficient 0.6500
Cramer’s V 0.4277

Transmitter
identification
number Chi-square Name Locations df Probability

105 25.473 Fish1 10 4 <0.0001
132 23.645 Fish2 11 4 <0.0001
17 2.180 Fish3 9 4 0.7026
2263 20.129 Fish4 30 4 0.0005
2353 10.373 Fish5 10 4 0.0346
285 98.854 Fish6 47 4 <0.0001
510 14.843 Fish7 11 4 0.0050

195.498 Total 128 28 <0.0001

Interpretation
The resulting �2 value for the first test, �L1

2 (equation [14.1]), was 107.1 with 24 df. The resulting
P (< 0.0001) indicates that fish are using the available habitats very differently. The value of the
second test, �L2

2 (equation [14.2]), was 195.5 with 28 df and a P of 0.0001, also indicating that the
largemouth bass were very selective in the types of habitat they used. The difference between
these two chi-square tests is 88.4 with 4 df (P < 0.0001), which demonstrates strong selection for
certain habitat types.

information is pooled across individuals. In the worst case scenario, two fish might
select opposite habitats, but pooling would make the investigator think that no
selection was occurring (White and Garrott 1990). With computer processing power
no longer limiting, the integrity of the data should be maintained. The preferred
approach is to consider the animal as the primary sampling unit, and statistical
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inference should be based on use with individual fish as replicates (Manly et al.
1993; Otis and White 1999).

Several tests can be conducted in a situation for which individual fish habitat
use is recorded and available habitat is known. First, we can check to see if fish are
using the various habitat types in similar fashion. Following the notation presented
by Manly et al. (1993), ui j is the amount of habitat type i used by fish j ; ui+ is the
amount of habitat type i used by all fish; u+j is the total amount of habitat units
used by fish j ; and u++ is the total number of habitat units used by all fish. The first
log-likelihood test statistic (�L1

2) is

�
L1

 = 2 � �uij loge[uij /E(uij )],   
j = 1

n
2

i = 1

l

(14.1)

where E(uij) = ui+u+j /u++. If the value is sufficiently large compared with the chi-
square distribution with (I – 1)(n – 1) df (I  being the number of habitat catego-
ries and n the number of fish), then there is evidence for heterogeneity, and fish
are using the habitats differently.

To examine if selection is occurring for individual habitat types by some of the
fish carrying transmitters, the second log-likelihood test statistic (�L2

2) is used:

�
L2

 = 2 � �uij loge[uij /E(uij )],   
j = 1

n
2

i = 1

l

(14.2)

where, E(uij) = �iu+j , and �i  is the proportion of available resource units that are
in category i. Selection for specific habitats is demonstrated if the chi-square is
sufficiently large with n(I – 1) df. The difference between these two chi-squares
(I – 1 df) describes whether, on average, fish are using the various habitat types in
proportion to their availability, regardless of which ones they are selecting.

Although it is recommended that the expected frequencies in a chi-square test
be five or more, these tests are fairly robust to deviations from this rule (Ott 1988).
Generally if 90% or more of the expected values are greater than two, there is not
a serious problem (Ott 1988). However, the data shown in the example are more
sparse than even this rule of thumb suggests is appropriate. Accordingly, we should
be cautious in our interpretation of these results, as almost half of the expected
counts are less than two. However, given the extreme significance of these three
tests and their robustness to deviation, it would be difficult to maintain that the
largemouth bass were not using habitats differently or displaying strong selection
for certain habitat types (Manly et al. 1993).

14.6.2 Selection Ratios

Once selection has been established, we shift our attention to evaluating which
types of habitats were selected. An old intuitive approach is with selection ratios
(Manly et al. 1972, 1993; Hobbs and Bowden 1982). Selection is indicated with
values greater than one, while avoidance of a habitat is demonstrated with ratios
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less than one. Again, from Manly et al. (1993), the selection ratio for the jth fish
and the ith habitat type is estimated by

wij = uij/(�iu+j).^ (14.3)

Generally, one is more interested in selection by the population as a whole,
which is estimated by

wi = ui+/(�iu++).^ (14.4)

In order to generate confidence intervals (CIs) about these selection ratios, the SE
can be calculated as (K. Gerow, University of Wyoming, personal communication)

SE(wi) = .
n

(n – 1)(u++)2
^

j = 1

n

�
uij(�i

– wi(u+j ))2
^

(14.5)

The selection ratio estimates are generated by pooling observations from all fish
in the sample, but the equation takes variation in resource selection from indi-
vidual fish into account (Manly et al. 1993). It is recommended that simultaneous
Bonferroni CIs be constructed to ensure the probability of all intervals containing
their true parameter values is 1 – � (Thomas and Taylor 1990). The intervals around
each selection ratio should therefore be constructed at the 100(1 – �/I)% level,
where I is the number of intervals being constructed (one for each habitat type),
such that

wi � z�/2I SE(wi),^ ^ (14.6)

where  is the z-score corresponding to an upper tail probability of . An example of
the use of selection ratios is given in Box 14.6.

The results are summarized in Figure 14.2, along with the results that would
have been obtained if we had used the historic approach of pooling all our loca-
tion data and analyzed it with the traditional chi-square method (Neu et al. 1974;
Byers et al. 1984; Manly et al. 1993). Although the results are similar, different
conclusions are drawn, underscoring the need for conducting the analysis cor-
rectly. Under both scenarios, largemouth bass avoid milfoil, yet under the historic
approach, they select strongly for pondweed. When analyzed with fish as the sam-
pling unit, however, the sparse data prevent us from achieving the power neces-
sary to infer selection for pondweed. The CI includes 1 (failure to demonstrate
selection) at an overall � = 0.10 (individual � = 0.02).

14.6.3 Continuous Distribution of Availability

Occasionally the distribution of a habitat character of interest does not lend itself
to categorization. Parameters such as temperature, dissolved oxygen, and depth,
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to name a few, are continuous in nature. One common solution is to simply break
the continuum up into categories. Whereas this is a legitimate approach, this
method is not as efficient as treating the variable as continuous. Further, the ap-
proach is subjective because the biologist must then decide the cutoffs for catego-
rization. A conceptually simpler approach would be merely to measure the
parameter of interest and see if that parameter changes in response to some other
factor by means of a GLM.

Numerous studies have demonstrated the importance of nearshore habitats to
fishes in inland temperate lakes during summer (Winter 1977; Doerzbacher 1980;
Betsill et al. 1988). Others have shown that some fishes move offshore in winter,
presumably in search of deeper, warmer water when ice covers the lakes (Cook
and Bergersen 1988; Rogers 1998). One option for evaluating this distribution
would be to divide the habitat into, say, littoral and limnetic zones and then use
the chi-square approach described in section 14.6.1, but then one would have to
decide what constituted those two habitat types. Rather than make spurious as-
sumptions, one could instead simply calculate the average distance to shore for
each fish during each season and use a GLM to assess if distance from shore
varied between seasons (Box 14.7).

Box 14.6 Application of Selection Ratios

Using the data from Box 14.5, we can use selection ratios to evaluate which habitats were selected
for or against by the population of largemouth bass in Lake Ladora. Calculation of selection ratios is
demonstrated based on equation (14.4) and the milfoil habitat data from Box 14.5. The proportion
of available resource units that are in category i is given by

wm i l f  = um i l f /(�m i l f u+ +) = 11/(0.371 × 128) = 0.232.^

The SE is calculated as (equation [14.5])

SE(wm i l f) = 
n

(n – 1)(u++)2
^

j = 1

n

�
um i l f( �m i l f

– wm i l f (u+ j))^
2

7
(7 – 1)(128)2

1[( 0.371
– 0.232(10)

2

= ) + . . . + 
1( 0.371

– 0.232(11)
2

) ] = 0.122.

The simultaneous Bonferroni confidence intervals (CIs) are generated as (equation [14.6])

wm i l f  � z�/2 ISE(wm i l f) = 0.232 � z0.10/2·50.122 = (–0.052, 0.516).^ ^

Because one cannot observe a negative value, the –0.052 should be replaced with 0.000. The
process can obviously be facilitated with the aid of a computer, and the appropriate code is
available from several sources. The plug and play application FishTel also can perform these
calculations.
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Figure 14.2 Seven adult largemouth bass were monitored during the summer of 1994 on
Lake Ladora, Colorado, and their locations were plotted on a map of vegetation to assess
habitat use. Selection ratios (Wi) and their associated Bonferroni-adjusted 90% confidence
intervals (error bars) were used to determine if selection for (>1) or against (<1) a given habitat
type was occurring. The intervals were calculated with both the traditional population level
approach and the individual level approach advocated here, which uses the individual fish as
sampling units.

The first two models in Box 14.7 (A and B in the SAS code) represent the
traditional approach to this sort of analysis, where sources of variation are in-
cluded for differences between fish and fish × season. Though legitimate, they
ignore the autocorrelation of the repeated measurements (distances) taken for
each fish and therefore display relatively high values of the small-sample corrected
Akaike’s Information Criteria (AICc) values. We would expect that distances taken
close in time would have a high correlation, whereas distances taken farther apart
in time would be less correlated. Model A assumes a constant residual variance
across all four seasons, with no covariance between distances for a fish, whereas
model B assumes a different residual variance for each season, but still with no
covariance. Model E assumes a constant residual variance across seasons and that
the autocorrelation of distances is constant across all of the repeated measure-
ments for a fish. Thus, model E ignores the fact that only distances taken close in
time should have a high correlation, and therefore it also gives rise to a high
AICc. Only models C, D, F, and G incorporate the autocorrelation of the distances
in their structure (Littell et al. 1996). Models C and D assume equal time inter-
vals, whereas F and G do not and are therefore rewarded with the lowest AICc
values. Model G allows the variance structure to vary by season as well as modeling
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Box 14.7 Evaluation of Habitat Use with Continuous Variables

To quantify whether largemouth bass really do move offshore in winter in search of warmer water
at greater depth, we will use the same fish observed in Box 14.3. Seventeen adult largemouth bass
in Lake Ladora were monitored on monthly 24-h tracks over a 4-year study.

Table Distances (m) from shore to each fish location (partial data set). The mean distance to shore
for each fish was calculated with FishTel, which determines the distance from every location
registered by a fish to the perimeter of the lake. Seasons are described in Box 14.3. The full data set
is included in the Chapter 14 CD folder.

Season Fish ID Date Time Distance (m)

1 2 18 March 1992 13:04 6
1 2 18 March 1992 17:20 6
1 2 18 March 1992 20:20 33
1 2 19 March 1992 08:07 19
1 2 19 March 1992 00:08 36
1 2 19 March 1992 05:32 45
1 2 16 April 1992 20:59 7
1 2 17 April 1992 00:27 5

The distance to shore is again transformed by the natural logarithm to stabilize increasing variance
associated with increasing distance from shore. Using a mixed-model ANOVA where FISH and
FISH*SEASON are considered random effects, a variety of models can be developed that allow for
autocorrelation in the repeated observations for each fish (Littell et al. 1996).

Program

proc format;

value season 1 = ‘SPRING’ 2 = ‘SUMMER’ 3 = ‘FALL’ 4 = ‘WINTER’;

data llmb;

infile ’NEARSHORE.TXT’ firstobs = 3;

input SEASON FISH DATE : mmddyy8. TIME : time5. DISTANCE;

format date date. time time. datetime datetime.;

DateTime = DHMS(DATE,hour(TIME),minute(time),second(time));

DateTime1 = DateTime/(60*60*24); *Convert to days;

format season season.;

LNDIST = log(DISTANCE);

* MODEL A;/* Traditional approach with random effects and constant residual

variance across seasons */

PROC MIXED DATA = LLMB;

CLASS SEASON FISH;

MODEL LNDIST = SEASON/s;

RANDOM FISH FISH*SEASON;

*LSMEANS SEASON/ADJUST = BON;

* MODEL B;/* Traditional approach with different residual variance between

seasons */

PROC MIXED DATA = LLMB;

CLASS SEASON FISH;
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MODEL LNDIST = SEASON/s;

RANDOM FISH FISH*SEASON;

repeated/type = vc/* Default type */group = season;

*LSMEANS SEASON/ADJUST = BON;

* MODEL C;/* Accounts for autocorrelation in distances assuming equal time

intervals */

PROC MIXED DATA = LLMB;

CLASS SEASON FISH;

MODEL LNDIST = SEASON/s;

RANDOM FISH FISH*SEASON;

Repeated/subject = FISH type = ar(1);

*LSMEANS SEASON/ADJUST = BON;

* MODEL D;/* Same as C while allowing different residual variance between

seasons */

PROC MIXED DATA = LLMB;

CLASS SEASON FISH;

MODEL LNDIST = SEASON/s;

RANDOM FISH FISH*SEASON;

Repeated/subject = FISH type = ar(1) group = season;

*LSMEANS SEASON/ADJUST = BON;

* MODEL E;/* Constant residual variance across seasons, constant

autocorrelation */

PROC MIXED DATA = LLMB;

CLASS SEASON FISH;

MODEL LNDIST = SEASON/s;

RANDOM FISH FISH*SEASON;

Repeated/subject = FISH type = cs;

*LSMEANS SEASON/ADJUST = BON;

* MODEL F;/* Accounts for autocorrelation in distances as a function of the

actual time interval */

PROC MIXED DATA = LLMB;

CLASS SEASON FISH;

MODEL LNDIST = SEASON/s;

RANDOM FISH FISH*SEASON;

repeated/subject = fish type = sp(pow)(datetime1);

*LSMEANS SEASON/ADJUST = BON;

* MODEL G;/* Same as F while allowing different residual variance between

seasons */

PROC MIXED DATA = LLMB;

CLASS SEASON FISH;

MODEL LNDIST = SEASON/s;

RANDOM FISH FISH*SEASON;

repeated/subject = fish type = sp(pow)(datetime1) group = season;

*LSMEANS SEASON/ADJUST = BON;

run;

(Box continues)
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Descriptive Output

Table Summary of mixed ANOVA output for all models (random effects for fish). The smallest
value of AICc represents the model with the best fit.

Model AICc F-value

A) Variance components 2,227.4 8.88
B) Variance components/seasons 2,220.6 8.91
C) Autoregressive 2,053.4 8.21
D) Autoregressive/seasons 1,985.2 12.24
E) Compound symmetry 2,229.4 8.88
F) Spatial power 2,063.2 10.32
G) Spatial power/seasons 1,929.8 12.47

Table Mixed ANOVA output for the spatial power/seasons model that displayed the best fit. This
model describes autocorrelation in distances as a function of the actual time interval (SP[POW]) by
season as well as season-specific residual variances (variance).

Covariance Parameter Estimates

Covariance parameter Subject Group Estimate

Fish 0.2511
Season*Fish 0.06000
Variance Fish Season winter 0.6089
SP(POW) Fish Season winter 0.5816
Variance Fish Season summer 0.6653
SP(POW) Fish Season summer 0.000534
Variance Fish Season spring 0.8392
SP(POW) Fish Season spring 0.01965
Variance Fish Season fall 0.8132
SP(POW) Fish Season fall 0.007301

Fit Statistics

–2Residual log likelihood 1,909.6
AIC 1,929.6
AICc 1,929.8
BIC 1,937.9

Solution for Fixed Effects

Effect Season Estimate SE df t-value P > |t|

Intercept 3.3492 0.1824 16 18.36 <0.0001
Season Winter 0.5809 0.2060 26 2.82 0.0091
Season Summer –0.5647 0.1631 26 –3.46 0.0019
Season Spring –0.2104 0.1794 26 –1.17 0.2516
Season Fall 0

Type 3 Tests of Fixed Effects

Effect Numerator df Denominator df F-value P > F

Season 3 26 12.47 <0.0001

Box 14.7 (continued)
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the correlation as a function of the time interval. It is clearly the most parsimoni-
ous model, with an AICc of 1,929.8. This result demonstrates the necessity of
including the time element in telemetry data, as autocorrelation is pervasive. Fur-
thermore, this autocorrelation varies across seasons. Examination of the variance–
covariance parameter estimates reveals that not only do the variances appear dif-
ferent between seasons, but the only strong correlation between observations close
in time occurs in winter (r ^ = 0.5816), also when the smallest residual variance was
estimated (� ^ 2 = 0.6089). This result is expected, as we have already demonstrated
that these fish move least in winter (Box 14.3). When water temperatures drop
close to freezing, these poikilotherms are less likely to move far enough from a
previous location to remove the autocorrelation effect. The variation among fish
(0.2511) and among fish × season (0.0600) is considerably less than the residual
variance within fish for each season.

The untransformed mean distance to shore for all the largemouth bass in sum-
mer was 26 m, which more than doubled in winter, with fish locations moving to
58 m from shore on average. Mean distance from shore was 39 m in spring and
41 m in fall. Largemouth bass moved offshore, presumably seeking out the deeper,
warmer water found at the bottom of the ice-covered lake (Rogers 1998). This
same approach can be used in a vertical plane to evaluate conveniently if fish are
using various depths in proportion to their availability.

Nearly identical conclusions are obtained with this analysis if the natural loga-
rithm transform is not applied to distance. The same autocorrelation structure, a
spatial power autocorrelation function varying among seasons, was selected as the
minimum AICc model. The highest autocorrelation was again estimated for win-
ter. Because the residual variance is computed for each season, the heterogeneity
of variances caused by distance is somewhat mitigated. Because the mean dis-
tance for winter was the largest, the residual variance for winter is greatest for the
untransformed distances. The analysis results obtained with the untransformed
distances are biologically easier to interpret, hence, in some ways preferred. How-
ever, in general, the effect of heterogeneity of variance on ANOVA results is to
lower the power of the tests. We can better understand the structure of the data
by performing an analysis on both the transformed and untransformed variable
and examine similarity in results.

14.6.4 Alternative Approaches

Numerous approaches for analyzing resource selection have been developed over
the years. Though most questions can be addressed with the methods we have
already discussed, a brief summary of some of the more prominent historic ap-
proaches is presented, should the reader wish to explore other avenues.

The first approach to test resource selection rigorously was presented by Neu
et al. (1974). They used chi-square analyses to examine the differences in the
proportion of used versus available habitats. Analogous to the approaches pre-
sented in this chapter, chi-square tests are implemented to test the goodness-of-fit
of used to available habitat considering both all habitats simultaneously and each
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habitat separately. With their method, the influence of an animal’s electivity is
effectively weighted by the number of locations for each animal. Unfortunately,
analysis is restricted to population level use data and does not allow the user to
incorporate unique information for each individual fish in the analysis. As such, it
assumes that locations are independent, with a lack of independence resulting in
too many type I errors.

The approach developed by Marcum and Loftsgaarden (1980) is especially
elegant if the availability of the habitat is only estimated. By doing a chi-square
test of independence of habitat types from random locations and telemetry loca-
tions, a census of available habitat is not needed. As discussed earlier, with the
proliferation of GIS and GPS available to inland fisheries professionals, conduct-
ing a census of available habitat is not difficult and does confer more power.

Johnson (1980) developed another approach that is less sensitive to availability
concerns. His method ranks habitats by area so that precise estimates are not
necessary and minor errors in habitat classification can be tolerated. The method
does not test for habitat selection for each animal but rather uses each animal as
an observation to test for a preference by the population. Unfortunately, the data
from each telemetered fish is weighted equally, regardless of the number of ob-
servations recorded for each fish. This method also tends to have lower power
than the chi-square approaches discussed earlier. We encourage the investigator
instead simply to measure the available habitat.

Friedman’s test is another rank-based approach (Alldredge and Ratti 1986,
1992). Unlike Johnson’s test, this approach ranks the actual differences between
proportional use and availability. Like Johnson’s test, fish are compared as if sample
sizes are equal for each fish, which is usually not the case. Both tests cause much
higher type I error rates if animals differ in their habitat selection because ani-
mals are assumed to be blocks. This is not a problem for the chi-square goodness-
of-fit tests because those are performed for each individual fish.

Lastly, logistic regression models are gaining popularity in the evaluation of
habitat use, especially in wildlife journals (Hudgins et al. 1985; Hosmer and
Lemeshow 1989; Agresti 1990; Mace and Waller 1996; Conner and Leopold 1998;
Mysterud and Ims 1998). Logistic regression methods represent a specialized form
of regression models that are designed for the analysis of categorical data, which
are the most common in habitat studies. Unlike the chi-square analyses, logistic
regression can also incorporate continuous habitat variables such as water tem-
perature or depth in the analysis. Logistic regression evaluates changes in the
odds of habitat use where the odds are defined as the ratio between the probabil-
ity of using a habitat and the probability of not using it. In a simple study where
only three habitats are available to choose from, the model equation is

odds = exp(�0 + �1X1 + �2X2) = e�0e�1X1e�2X2. (14.7)

When the predictor (X) is categorical with several categories (as would be the
case when habitat is used as a predictor), one must represent that predictor by a
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set of indicators (artificial variables set at 0 or 1). Given the above equation, sup-
pose there are three habitats: A, B, and C. Then let X1 be 1 to represent an obser-
vation in habitat A and be 0 otherwise. Observations in habitat B are given by X2 =
1 and 0 otherwise. Possible values for this pair of variables is (1,0), (0,1), or (0,0),
representing habitats A, B, and C, respectively. An important point is that we
need only two indicators to represent three habitats. In general, the number of
indicators required is one less than the number of categories. The choice of habi-
tat that is referenced implicitly (habitat C) is arbitrary. One should simply select
the habitat that makes the subsequent inferences simplest or most meaningful.

Most telemetry work is retrospective (K. Gerow, personal communication),
necessitating the use of odds ratios defined by

odds ratio = e�0e�1(X + 1)

e�0e�1X = e�1. (14.8)

In logistic regression, the influence of unit changes in the predictor (X) is mani-
fested in the odds ratios for each predictor. Because we are interested in the ratio
of odds, one habitat category must be selected as a baseline to which other habitat
categories can be compared. The selection of the baseline category is again arbi-
trary, and one should just select the habitat that makes explaining the subsequent
data most meaningful.

Implementation is straightforward when fish are used as the sampling unit.
The chosen model is fit to each individual fish, and only the parameter estimates
are recorded. We are only isolating the relative odds parameters for each fish
(K. Gerow, personal communication). Once accomplished, standard parametric
approaches can be used to explore the distribution of the independent estimates
for each parameter. Like the chi-square analyses, this approach has trouble with
categories that have zero use. In fact, CIs in habitat categories with very low ob-
served or expected numbers may be suspect, because the standard normal distri-
bution may not accurately represent the sampling distribution of the statistic
(K. Gerow, personal communication).

Although logistic regression is a powerful modeling tool for data analysis, we
prefer selection ratios when selection for only habitat categories is explored. Re-
sults derived from the selection ratio approach are both more intuitive and easier
to interpret. The benefits associated with using logistic regression become appar-
ent when habitat information contains continuous metrics.

14.6.5 Conclusion

Although the above approaches are powerful tools to elucidate if fish are using
various habitat types in proportion to their availability, they do not tell us if the
habitats are critical to survival or reproduction (Hobbs and Hanley 1990; White
and Garrott 1990). Given that heterogeneity in habitat use is pervasive within a
species in the same basin, even the link between habitat use and fitness may be
tenuous. We do suspect that preferences that actually decrease fitness would be
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rapidly eliminated from the population through natural selection (White and
Garrott 1990). Telemetry studies are generally correlational and tell you only if a
habitat is preferred or not, not if it is critical. Only manipulative experiments can
reveal the true importance of underutilized habitats.

■ 14.7 HOME RANGE

Home range is defined as “that area traversed by the individual in its normal
activities of food gathering, mating, and caring for young” (Burt 1943). The word
normal unfortunately introduces ambiguity into the home range concept. An ob-
jective method is needed to define normal. Typically, it is defined as some prob-
ability level (95% of the locations), though selecting the appropriate probability
is arbitrary as well. Evidence for the establishment of home ranges has been docu-
mented for several temperate piscivores (Lewis and Flickinger 1967; Malinin 1969;
Winter 1977; Doerzbacher 1980; Ross and Winter 1981; Mesing and Wicker 1986),
though the results have been questioned due to the very short duration of some
of these telemetry studies (Diana et al. 1977; Diana 1980; Cook and Bergersen
1988). The time frame in which the fish are observed must be representative of
the interval of interest, which is determined by the objective of the study. Despite
the common practice of generating home range estimates, they rarely are related
back to the original study objective. Alone, estimates of home range are of little
use unless correlated with some additional parameter of importance. Even then,
most approaches for determining home range are so vulnerable to criticism that
their utility is questionable. Unfortunately, the most commonly used method of
estimation (minimum convex polygon approach) is fraught with more problems
than any other. Its persistence in the literature is presumably a tribute to its ease
of calculation.

14.7.1 Minimum Convex Polygons

The oldest and most common method for evaluating home range size is the
minimum-convex-polygon approach (Mohr 1947; Odum and Kuenzler 1955).
In its most basic form, the locations for each fish are plotted, and the smallest
convex polygon that encompasses all the locations is constructed. The area of
this polygon is then an estimate of home range. This approach has several ap-
pealing attributes in that it is simple to calculate and allows for flexibility of
home range shape.

As mentioned before, the original intent of the home range was to describe
the area that an animal “normally” uses during a specified time frame (Burt 1943).
The convex-polygon approach encompasses all points where a fish was recorded,
including any rare forays. As such, the minimum-convex-polygon approach is re-
ally more of an estimate of the total range of an animal, rather than its home
range. In addition, the estimate is a minimum estimate of range, because it is
unlikely that fish never explored areas farther than where they were monitored.
The range is also constrained to be a convex polygon with this method, which is
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probably an unreasonable assumption especially in heterogeneous environments
(Anderson 1982). This is especially true when studying fish in lakes with complex
shorelines, as fish clearly cannot exploit the dry land that falls in their “home range.”
Several authors (Winter 1977; Rogers and Bergersen 1995) have removed land ar-
eas by generating convex polygons with concave intrusions to reflect the wetted
minimum area of the home range. One must be objective when defining such bound-
aries, but as fish need water to live, this approach is probably defensible.

The most glaring problem with this approach, however, is that estimated home
range size increases with increasing sample size (Jennrich and Turner 1969;
Schoener 1981). The home range size is a function of the duration of the study
and the number of locations used to generate the estimate (Winter 1977). To
demonstrate this, daily summer locations of 13 largemouth bass in two Colorado
reservoirs (Rogers 1998) were used to generate a minimum-convex-polygon esti-
mate of home range, excluding land area that intruded on the range. In addition
to calculating the convex polygon for each fish over the course of the summer, a
program was written that randomly dropped 10, 30, 50, and 70% of the locations
and recalculated the minimum-convex-polygon home range. Each scenario for
each fish was iterated 100 times to generate a mean value (Figure 14.3). Clearly,
in all scenarios, documented home range sizes would have been substantially less
had fish been located fewer times during that summer. This underscores the futil-
ity in comparing home range sizes of a species across studies that use different
sampling protocols.
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Figure 14.3 Minimum-convex-polygon home ranges were calculated for largemouth bass
located in lakes Ladora and lower Derby in the summer of 1994. If the estimates are recalculated
using only 30%, 50%, 70%, and 90% of those same locations, a reduction in estimated home
range size is realized. Error bars represent the SE of the mean.
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Odum and Kuenzler (1955) recognized this limitation and proposed a method
to justify using the minimum-convex-polygon approach by plotting the size of the
home range against increasing numbers of contacts used to generate the polygon.
This “observation area” curve, or cumulative increase in maximum home range
area with time, was drawn to determine whether home range size was stable or
increasing. They defined stable as the point beyond which each additional observa-
tion produced less than 1% increase in area. If the curve did not level off, then
either not enough observations were made or the animal in question did not set up
a home range in the classic sense. When this approach is used, a staircased graph
typically results (Figure 14.4). Although the estimated home range appears to stabi-
lize in a number of places, it is apparent that the home range does not reach an
asymptote until the locations fill the entire basin of this 27-ha lake. Terminating the
study after the 20th, 40th, or 60th observation would have been made under the
illusion that the home range area had stabilized, which was clearly not the case.

14.7.2 Bivariate Normal Models

According to a bivariate normal model, locations are assumed to be distributed
independently; that is, fish move randomly around their home range, with their
most probable location being the very center. Most models use the area of a 95%
ellipse calculated around the mean location as an estimate of the animal’s home
range. Although 95% has traditionally been used, the number is arbitrary, and
any percentage could be used with adequate justification. By not including all of
the points, these methods tend to be more robust to outliers. Points close to the
mean are weighted greater than those far away (Jennrich and Turner 1969), and

Figure 14.4 The area of the minimum convex polygon encompassing increasing numbers
of consecutive contacts for the first 100 locations of largemouth bass #258 in Lake Ladora,
Colorado (from Rogers 1998).
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some models weight points close in time less than those far apart (Dunn and
Gipson 1977). This results in home range estimates that are more consistent with
the spirit of Burt’s (1943) definition of the home range as the “area traversed by
the individual in its normal activities of food gathering, mating and caring for
young.” Bivariate normal models generally do not include extreme forays that
stray far from a center of activity. Numerous methods have been developed in an
attempt to decouple the estimated home range size from sample size by this ap-
proach (Jennrich and Turner 1969; Dunn and Gipson 1977; Anderson 1982; Samuel
and Garton 1985). The obvious benefit is that estimates of home range become
more comparable between studies. Fisheries scientists have been reluctant to adopt
these methods, presumably because the alternative was historically much easier to
calculate. With personal computers now ubiquitous, and a plethora of software
programs available (e.g., White and Garrott 1990; Kenward 1992; Larkin and Halkin
1994; Hooge et al. 2001), this should no longer be the case.

Unfortunately, bivariate normal models are still fraught with problems. Concep-
tually, they do not properly describe the movements of most free-living animals.
Fish do not randomly bounce around their home range; they move through it with
a purpose, finding food resources, shelter, and mates. Bivariate normal models as-
sume a single center of activity and, hence, do not deal well with multiple centers of
activity if a fish decides to change its movement patterns. Home ranges generated
by these approaches still increase in size if a fish decides to relocate to new centers
of activity on a regular basis, requiring the investigator to decide subjectively what
location data to include in the analysis. Smith (1983) provides a chi-square good-
ness-of-fit test to evaluate whether the home range data are consistent with the
assumption of bivariate normality. In addition, these models assume a bivariate nor-
mal probability distribution that may not be applicable in many biological settings.
Even if range is based around one activity center, this approach is still problematic if
you do not want the ellipse to overlap land that the fish cannot use. Clearly land-
masses that protrude into a fish’s home range would not be well represented by an
elliptical home range. In these situations, estimates of home range can be highly
biased (Boulanger and White 1990). Additionally, there is no reason a fish should
spend most of its time in the center of its home range and little time at the periph-
ery. In general, animal movements arise from strange sampling distributions more
frequently than they arise from common, well-known distributions (Schoener 1981;
Anderson 1982; Swihart and Slade 1985). Outlying locations, however, cause the
ellipse to extend in the opposite direction from the outliers to compensate for their
impact on the shape of the normal distribution. Although animal locations seldom
fit a bivariate normal distribution, the use of the bivariate normal model for home
range estimation is still worthwhile, as the incorporation of a probability model is
conducive to robust estimators.

14.7.3 Other Nonparametric Approaches

Perhaps the area with the most promise in dealing with the limitations of home
range analyses are the more recently developed nonparametric approaches. These
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are more flexible in that they are not restricted to modeling home ranges of a
particular shape. Numerous nonparametric approaches have been proposed over
the years, including the minimum-convex-polygon approach (Mohr 1947) dis-
cussed earlier, as well as Fourier series estimation (Anderson 1982) and grid cell
counts (Siniff and Tester 1965). With Fourier series smoothing, the location data
are described by adding a finite number of sine waves of various amplitude and
frequencies to generate a two-dimensional surface of the area an animal uses.
The home range is then the smallest area that encompasses a given percent (e.g.,
95%) of the volume of this surface (similar to the arbitrary cutoffs established
with the bivariate normal models). The grid cell approach superimposes a grid on
a map of the area a fish uses, and the number of locations in each cell is recorded.
Although this approach makes no assumptions regarding the shape of the home
range, it is very sensitive to the size of the grid cell selected for analysis and the
sampling intensity (White and Garrott 1990). Recent developments have provided
more robust methods for estimation and are discussed below. Software for the
analysis of these methods and detailed instructions for their use can be obtained
from a variety of sources (e.g., White and Garrott 1990; Kenward 1992; Larkin
and Halkin 1994; Hooge et al. 2001)

14.7.3.1 Dirichlet Tessellations

When sample sizes are very large and autocorrelation is significant, Dirichlet tes-
sellations provide a simple and robust technique for evaluating home range size
(Wray et al. 1992; Hooge et al. 2001). This approach describes the spatial pattern of
the locations in terms of their relative position only. The density of the locations is
calculated without any assumptions about the underlying distribution of the data.
The Dirichlet tessellation creates a polygon around each fish location, such that all
parts of the polygon are closer to the enclosed location than any other location
(Figure 14.5). Fish locations are joined by the dotted lines to form Delaunay tri-
angles (Upton and Fingleton 1985). The perpendicular bisectors of the dotted lines
then give rise to the polygons that form the tessellation (Wray et al. 1992). The
home range is determined as the smallest possible area that includes 95% (or any
other justifiable amount) of the polygons (location estimates). Using much smaller
percentages will isolate the core areas within a home range. Areas of the home
range where fish locations are concentrated then give rise to smaller polygons. The
internal configuration of an animal’s home range is therefore readily detected.
This approach is sensitive to outliers, and the home range boundary can be difficult
to establish at high inclusion percentages (Wray et al. 1992). Its use should be re-
stricted to situations for which the location data sets are large.

14.7.3.2 Harmonic Mean

Dixon and Chapman (1980) proposed a home range estimator based on the har-
monic mean of the spatial distribution of locations, using the distances from nodes
on a grid to observed locations. The estimator uses the mean of the inverse dis-
tances from a node on a grid to all the locations (Seaman and Powell 1996). This
mean is then inverted to generate a surface that is low where locations are most
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clustered (low mean distance to observations) and high where locations are dis-
persed (high mean distance to other observations). The boundary of the home
range can then be defined by calculating harmonic means at all locations, then at
all nodes. All nodes that have harmonic mean values greater than any calculated
at the locations are deemed outside the home range (Seaman and Powell 1996).
The harmonic means can be converted to a frequency distribution by dividing the
means at each node by the sum of the means in the home range. The area under
the lowest 95% of this surface is then an estimate of home range (Seaman and
Powell 1996). This estimator does not impose any particular shape on the esti-
mated home range and can define ranges with multiple centers of activity prop-
erly. It has been shown to be less biased than the other methods presented up to
this point (Boulanger and White 1990) and is useful for determining centers of

Figure 14.5 The Dirichlet tessellation is constructed from the perpendicular bisectors
(solid lines) of the sides of the Delaunay triangles (dotted lines) that connect the fish location
estimates. The home range is determined as the smallest possible area that includes 95%
(or any other justifiable amount) of the polygons (fish location estimates).
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activity (Dixon and Chapman 1980). Unfortunately, the results are dependent on
the origin and spacing of the grid used and the measurement units of the loca-
tions, all because a location that falls exactly on a node provides an undefined
quantity. As such, the more robust kernel estimators (Worton 1987) have largely
replaced this approach,

14.7.3.3 Kernel Estimators

These nonparametric density estimators represent perhaps the most intriguing of
the probabilistic approaches to estimating home range (Worton 1989). They are
preferred over the harmonic mean approach because they are much less sensitive
to outlying locations and the choice of measurement units and the grid, and show
very little bias (Worton 1995; Seaman and Powell 1996). Conceptually, the kernel
method places a probability density (a mound-shaped kernel) over every location
registered for a given fish that is to be used in the home range analysis. The
density of the kernel is maximized directly over the fish location, but then tails off
in all directions, similar to a bivariate normal function. The density is estimated at
the nodes of a grid draped over this surface as the average density of all the ker-
nels that overlap at that point. This density will be high in areas where fish are
concentrated (and many kernels overlap), but low in less-frequented areas. Once
this surface has been generated, contour lines can be inscribed on it that connect
areas of equal density. For comparison purposes, usually the area that incorpo-
rates 95% of the utilization distribution is calculated as an estimate of home range.
This value is arbitrary, however, and it is often useful to draw contour lines at
multiple levels so that high-use areas can be rapidly identified.

Smoothing is critical for describing accurate home range sizes with kernel esti-
mators (Worton 1995), and that is how the two kinds of kernel estimators are
defined. In the fixed kernel estimator, the smoothing parameters are fixed over
the entire surface (Worton 1989). The smoothing parameters are allowed to vary
in the adaptive kernel estimator approach. Areas where the densities of fish are
low receive more smoothing than do areas where fish are concentrated. Although
adaptive kernel methods are thought to yield better estimates (Worton 1989;
Silverman 1992), the fixed kernel approach gave the least-biased results and low-
est error based on simulated data (Seaman and Powell 1996; Seaman et al. 1999)
and is therefore recommended. Kernel estimates based on sparse data should be
expected to overestimate true home range size, though home ranges that follow
smooth unimodal distributions can be accurately described with fewer locations
than can more complex distributions (Seaman and Powell 1996).

Though elegant nonparametric approaches have been developed to address
some of the concerns with earlier methods of home range estimation, they still
have several shortcomings. Perhaps the most problematic is that these approaches,
like those that use minimum convex polygons, have no CIs around them. One
cannot judge the quality of the estimate because only a point estimate is gener-
ated, without an estimate of its SE. However, SEs for the kernel estimators could
be developed with a bootstrap procedure, resampling the original data with re-
placement to generate a distribution of calculated values (Good 1994; Edgington
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1995; Manly 1997). Kernel estimators also ignore the time series nature of the
data and tend to have lower precision than do parametric methods of estimation
because fewer assumptions are made (White and Garrott 1990). However, the
lower bias of these estimators still makes their use recommended.

14.7.4 Utility of the Home Range Concept

No one method for characterizing home range size is without flaws (Table 14.1).
Many subjective decisions and assumptions must be made when generating home
range estimates, limiting the biological insight they can provide (White and Garrott
1990). In particular, the sampling scheme to obtain the locations used to calcu-
late a home range estimate must provide an unbiased picture of the animal’s
movements (Otis and White 1999). Many varied approaches for estimating home
range size exist, but they are all vulnerable to criticism. All involve making subjec-
tive decisions that lack objective criteria, causing the resulting estimates to pro-
vide little biological insight. Home range estimates are often presented to dis-
guise the fact that no hypotheses are being tested, providing a quantitative albeit
insignificant summary of the data. Some have advocated abandoning the calcula-
tion of home range size altogether and using raw data to test hypotheses (Ander-
son 1982; White and Garrott 1990). This would eliminate the need to invoke
spurious assumptions and biases inherent in home range estimates and confer
more power to subsequent statistical tests.

Home range analyses provide an interesting exercise in data analysis but are of
little interest, unless correlated with some additional parameters. Properties of
the home range should have adaptive significance. For example, home range size

Table 14.1 A subjective summary of various traits associated with the minimum convex
polygon (MCP), wetted MCP (MCPw), Jennrich–Turner bivariate normal (JT), Dunn–Gipson
bivariate normal (DG), Fourier series (FS), grid cell count (GC), Dirichlet tessellation (DT),
harmonic mean (HM), and kernel estimator (KE) methods for calculating home range. In general,
only those methods that are particularly sensitive to a specific trait are included.

Trait Method

Experiences range increases with sample size MCP, MCPw
Experiences range increases with sampling duration MCP, MCPw
Accounts for land intrusions MCPw, GC, DT, HM, KE
Restricts home range to a particular shape JT, DG
Includes arbitrary percent of locations in range JT, DG, FS, DT, HM, KE
Assumes single center of activity JT, DG
Accommodates multiple centers of activity MCP, MCPw, FS, GC, DT, HM, KE
Is robust to outliers JT, DG, DT, HM, KE
Accounts for time series nature of data DG
Has robust statistical foundation JT, DG
Isolates core areas GC, DT, HM, KE
Experiences difficulty in defining boundary of home range JT, DG, FS, DT
Depends on grid used GC, HM
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is considered an important aspect of an animal’s feeding strategy and should be
related to food density, metabolic needs, and the efficiency of movement, in addi-
tion to being inversely correlated with population density (Schoener 1981). Fish
and Savitz (1983) attempted to use home ranges to compare trophic relation-
ships between species in an Illinois lake. Their hypothesis was that largemouth
bass would have larger home ranges than would bluegills or pumpkinseeds be-
cause the latter species were benthivores whereas largemouth bass were piscivores.
The lower densities of piscine prey would necessitate that largemouth bass would
have larger home ranges. Their fish were tracked on average for 43 d, and a home
range was arbitrarily defined as the minimum-convex-polygon area that a fish oc-
cupied for at least 5 consecutive days. Not surprisingly, extreme variability kept
them from detecting any differences in home range size between species. Usually,
one can substitute raw location or movement data to test a hypothesis of interest,
thereby avoiding the problems associated with home range analysis. Because move-
ment (MDPH) and home range are highly correlated (Rogers and Bergersen
1995), Fish and Savitz (1983) may have been able to address the same relation-
ships without having to make all of the spurious assumptions associated with analysis
of home range by invoking MDPH instead. Savitz et al. (1993) used home range
size to show that largemouth bass used reduced areas when given supplemental
feed. Minns (1995) demonstrated that home range was correlated with fish size.
Both would have drawn the same conclusions by measuring MDPH while avoiding
criticisms of home range analysis.

The entire home range concept may not be as appropriate for fishes as it is for
terrestrial mammals (especially those with altricial young). Burt’s (1943) original
home range concept was developed for mammals as the area used for foraging
that surrounded a permanent home site. These areas were generally stable over
long periods of time. In fact, before generating a home range estimate, it would
be wise to determine if site fidelity even exists (Hooge et al. 2001). Fish seem to
display more transitory ranges (Winter 1977; Cook and Bergersen 1988; Jones
and Rogers 1998), perhaps due to short spawning seasons (Savitz et al. 1993) and
limited or absent parental care. Changes in home range areas appear to occur
with changes in prey, water temperature (Savitz et al. 1993), or body size (Minns
1995) rather than intraspecific competition. We may be stretching the original
spirit of Burt’s (1943) concept too far in fisheries research and should perhaps
employ metrics other than home range in testing hypotheses of interest.

■ 14.8 SUMMARY

The methods presented here are only a sampling of the varied approaches used
in telemetry studies, but we hope that they will provide a foundation for custom-
izing analyses for specific applications. With the proliferation of software pro-
grams and powerful computers to run them, many of the traditional shortcom-
ings of telemetry work can now be addressed. Researchers can now focus on
study design aspects of their work prior to the initiation of the study by ensuring
that representative samples of fish from the population of interest are obtained.
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Power calculations should be conducted before the initiation of field work to
ensure that proposed research will be able to address the questions that are posed.
Early on, one should explore the error associated with telemetry system to be
used to evaluate what influence or bias it will introduce to the results. Perhaps the
strongest message that should be gleaned from this chapter regards the correct
treatment of the sampling unit. Because we are interested in describing how fish
in a population behave, the individual fish are the sampling units and not the
individual locations, as is commonly reported. Using locations as sampling units is
pseudoreplication (Hurlbert 1984). The attention focused on the serial correla-
tion of location data taken close in time is misguided now that powerful statistics
packages, such as SAS, allow for the integration of autocorrelation in the data
structures. Autocorrelation of location estimates is largely irrelevant when telem-
etry data are analyzed correctly.

After ensuring that the study design is sound, one is encouraged to explore the
spatial distribution of fish locations to determine if they are distributed in a non-
random fashion. Movement is another metric that is often explored in telemetry
literature and can often be correlated with environmental attributes. Often habi-
tat use is the primary area of interest. Though numerous approaches have been
developed to characterize use, they do not reveal whether the behaviors we ob-
serve are actually a critical reflection of what is needed for the fish to reproduce
and survive. Cause and effect can be isolated only by conducting manipulative
experiments.

A tremendous amount of effort has been expended on developing methods to
evaluate home range size. The minimum-convex-polygon approach is certainly
the most common but is problematic because home range size tends to increase
with sample size or sampling duration. Bivariate normal models strive to mini-
mize those limitations by including only a portion of the locations (usually 95%).
Reducing the number of locations considered makes this type of approach less
sensitive to outliers, but 95% is completely arbitrary, and a few percentage points
either way can have a large effect on range size. Additionally, these models un-
realistically restrict the shape a home range can assume. Shortcomings of the
bivariate normal models have been addressed with nonparametric approaches
that allow for multiple centers of activity and accurate reflections of odd-looking
home range boundaries that typically occur in nature. Many nonparametric meth-
ods also entertain only a portion of the locations recorded to decrease sensitiv-
ity to outlying locations. Though these approaches represent the most promise
in home range analyses, it is difficult to establish CIs with these methods, pre-
venting the reader from assessing the quality of the estimate. Because all ap-
proaches have some flaws, we advocate substituting alternative metrics, such as
movement per hour, for comparison to parameters of interest. These other
metrics generally provide the same results without invoking the myriad assump-
tions and subjective criteria associated with home range estimation. In fact, the
whole concept of a home range may not be as appropriate for freshwater fishes
as it is for small terrestrial mammals with altricial young, for which the concept
was developed (Burt 1943).
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■ 14.9 A LOOK TO THE FUTURE

With improvements in technology, we expect to see increased diversity in types of
telemetry applications that are implemented. We have witnessed an increase in
the use of telemetry to isolate the importance of various parameters used in bioen-
ergetics modeling in recent publications. In addition, we expect fisheries scien-
tists to explore other applications of telemetry, such as survival rate estimation
(Pollock et al. 1989; White and Garrott 1990; Bunck et al. 1995; Harmata et al.
1999; White and Burnham 1999; Skalski et al. 2001) and population estimation
(Bartmann et al. 1987; White and Garrott 1990; Bowden and Kufeld 1995; White
1996; White and Shenk 2001), applications that see wide use in wildlife research
but are just beginning to be deployed in inland fisheries work.

As technology advances, we also expect to see a greater emphasis on auto-
mated receiving systems. Some new innovative applications of telemetry require
continuous monitoring to obtain meaningful results. This has spawned a prolif-
eration of automated systems that either track or monitor fish 24 h/d (Hawkins et
al. 1980; Pincock 1980; Armstrong et al. 1992; Lucas et al. 1992; Cooke et al. 2000,
2001; Cooke and Bunt 2001; Dieperink et al. 2001; Skalski et al. 2001). With con-
tinuous monitoring, many of the assumptions that had to be made with previous
telemetry work can be validated. Not only is this approach much less labor inten-
sive than traditional telemetry, it can yield orders of magnitude more information
that personal computers can easily process. Though some of these applications
are extremely specialized and will require specific types of data analyses, many will
be able to expand on the approaches discussed in this chapter.
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■ 15.1 INTRODUCTION

Understanding assemblages of fishes and how their numbers and compositions
change over time and space has long been a fundamental interest of aquatic ecolo-
gists and has increasingly become recognized as an important component of fish-
eries science and management. Whereas much of traditional fisheries manage-
ment may have focused on single-species approaches, targeting sport or commercial
fishes, direct or indirect biotic interactions among fishes may strongly influence
target populations. Furthermore, fisheries scientists may frequently be charged
with sampling fish populations to detect changes in the aquatic environment,
especially those effects related to human activities (e.g., pollution, altered hydrol-
ogy, or nonnative introductions), and quantitative descriptors of the entire fish
assemblage are required for this purpose.

For fish assemblage descriptors to be ecologically relevant, they must be com-
pared over time or among assemblages, and ecologists and biomathematicians
have developed procedures to that end. Many of the indices and procedures that
we include in this chapter have been developed for use with other taxonomic
groups (e.g., plants, invertebrates, and terrestrial animals), or even engineering
applications (e.g., communications, Shannon and Weaver 1949), but are equally
applicable to the study of fishes. Many have been developed more thoroughly in
flowing-water habitats, but the concepts and techniques transfer well to other
aquatic systems. In this chapter, we outline, review, and demonstrate quantitative
measures and techniques to describe and compare fish assemblages to assist the
fisheries scientist in addressing practical research and management objectives.

15.1.1 Definitions

Organisms that occur in a particular place may be classified as a community or an
assemblage, and the meaning of these terms varies among ecologists (Morin 1999).
The difference between the definitions of these terms lies primarily in the amount
and predictability of the interaction among the coexisting organisms. The term
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community implies substantial and predictable interaction and may include mul-
tiple taxonomic groups such as microflora, plants, and animals, whereas an as-
semblage is simply the group of species found together and imparts no ecological
assumption. Another term, taxocene, is a taxonomically related set of species within
a community, such as plants, mammals, or birds (Hutchinson 1978). Thus, a fish
community or fish assemblage is a taxocene, yet that term is seldom used. Like-
wise, a guild is a subset of species that share common resources by similar modes
(Root 1967), and although a guild is independent of taxonomy, it is most often a
subset of a taxocene. For practical purposes in fish sampling, a fish assemblage is
the sum total of the individuals collected at a single sampling location by any
single technique or combination of them. For the purposes of this chapter, we
employ the commonly applied term fish assemblage to describe the co-occurring
fishes in a sample, but we recognize that no fish exists in isolation.

15.1.2 Advantages and Limitations to a Community Approach

The importance of studying fish assemblages, over single species, was evident to
early aquatic ecologists (Forbes 1887; Shelford 1929), and today the advantages
of a broader ecological approach are obvious and accepted by scientists. However,
pragmatic and logistic constraints faced by fisheries scientists do not always allow
a holistic perspective. Thus, each investigator must balance the benefit gained in
knowledge by a community approach against the additional complexity and ef-
fort for each specific application.

The aquatic community is the optimal unit of study as it regulates the flow
and storage of energy and materials in the ecosystem. If the fish component is
of interest, then the entire fish assemblage is the best unit of study to elucidate
the function of this group in the ecosystem. The composition of a fish assem-
blage is a result of an integration of zoogeography and ecology. Individual fish
species vary widely in their morphology, physiology, and tolerance and response
to their surroundings. A number of physical factors can limit the ecological
success of fish populations, including water quantity, water quality, and physical
habitat structure, which in turn set the framework in which biotic interactions
occur, such as growth, reproduction, trophic dynamics, and competition (Karr
et al. 1986; Fausch et al. 1988; Rabeni and Jacobson 1999). These physical fac-
tors may also be quantified by a suite of more proximate measures (e.g., nutri-
ent concentrations, depth profiles, and physical cover) and are further influ-
enced by more broad-scale processes over watersheds and riparian zones. Thus,
if any one fish population or guild is limited by a single factor, the effects of
other (nonlimiting) environmental influences may not be apparent by merely
sampling that fish or subset of fishes.

Fish species of special interest may be atypical in their population dynamics and
response to the environment. Some sport and commercial fishes are ubiquitous
and tolerant to environmental disturbance (e.g., brown trout, channel catfish, and
largemouth bass), and their relative abundance and population dynamics may
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depend upon harvest. In contrast, many threatened or endangered fishes are
endemic specialists that are extremely sensitive to environmental perturbation
(e.g., desert fishes). A widespread, tolerant fish may show no response to habitat
degradation or biotic disturbance, whereas a sensitive species may have been ex-
tirpated at the earliest signs of perturbation. Thus, single fish species of economic
or political importance that are frequently emphasized in fishery surveys or bio-
logical assessments may not accurately represent environmental conditions and
ecosystem health.

The utility of a community approach is clearly demonstrated in a study by
Berkman and Rabeni (1987) to quantify the effects of siltation on stream fishes.
They classified fish species from assemblages among sites into guilds based on
habitat use, reproductive modes, and feeding behavior. Their guild analysis indi-
cated that species with similar ecological requirements showed a common response
to habitat degraded by siltation. Analyses of any single species in their research
would likely have been inconclusive, yet the results at the assemblage level yielded
strong scientific inference over previous qualitative and anecdotal findings. Fur-
ther, results examined from a guild approach may allow stronger inference with
regard to testing hypotheses about population regulation, as a similar pattern
observed among populations within a guild is more conclusive evidence than are
trends within a single species.

Valid reasons to forego a community approach in fisheries science also exist.
Sampling, sorting, and quantifying all species of a diverse assemblage can be diffi-
cult and time consuming, and subsequent data analyses and reporting can be
complex. Fish diversity is low in some aquatic ecosystems (e.g., coldwater streams
and arctic lakes) and may be dominated by a single species. In such cases, popula-
tion studies of ecologically important species are reasonable, regardless of practi-
cal constraints. Finally, the process of fisheries management and the funding en-
vironment for research are strongly governed by economic, sociocultural, and
political forces (Krueger and Decker 1999), which may mandate tactical, single-
species approaches despite their weaker scientific validity.

Other factors should be considered when contemplating community versus
single-species approaches, as no clear criteria exist to guide such decisions. Most
fish sampling data are inherently variable over space and time. High variance
strongly limits one’s ability to detect phenomena statistically, such as the impact
of management actions, and can only be overcome by increasing sample size for a
given sample design (Chapter 3). Fish assemblage attributes, such as species rich-
ness, are generally less variable than are density or abundance estimates for
individual species (Peterson and Rabeni 1995). Hence, studies that utilize as-
semblage data usually require smaller sample sizes to obtain precise estimates
and can ultimately be more cost effective than are single-species approaches.
The reduction in sample size, however, must be balanced by the additional ef-
fort required to process each sample. Thus, any fish sampling protocol should
be guided by objectives and scale, specific to the situation, but must be balanced
by logistic considerations.
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15.1.3 Strategies for Analysis of Community Data

The approach and techniques to employ in analysis of community level data
depend upon the objectives of the study and the form and quantity of data.
Objectives might be to describe or to compare assemblages. Among descriptive
objectives, there may be an emphasis on assemblage structure or ecosystem in-
tegrity; comparative objectives may require grouping or ranking of assemblages.
Assemblage data may be collected as catch per unit effort or absolute abun-
dance and may be binary (presence–absence), ordinal (ranks), or quantitative
(counts), with variable numbers of assemblages and replicates. In Figure 15.1,
we present a flow diagram that depicts selection criteria for analytical techniques
for community data and may serve as a preliminary guide to the fisheries scien-
tist. Details of criteria, advantages, and shortcomings of each technique are de-
tailed in the appropriate section referenced in the flow diagram. We present
example SAS programs (SAS Institute 2004) for performing many of the proce-
dures that we outline in this chapter, analyzing a large-river fish assemblage data
set (Box 15.1) along with corresponding results as program output (Boxes 15.4–
15.13), but other statistical software applications also perform these procedures.
A nonexhaustive list of such software applications is presented in Table 15.1,
describing which procedures may be performed using each application. Fur-
ther, many software applications (e.g., R, SAS, or SPSS) allow more advanced
statistical treatment of data depending on the computer programming skills of
the user.

15.1.4 Topics Covered

The emphasis of this chapter is on structure, not function; that is, we cover
quantitative descriptions of fish assemblage composition and comparison of
assemblages rather than describing and understanding community processes
and interactions. Assemblage structure is the numerical abundance of each spe-
cies in the community, and descriptors may include totals or various subtotals of
those abundances as well as estimates of biomass. The first step in describing a
fish assemblage is designing a sampling protocol to meet specific data require-
ments, and we provide considerations and suggestions to facilitate that initial
process. Once data have been gathered, the process of reducing the resulting
data matrix into more meaningful and comparable indices is usually warranted,
and we outline those methods in this chapter. We then describe statistical
procedures to compare composition among assemblages and conclude with
pragmatic suggestions on approaches and interpretation for fisheries scientists.
For approaches, methods, and examples that quantify fish community processes,
interactions, and forces which, in turn, structure fish assemblages, a topic not
covered in this chapter, we refer the reader to Crowder (1990), Gerking (1994),
and Matthews (1998); see Krebs (1998), Morin (1999), and Southwood and
Henderson (2000) for outstanding general texts on methods for community
ecology.



Community Indices, Parameters, and Comparisons 681

Fi
g

u
re

 1
5.

1
Fl

o
w

 d
ia

g
ra

m
 d

ep
ic

ti
n

g
 s

el
ec

ti
o

n
 c

ri
te

ri
a 

fo
r t

ec
h

n
iq

u
es

 a
va

ila
b

le
 to

 d
es

cr
ib

e 
an

d
 c

o
m

p
ar

e 
fis

h
 a

ss
em

b
la

g
es

 b
as

ed
 o

n
o

b
je

ct
iv

es
 a

n
d

 d
at

a 
av

ai
la

b
ili

ty
. O

b
je

ct
s 

w
it

h
 ro

u
n

d
ed

 b
o

rd
er

s 
d

ep
ic

t d
ec

is
io

n
s 

re
la

te
d

 to
 o

b
je

ct
iv

es
 o

r d
at

a;
 th

o
se

 w
it

h
 s

q
u

ar
e 

b
o

rd
er

s
d

ep
ic

t a
n

al
yt

ic
al

 te
ch

n
iq

u
es

. N
u

m
b

er
s 

re
fe

r t
o

 a
p

p
ro

p
ri

at
e 

se
ct

io
n

s 
w

it
h

in
 th

is
 c

h
ap

te
r.

S
tr

at
e

g
ie

s 
fo

r 
A

n
al

ys
is

 o
f 

C
o

m
m

u
n

it
y 

D
at

a

P
ri

m
a

ry
 o

b
je

ct
iv

e

A
ss

e
m

bl
a
g
e

st
ru

ct
u
re

 e
m

p
h
a
si

s
1
5
.3

.1

F
ew

a
ss

e
m

bl
a
g
e
s

M
a
ny

a
ss

e
m

bl
a
g
e
s

S
p
e
ci

e
s

ri
ch

n
e
ss

1
5
.3

.1
.1

D
iv

e
rs

ity
1
5
.3

.1
.2

E
ve

n
n
e
ss

1
5
.3

.1
.3

In
d
ic

a
to

r
sp

e
ci

e
s

o
r 

g
u
ild

s
1
5
.3

.2
.2

In
d
ex

 o
f

b
io

tic
in

te
g
ri

ty
1
5
.3

.2
.3

In
co

m
p
le

te
co

u
n
ts

• 
R

a
re

fa
ct

io
n

  
 e

st
im

a
te

s

• 
E

xt
ra

p
o
la

tio
n

  
 e

st
im

a
te

s

C
o
m

p
le

te
co

u
n
ts • 

S
h
a
n
n
o
n
's

 H
'

• 
B

a
se

d
 o

n
 H

'

• 
B

a
se

d
 o

n
 D

• 
S

p
e
ci

e
s

  
 d

o
m

in
a
n
ce

G
ro

u
p
in

g
e
m

p
h
a
si

s

S
im

ila
ri

ty
co

e
ff
ic

ie
n
ts

1
5
.4

.1

O
th

e
r

m
u
lti

va
ri

a
te

te
ch

n
iq

u
e
s

1
5
.4

.4

G
ra

p
h
ic

a
l

te
ch

n
iq

u
e
s

1
5
.4

.5

O
rd

in
a
tio

n
te

ch
n
iq

u
e
s

1
5
.4

.3

D
is

cr
im

in
a
n
t

a
n
a
ly

si
s

1
5
.4

.4
.1

• 
S

ca
tt
e
rp

lo
t

  
 m

a
tr

ix

• 
O

th
e
r

  
 g

ra
p
h
ic

a
l

  
 t
e
ch

n
iq

u
e
s

• 
P

ri
n
ci

p
a
l

  
 c

o
m

p
o
n
e
n
t

  
 a

n
a
ly

si
s

  
 1

5
.4

.3
.1

• 
N

o
n
m

e
tr

ic
  
 m

u
lti

d
im

e
n
si

o
n
a
l

  
 s

ca
lin

g
  
 1

5
.4

.3
.2

M
o
d
e
ra

te
n
u

m
b
e
r 

o
f

a
ss

e
m

bl
a
g
e
s

L
a
rg

e
n
u

m
b
e
r 

o
f

a
ss

e
m

bl
a
g
e
s

k-
m

e
a
n
s

cl
u
st

e
ri

n
g

1
5
.4

.2
.2

• 
S

in
g
le

  
 li

n
ka

g
e

• 
C

o
m

p
le

te
  
 li

n
ka

g
e

• 
A

ve
ra

g
e

  
 li

n
ka

g
e

B
in

a
ry

 d
a
ta

(p
re

se
n
ce

/a
b
se

n
ce

)
1
5
.4

.1
.1

Q
u
a
n
tit

a
tiv

e
 d

a
ta

(c
o
u
n
ts

)

• 
Ja

cc
a
rd

's
  
 c

o
e
ff
ic

ie
n
t

• 
S

im
p
le

 m
a
tc

h
in

g
  
 c

o
e
ff
ic

ie
n
t

• 
S

p
e
a
rm

a
n
 r

a
n
k

  
 c

o
rr

e
la

tio
n

• 
K

e
n
d
a
ll'

s 
ta

u
S

im
ila

ri
ty

m
e
a
su

re
s

1
5
.4

.1
.3

D
is

si
m

ila
ri

ty
m

e
a
su

re
s

1
5
.4

.1
.4

• 
P

e
rc

e
n
t

  
 s

im
ila

ri
ty

• 
M

o
ri

si
ta

's
  
 in

d
ex

• 
E

u
cl

id
e
a
n

  
 d

is
ta

n
ce

• 
B

ra
y-

C
u
rt

is
  
 c

o
e
ff
ic

ie
n
t

• 
S

im
p
so

n
's

 D

O
rd

in
a
l d

a
ta

(r
a
n
ks

)
1
5
.4

.1
.2

C
la

ss
ifi

ca
tio

n
te

ch
n
iq

u
e
s

1
5
.4

.2

O
n
e
 o

r 
m

o
re

re
p
lic

a
te

s
p
e
r 

a
ss

e
m

bl
a
g
e

M
u
lti

p
le

re
p
lic

a
te

s
p
e
r 

a
ss

e
m

bl
a
g
e

H
ie

ra
rc

h
ic

a
l

cl
u
st

e
ri

n
g

1
5
.4

.2
.1

O
rd

e
ri

n
g

e
m

p
h
a
si

s

E
co

sy
st

e
m

 in
te

g
ri

ty
 e

m
p
h
a
si

s
1
5
.3

.2

s
e

g
al

b
m

ess
a 

er
a

p
m

o
C

s
e

g
al

b
m

ess
a 

e
bircs

e
D

R
a
re

sp
e
ci

e
s

e
m

p
h
a
si

s

A
bu

n
d
a
n
t

sp
e
ci

e
s

e
m

p
h
a
si

s



682 Chapter 15

Box 15.1 Sample Data Set and Structural Indices

During a 2-week period in 1988, a survey of the fishes of the Kankakee River, Illinois, was conducted
using a boat-mounted electrofisher. Six sites (stations) were each sampled eight times with effort
standardized among samples (Peterson 1989; Kwak 1993).

Table The sum of number of individuals from eight samples from each of six sites according to
site and species; rare species (occurring in less than 5% of samples) are omitted.

Station number

Species and total 1 2 3 4 5 6

Longnose gar 6 7 0 4 26 5

Gizzard shad 164 90 6 6 432 194

Bluntnose minnow 42 33 29 3 44 35
Bullhead minnow 0 0 0 1 15 0
Common carp 13 58 10 14 36 13
Hornyhead chub 0 0 0 0 7 0
Mimic shiner 10 11 10 0 2 0
Redfin shiner 0 22 4 0 0 2
Rosyface shiner 8 89 5 15 8 35
Sand shiner 1 22 4 1 5 1
Spotfin shiner 19 24 3 2 23 8
Striped shiner 45 32 69 14 51 14
Suckermouth minnow 0 0 0 0 4 1

Black redhorse 0 0 4 0 1 0
Golden redhorse 34 0 35 36 9 55
Northern hog sucker 5 2 10 7 2 7
Shorthead redhorse 35 0 8 2 35 22
Quillback 5 2 1 4 17 14
River redhorse 2 0 2 0 0 5
Silver redhorse 8 1 1 3 14 4
Smallmouth buffalo 0 3 0 0 3 0

Brook silverside 4 10 13 9 10 6

Bluegill 2 0 0 2 1 0
Green sunfish 1 42 6 3 7 1
Largemouth bass 0 3 2 0 8 0
Longear sunfish 35 94 26 39 48 37
Orangespotted sunfish 1 0 0 8 31 3
Rock bass 30 3 15 31 27 62
Smallmouth bass 143 59 195 151 165 204
Banded darter 4 0 0 1 0 1
Blackside darter 1 9 1 0 4 0
Johnny darter 0 6 3 0 2 0
Logperch 25 0 51 42 24 7
Slenderhead darter 5 0 6 7 2 2

Total 648 622 519 405 1,063 738

(Box continues)
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Table Indices of fish assemblage structure for six stations. Shannon’s index (H’) is given by equation
(15.3); Simpson’s D is given by equation (15.4); and species dominance is given by equation (15.7).

Station number

Assemblage structural index 1 2 3 4 5 6

Richness
Species 26 22 26 24 31 25
Family 7 7 6 7 7 7

Diversity
Shannon’s H’ 2.43 2.56 2.29 2.28 2.31 2.24
Simpson’s (1 – D) 0.864 0.903 0.818 0.821 0.798 0.832

Evenness
Based on H’ 0.746 0.828 0.704 0.718 0.672 0.695
Based on  (1 – D) 0.898 0.946 0.850 0.857 0.825 0.867

Species dominance (3 species) 0.543 0.439 0.607 0.573 0.610 0.614

Table 15.1 Nonexhaustive list of statistical software applications for analyzing community
level data, according to technique. Symbols indicate that the application incorporates some (S),
most (M), or all (A) of the corresponding techniques outlined in this chapter.

Nonmetric
Hier- multi-

Statistical archical K-means Principal dimen- Discrim-
software Similarity cluster cluster component sional inant Graphical
application measures analysis analysis analysis scaling analysis analysis

BMDP S A A A A A S
JMP S A A A A M
Minitab S A A A A S
R S A A A A A M
SAS/STAT M A A A A A M
S-plus M A A A A A M
SPSS S A A A A A S
STATA S A A A
Statistica S A A A A A S
Systat M A A A A A M

■ 15.2 SAMPLING CONSIDERATIONS AND ASSUMPTIONS

As with all fishery assessments, the analysis and interpretation of fish community
indices are significantly influenced by the quality and quantity of data. Fish sam-
pling bias can obscure relationships or, worse, suggest false relations (Bayley and
Dowling 1993), and sample variance can affect the ability to detect relationships
statistically (Peterson and Rabeni 1995). Standardized sampling protocols help

Box 15.1 (continued)
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maintain data quality by ensuring that data are collected in a consistent manner
over space and time. The influence of sampling bias and variance on single-spe-
cies approaches and the importance of standardized sampling have previously
been covered elsewhere (e.g., Brown and Austen 1996; Chapters 2 and 3), and
most of the principles are applicable to community approaches. There are, how-
ever, several considerations unique to sampling entire fish assemblages that we
consider here.

When using community indices and comparing communities, the primary as-
sumption is that fish samples are representative of the “true” fish assemblage.
That is, the number and types of species caught and their relative abundances
accurately reflect those of the fish assemblage occupying the study area (e.g., lake
or stream). Fish assemblages, however, are composed of species of different sizes,
forms, and behaviors that can affect their vulnerability to capture by any sampling
gear. Consequently, samples are influenced by these characteristic differences to
varying degrees, resulting in an inaccurate representation of the fish assemblage.
Similarly, fish species often use habitats that differ in size, structure, and distribu-
tion; hence, the types and allocation (relative amounts) of habitats sampled can
also significantly affect the adequacy of the fish assemblage sample. It is important
that fisheries scientists identify potential influences on data quality and develop
sampling designs that minimize these, so that analyses of fish assemblages will be
based on reliable data. Below, we identify some noteworthy influences on the
quality of fish assemblage data and discuss methods to minimize their influence
and to evaluate the adequacy of sampling designs.

15.2.1 Sources of Sampling Bias

Aquatic ecosystems are defined by characteristic physical, chemical, and biologi-
cal attributes that may simultaneously influence sampling efficiencies and regu-
late fish assemblage structure. For example, water depth can affect the efficiency
of many fish sampling methods and also can influence the structure of fish assem-
blages. Consequently, observed differences in the structure of fish assemblages
collected in study areas with very different depths could be due to sampling effi-
ciency, assemblage structure, or both. Failing to account for differences in sam-
pling efficiency when comparing locations with different physical characteristics
and species assemblages, or among samples collected with different methods, can
introduce a systematic error or bias into the data, which can invalidate experi-
ments or observational studies (Hurlbert 1984). To minimize the influence of
sampling bias on fish assemblage studies, scientists should collect fishes with the
most efficient method or combination of methods for which bias is known and
sample under circumstances where catchability is reliable. Thus, fisheries scien-
tists must consider those major factors affecting sampling efficiency and choose
the most appropriate gear or combination of gears for their particular sampling
situation. When sampling conditions are particularly challenging (e.g., large riv-
ers and reservoirs), fisheries scientists also should consider an analysis based on
more qualitative measures (e.g., species presence or rank abundance) or estimate
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species abundances using mark–recapture or other methods that can account for
sampling efficiency differences.

15.2.1.1 Species and Body Size

The efficiency of most sampling gears is influenced by the species and size of fish
encountered (Hayes et al. 1996 and references therein). Body shape or morphol-
ogy can influence a fish’s vulnerability to capture. For example, species with cryp-
tic coloration and reduced or absent swim bladders are often difficult to locate
when stunned during electrofishing. Species-specific behaviors, such as vertical
position in the water column, also affect sampling efficiency. Benthic species (e.g.,
darters, sculpins, and North American catfishes), particularly those using deepwater
habitats, and wide-ranging pelagic species (e.g., temperate basses and herrings)
are difficult to sample effectively. Body size, within and among species, is also an
important factor affecting sampling efficiency. For most sampling gears, the low-
est efficiencies tend to be for the extreme sizes of fish (i.e., very small and large
individuals). These sampling biases often result in fish assemblage samples that
overrepresent species and sizes that are most vulnerable to sampling. To mini-
mize the influence of these biases, fisheries scientists can develop sampling effi-
ciency models to adjust sampling data for differences in catchability. These esti-
mates, however, require extensive gear evaluations to develop efficiency models.
Excluding small fishes and species that are difficult to catch from analyses and
using species presence–absence or rank abundances for the assemblage analysis
(see sections 15.4.1.1 and 15.4.1.2) also can minimize this source of bias.

15.2.1.2 Habitat Characteristics

The physical characteristics of a sampling location can affect the efficiency of
most fish sampling gears. The dimensions of a sampling location (e.g., water depth
or stream width) can change the capture efficiency of a variety of gears. Sampled
areas wider and deeper than the effective catch area (e.g., electrical field size or
seine dimensions) can reduce capture efficiency (Bayley and Dowling 1990). In
rivers, high current velocities can displace stunned fish from the electrical field
before they are captured, facilitate fish escape from seines, and prohibit the use
of some passive sampling gears (e.g., gill nets). Similarly, water transparency (color
and turbidity) can greatly influence the application and bias of underwater obser-
vation techniques and electrofishing and passive-sampling gears. Structures within
the sampling area (e.g., vegetation, woody debris, and boulders) can provide a
refuge for fishes and can limit sampling efficiencies (Bayley and Dowling 1990;
Rodgers et al. 1992). These biases often result in samples that overrepresent those
species occupying habitats that are easier to sample and underrepresent those in
habitats that impair sampling. Similar to species and size biases, the influence of
habitat biases can be minimized by adjusting catch data for differences in sam-
pling efficiency. When sampling efficiency estimates are unavailable, biologists
can minimize habitat biases by grouping habitat types into strata (Chapter 3).
With such designs, comparisons of fish assemblages should be restricted to similar
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habitat types within each stratum. Fisheries scientists should also consider expend-
ing greater effort in habitats that are difficult to sample to ensure adequate repre-
sentation of the fish assemblage in these areas.

15.2.1.3 Gear Type

In some instances, using the proper sampling gear can reduce (not eliminate)
the influence of species, size, and physical habitat biases on the analysis of fish
communities. Thus, selecting the proper sampling gear is one of the most critical
components of a fish community study. Electrical gears are among the most effi-
cient and widely used techniques for sampling fish assemblages in relatively shal-
low waters, such as small- to medium-sized streams and lake and river shorelines.
Sampling in deeper waters would likely require the use of active (e.g., dredges or
trawls) or passive (e.g., hoop, trap, and fyke nets) techniques designed to sample
these habitats more effectively (Hubert 1996). When sampling conditions (habi-
tats) vary considerably within a study area (e.g., large lakes, rivers, and reservoirs),
no single sampling gear can adequately sample the entire fish assemblage. Hence,
a multi-gear approach, in which the most effective gear(s) is used in each habitat
type, can provide the most complete estimate of fish assemblage structure. How-
ever, because such estimates can be biased to varying, unknown degrees, they
should not be accepted as representative of the “true” fish assemblage unless the
effectiveness of each gear can be evaluated.

15.2.2 Sampling Season

Season can have a profound influence on fish assemblage structure in many fresh-
water ecosystems. Fishes often migrate seasonally to fulfill one or more life history
requirements (e.g., spawning or juvenile rearing) and to seek refuge during se-
vere environmental conditions (Hall 1972; Schlosser 1982; Bayley and Osborne
1993; Peterson and Rabeni 1996; Grossman et al. 1998). Thus, the structure of
the fish assemblage in open systems (e.g., streams and rivers) is likely to vary
among seasons where fish can freely migrate to or from study areas. In closed
systems (e.g., lakes and ponds), seasonal movements can affect the assemblage
structure within habitat types, thereby increasing variance (see section 15.2.3).
Similarly, fish movements within a season also can alter variability of assemblage
samples. Fish movement is generally greatest during the spring and fall in the
northern hemisphere, which can increase sample variance. To avoid the influ-
ences of seasonal fish movement, fisheries scientists should limit comparisons of
fish assemblages to similar seasons and, if possible, to seasons with the least amount
of fish movement (e.g., summer for temperate, warmwater stream fishes).

Fish growth and recruitment to sampling gear also influence seasonal mea-
sures of assemblage structure. Young-of-the-year (age-0) fishes—usually the most
abundant age-class—are often recruited to sampling gears by the end of their first
growing season. This increases the probability of collecting less abundant and
difficult to sample species (Gray 1987; Wright 1988), resulting in perceived in-
creases in the number of species during such periods (Peterson and Rabeni 2001).
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Eliminating age-0 fishes from an analysis can reduce the influence of seasonal
gear recruitment but may also reduce estimates of species richness. When re-
search objectives include analyses of age-0 fish, sampling should be conducted
later in the growing season when age-0 fish are larger and more vulnerable to
sampling.

15.2.3 Fish Assemblage Sampling Designs

Sampling design is an essential component of fish assemblage studies. Compari-
sons of fish assemblage structure require data that accurately reflect the true spe-
cies composition and species’ relative abundances. One means of ensuring accu-
rate representation of the species assemblage is through effective sampling design
(also see Chapter 3). Fish distribution and assemblage structure are influenced by
physical habitat features and resource availability (Gorman and Karr 1978; Schlosser
1982). Thus, designs should ensure that all habitat types in a study area are prop-
erly represented. High variance among samples, another factor affecting the ac-
curacy of fish assemblage estimates, is influenced by species-specific characteris-
tics (e.g., behavior) and sampling conditions (e.g., gear type and habitat features)
and can be overcome only by increasing sample size. Increasing sample size also
improves the likelihood of detecting rare species in the assemblage. The diverse
nature of freshwater ecosystems (e.g., habitat types and species) dictates that no
single sampling design is best for all community level studies. Rather, the best
approach will depend upon the objectives of the study, type of system being stud-
ied, and characteristics of the fish assemblage. Here, we discuss two basic ap-
proaches to sampling fish assemblages that can be modified to fit most commu-
nity level studies in freshwater systems. We also strongly encourage scientists to
evaluate the adequacy of their particular sampling design to ensure data quality.

15.2.3.1 Quadrat Sampling

Quadrat sampling entails dividing a study area into sample units (quadrats) and
sampling a random selection of them. With this design, sample variance can be
minimized by sampling greater numbers of quadrats. The number of samples
required to meet study objectives can be determined with traditional statistical
techniques (Chapter 3) and by analyzing species accumulation curves (section
15.3.1.1). Greater efficiency (lower variance) can often be gained by stratifying
study areas according to habitat type and randomly sampling quadrats within each
stratum.

In addition to sample size requirements, the size of individual quadrats should
be considered prior to adopting a quadrat sampling approach. Larger sample
units generally contain greater numbers of individuals, which can increase the
chances of collecting an individual of another species (Connor and McCoy 1979;
Angermeier and Schlosser 1989). To avoid this species–area effect, it is often pref-
erable to maintain a consistent quadrat size among study areas or through time
(when monitoring). When study areas differ substantially in size and structure, a
single quadrat size could incorporate variable habitat heterogeneity among areas,
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which could bias comparisons. For example, pools and riffles generally occur ev-
ery five to seven stream widths in gravel-dominated streams (Leopold et al. 1964;
Gordon et al. 1992). Thus, a single quadrat size based on stream length or area
would incorporate a greater number of pools and riffles in smaller streams. In
these instances, natural discrete morphological features (i.e., channel units; Hankin
and Reeves 1988; Peterson and Rabeni 2001) could be used as sampling quadrats.
These natural quadrats, however, should be sampled in proportion to their rela-
tive abundance in the study area to ensure proper representation of the fish
assemblage.

15.2.3.2 Constant Ratio Sampling

Constant ratio sampling involves collecting fishes from a single sample unit, the
dimensions of which are scaled relative to the size of the study area. This ap-
proach is generally used for stream studies where the size of the sample unit (stream
reach length) is proportional to stream width (e.g., station length equals 35 stream
widths). The size of the sample unit needed to obtain a representative sample is
determined by examining the cumulative catch of species (see section 15.3.1.1)
with increasing sample unit size. Thus, this design differs from quadrat sampling
in that it attempts to standardize the sampling effort at a single location and time
in order to obtain a representative sample of the fish assemblage. The required
sample unit size, however, can vary widely among systems due to differences such
as habitat characteristics, sampling efficiency, and fish abundance and assemblage
structure (Lyons 1992; Angermeier and Smogor 1995; Paller 1995). Hence, no
single ratio or proportion will likely be adequate for sampling fish assemblages in
all freshwater systems. Additionally, data collected following a constant ratio de-
sign cannot be used to make statistical inferences about fish assemblage patterns
within a study area because of the general lack of replication (i.e., only one sample
collected).

15.2.4 Data Standardization

There are innumerable ways to collect and quantify fish assemblage samples.
Numerical abundance for each species may be expressed as total catch, relative
catch as a proportion of that of all species, catch per unit effort, catch per area, or
catch per linear distance; in addition, adjusted or absolute abundance (density or
biomass) may be estimated (see Ricker 1975 for examples). Furthermore, the
definition of a fish assemblage for quantitative purposes may vary widely (Rahel et
al. 1984; Grossman et al. 1990; Matthews 1998).

Investigators may simplify analyses and reduce variable sampling bias by defin-
ing the fish assemblage as a subset of the actual sample. This practice may exclude
age-0 fish, juvenile fish, or rare species from analyses. Rare species, those found in
less than 5% of the collections (Gauch 1982), are generally excluded in most
community analyses because (1) it is unlikely that rare species significantly influ-
ence the dynamics of the fish community, (2) the occurrence of a rare species
may be a random event unrelated to any life history requirement, and (3) many
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multivariate statistical techniques are sensitive to rare species, which could distort
meaningful, significant trends. However, patterns in occurrence of rare species
among assemblages may provide insight into assemblage organization and form
the basis of conservation strategies.

Data may also be mathematically transformed to reduce the importance of
extreme values (e.g., logarithmic or square root). If data are omitted or trans-
formed for subsequent analyses, it must be justified on some ecological, statistical,
or theoretical basis, and data must be modified objectively, based on a systematic
criterion. Data manipulation, such as omitting rare species or transformation, will
change results of virtually all of the indices and procedures presented in this chapter
and should be considered carefully.

Sampling techniques, effort, area, and resulting numerical expressions of fish
abundance should be standardized within a study if possible and described in
sufficient detail to allow comparisons among studies. Standardizing fish collec-
tion techniques and sites may reduce the effects of variable sampling bias associ-
ated with gear type, habitat, or time. Standardized data and manipulation will
limit erroneous conclusions that may be drawn from statistical artifacts or com-
parison of incongruous data. However, of utmost importance in community level
studies is that a precise definition of the assemblage be provided and data collec-
tion and analyses be described in sufficient detail to allow interpretation and ad-
ditional analyses by others. This detail should include (1) the organisms consid-
ered to compose the assemblage (e.g., size or age criteria, rare species criteria, fin
fishes, shellfish, other invertebrates, or aquatic herpetofauna); (2) sampling tech-
niques, effort, area and boundaries, and timing; (3) data form and units; and (4)
any data manipulation prior to analyses.

■ 15.3 COMMUNITY INDICES—THEIR CHARACTERISTICS AND ESTIMATION

It is indeed appealing and useful to attempt to summarize the abundance data for
multiple species in an assemblage into a single number describing assemblage
structure. However, this section must begin with a word of caution. Abundant
critiques and revisions in the ecological literature suggest that there is no “silver
bullet” or perfect community index to serve all purposes. Essentially all of the
indices presented below have received criticism for their shortcomings and mis-
applications (Hurlbert 1971; Washington 1984), and we urge the fisheries scien-
tist to view these indices as relative values with variable precision, accuracy, and
reliability. They are most appropriately used to compare assemblage data collected
in a standardized manner within a study, rather than as broad, comparative tools
among studies or over expanded scales. Index selection should consider statisti-
cal robustness, data availability, and specific study objectives. An approach utiliz-
ing several indices may prove useful to verify findings and to balance shortcom-
ings of any single index.

Two primary approaches to quantify community structure have been devel-
oped by ecologists and applied to fish assemblages. They are the use of (1) com-
munity structural indices based directly on field samples and (2) biotic indices
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based on the relative abundance of indicator organisms. Both approaches are
applicable to describing fish assemblage characteristics and may be related to
environmental quality, but biotic indices are especially suited to quantifying eco-
system health or ecological integrity, which may be reduced by pollution, stressful
environmental conditions, or habitat degradation and destruction. As such, bi-
otic indices do not directly represent assemblage structure. Structural indices are
broad, quantitative descriptors of assemblage structure, and biotic indices are spe-
cific parameters based on a subset of indicator organisms within the assemblage,
and their applications are not interchangeable.

15.3.1 Structural Indices

The relative abundance of species, other taxa, or other meaningful categorical
attribute within an assemblage may be combined into a single measure that is
intended to describe the state of the community. The most common of these
measures is species diversity, which incorporates the number of species in an as-
semblage (species richness), as well as the relative abundance of those species
(evenness) (Figure 15.2). Whereas such structural indices are usually calculated
at the species level, it is equally appropriate to estimate them at any taxonomic or

Figure 15.2 The concept of species diversity illustrated by variable relative abundance of
species among assemblages. Diversity increases with increases in the number of species
(richness) and equitability of distributions among species (evenness).
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other hierarchical classification level (Osborne et al. 1980). The level at which to
estimate structural indices is often determined by the practical ability to classify
organisms. For aquatic invertebrate assemblages, which may comprise species-
rich assemblages or contain unresolved taxonomic groups, these indices are of-
ten estimated at levels higher than species (e.g., genus or family). But for fish
assemblages, the practical level of identification and structural index estimation
is usually the species. Most assemblage indices are based on taxonomic classifica-
tion, as are the examples in this chapter, but it is worth considering other biologi-
cal and ecological attributes of fishes, in addition to, or in lieu of, taxonomy to
describe assemblage structure. Among those that may reveal insightful, functional
patterns are life history or morphological traits, habitat affinity at various spatial
scales, and tolerance to environmental conditions (Bain et al. 1988; Winemiller
and Rose 1992; Poff and Allan 1995; Angermeier and Winston 1999; Quinn and
Kwak 2003).

15.3.1.1 Species Richness

The simplest and oldest assemblage structural index is species richness—simply a
count of the number of species represented in an assemblage. Again, fish assem-
blage richness may also be expressed at genus, family, or other classification level.
For demonstration purposes, an example data set from the Kankakee River, Illi-
nois, is provided in Box 15.1. Among the six sites sampled, fish species richness
varied from 22 to 31 species, and family richness varied from six to seven families.
The variation between taxonomic levels in this example (nine species versus two
families) illustrates the differing utility among levels of classification; structural
indices based on very broad class levels are unlikely to provide the resolution
necessary to be ecologically relevant.

While the concept of species richness appears simple, that is rarely the case. If
an investigator is able to collect or count all individuals of an assemblage in a
sampling area, expressing species richness is simple—the count of species present.
However, when sampling fishes in aquatic environments, this is rarely the case,
and scientists usually collect a sample of the assemblage rather than a complete
count. Such samples are incomplete and variably biased by sampling technique
and associated influences of sampling habitat, effort, area, and time, as discussed
above—all of which affect the ability to sample or detect a species. This limitation
is especially important when detecting rare species is a priority. In general, the
larger the sample or the greater the number of samples collected, the greater the
number of expected species. Consequently, it may be misleading to compare spe-
cies richness among samples or sites that are based on incomplete counts with
varying sample sizes, area sampled, or effort expended. But how can you estimate
the number of species not detected? Several approaches to this sampling problem
have been developed that are applicable to fish species richness.

Estimating species richness by rarefaction. Rarefaction is a statistical method to com-
pare species richness among assemblage samples of different sizes (i.e., different
numbers of individuals per sample). This procedure was first developed by Sanders
(1968) to compare marine benthic assemblages and was later corrected for an
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error by Hurlbert (1971) and Simberloff (1972). It mathematically “rarefies” a
large sample of known species richness to estimate what richness would be for
samples of fewer individuals. If rarefaction is performed for a number of sample
sizes, a rarefaction curve can be constructed for that assemblage to serve as a tool
for comparing species richness among assemblages for equal sample sizes. This
process thus reveals differences in species richness among assemblages, indepen-
dent of sample size.

The rarefaction algorithm assumes a hypergeometric distribution of the spe-
cies–abundance relationship as

E(Sn) = � 
i = 1

S
N – Ni

n
1 –[ ( )

N
n( ) ], (15.1)

E(Sn) = expected species richness of a random subsample;
S = total number of species in the collection;
N = total number of individuals in the collection;
Ni = number of individuals of species i;
n = number of individuals in the random subsample; and
N

=
number of combinations of n individuals that can be selected from a

n sample of N individuals, or N!/n!(N – n)!.

An example calculation of expected species richness of a smaller sample is pre-
sented in Box 15.2, and the algorithm to estimate the variance of E(Sn) may be
found in Heck et al. (1975). Once a large sample has been rarefied, expected
species richness from smaller samples of that assemblage can be compared to
samples of equal abundance from other assemblages to compare richness among
assemblages, independent of sample size. Plotting rarefaction curves (see Box
15.2) of multiple assemblages on a single plot is a useful means to compare spe-
cies richness. Furthermore, if fish density (number per area) of an assemblage is
estimated (Chapter 8), expected species richness as a function of sampling area
can also be plotted (i.e., species density curve; see Gotelli and Graves [1996] for
an example).

Rarefaction can be a useful fisheries or ecological tool (see examples by Glowacki
and Penczak [2000] and Quinn and Kwak [2003]). Management strategies, eco-
logical assessment, and hypothesis testing require information on species rich-
ness and diversity, independent of sampling size, area, or effort. Fish assemblages
may be compared using rarefaction over time or among locations, and associated
precision may be estimated as confidence intervals. Rarefaction may also be em-
ployed in the development of monitoring programs to determine the sufficient
sample size and effort to detect an acceptable proportion of species present.

( )
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Box 15.2 Estimation of Species Richness by Rarefaction

A cumulative sample of fishes from station 1 of the Kankakee River, Illinois, included 648 individuals
representing 26 species (see Box 15.1). Below, we estimate the expected species richness from a
sample of 100 individuals.

From equation (15.1),

The summation term for longnose gar is calculated as

648 – 6
100( )=

642!

100!(642 – 100)!
= 1.7668 x 10119

648
100( )=

648!

100!(648 – 100)!
= 4.8506 x 10119

1.7668 x 10119

4.8506 x 10119[ ]1 – = 0.6358.

Thus,

E(S100) = longnose gar term + gizzard shad term + total of 23 other species terms
+ slenderhead darter term

= 0.6358 + 1.0 + 15.4213 + 0.5687
= 17.626 species.

Therefore, we would expect a random sample of 100 fish from station 1 to include about 18 species.
We may then calculate expected species richness for a number of other smaller sample sizes by
repeating the calculation above, varying n to develop a rarefaction curve. For station 1, some values
of E(Sn) are E(S50) = 14.040; E(S200) = 21.110; E(S300) = 22.940; E(S400) = 24.107; E(S500) = 24.975; and E(S600)
= 25.693, resulting in the rarefaction curve below.

E(Sn) = � 
i = 1

S

N – Ni

n
1 –[ ( )

N
n( ) ]

E(S100) = 

648 – 6
100

1 –[ ( )
648
100( ) ] 648 – 164

100
1 –[ ( )

648
100( ) ]+

648 – Ni

100
1 –[ ( )

648
100( ) ]+

648 – 5
100

1 –[ ( )
648
100( ) ]+ .

(longnose gar) (gizzard shad) (23 other species) (slenderhead darter)

(Box continues)
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Box 15.2 (continued)

Figure Rarefaction curve to estimate expected species richness of the fish assemblage at station 1
(from Kankakee River, Illinois; Box 15.1) based on sample size. Species richness cannot be estimated
for sample sizes that exceed those of the data upon which the curve has been developed.

Note that in the case where (N – Ni) is less than n, then 
N – Ni

n( ) = 0 by definition (no combination

of a greater number of individuals can be chosen from a set of fewer individuals). In this case

Unfortunately, the equations above require calculations of very large numeric values (e.g., 648!, as
above) that cannot be processed directly on a personal computer. Numbers greater than 170!
cannot be stored in floating-point, double-precision arithmetic on a typical personal computer.
However, we can perform the calculations on lower values by using the natural logarithm of the
gamma function,  �(x) (GAMMALN function in  Microsoft Excel), where the factorial of any integer
(x) may be calculated as

x! = eloge[�(x + 1)] .

Equation (15.1), expressed using the gamma logarithm, is

E(Sn) = �
i = 1

S 

 [1 – e{loge[�(N – Ni + 1)] – [loge�(n + 1)] + [loge�(N – Ni – n + 1)]} – {loge[�(N + 1)] – [loge�(n + 1)] + [loge�(N – n + 1)]} ].
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Rarefaction has several limitations and assumptions that must be considered in
its use and interpretation of results. Rarefaction curves may not be extrapolated
beyond the number of individuals in the largest sample. Thus, we only address
the question of undetected species for smaller samples. Rarefaction should be
applied only to samples from similar habitats using similar sampling techniques.
For example, the rarefaction curve developed from sampling fishes of the Kankakee
River by means of a boat-mounted electrofisher (Box 15.2) should not be com-
pared with samples from that river collected using other gears or from other wa-
ter bodies, which we know support different species diversities. Rarefaction as-
sumes a random distribution of individuals, which is rarely true for fishes, and it
does not incorporate information about species identity or relative abundance
among species.

Estimating species richness by extrapolation. Rarefaction estimates species richness
for smaller samples of individuals, but an investigator may wish to estimate the
total number of species in an assemblage (i.e., how many species remain undetec-
ted?). Careful extrapolation is required to address such questions. A simple tech-
nique to extrapolate species richness beyond the boundaries of empirical data is
to develop a species accumulation curve. In this procedure, the cumulative num-
ber of species collected is plotted against increasing numbers of combined samples
of equal effort or area. If samples are quadrat samples within a larger area, their
sequential order on the plot should be random; if the samples are a time series
from the sample site, they may be applied sequentially or randomly. Various re-
gression techniques have been used to model the resulting relationship, but the
linear regression of cumulative species as a function of the logarithm (base 10 log-
linear model) generally performs well on empirical data and is simple to apply
(Palmer 1990). This plot and resulting regression model may be used to estimate
species richness, coinciding with larger numbers of samples (greater effort or
sampling area).

Each summation term is expressed as a formula in Excel as

1 – (EXP((GAMMALN(N – Ni + 1) – (GAMMALN(n + 1) + GAMMALN(N – Ni – n + 1))) –
(GAMMALN(N + 1) – (GAMMALN(n + 1) + GAMMALN(N – n + 1))))).

The Excel formula for the longnose gar term in the example above would be

1 – (EXP((GAMMALN(648 – 6 + 1) – (GAMMALN(100 + 1) + GAMMALN(648 – 6 – 100 + 1))) –
(GAMMALN(648 + 1) – (GAMMALN(100 + 1) + GAMMALN(648 – 100 + 1))))).

These tedious computations are best carried out in a spreadsheet application or a specifically
developed computer program, such as that provided by Krebs (1998).

Box 15.2 (continued)
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We present the species accumulation curve for eight sequential fish assem-
blage samples from station 1 of the Kankakee River, Illinois, as an example (Fig-
ure 15.3, see Box 15.1 for summed data). After sampling the same area eight
times with equal effort during a 2-week period, we collected 26 species. However,
cumulative species richness increased from 18 species after our first sample to
that cumulative total. Examination of the species accumulation curve, extrapo-
lated to 100 samples, suggests that total species richness for that area is greater
and that additional sampling would have increased our species count (35.6 spe-
cies, Figure 15.3b). For example, if resources were available to collect twice as
many samples (16), we can use the species accumulation regression function (Fig-
ure 15.3) to estimate that we could expect to collect 2–3 more species at that site
(28.5 species).

The log-linear model is nonasymptotic; that is, species richness will continue to
increase with samples. There are several other asymptotic models available that
may be applied to species accumulation curves and parametric and nonparamet-
ric estimators to extrapolate estimates of species richness to a maximum number
of species; these are reviewed by Colwell and Coddington (1994). For a single
sample of an assemblage, they identified an eloquent, nonparametric estimator
by Chao (1984) as the best for estimating total species richness (Stotal) as

Stotal = Sobs + (a2/2b), (15.2)

where Sobs = observed number of species in a sample, a = number of species repre-
sented by a single individual in the sample, and b = number of species repre-
sented by exactly two individuals in the sample.

Figure 15.3 Species accumulation curve for eight sequential fish samples collected from
station 1 on the Kankakee River, Illinois (Box 15.1), describing the relationship of cumulative
species richness (y) and number of samples (x) fitted to a log-linear function. Left panel (a) is the
curve within the range of empirical data; right panel (b) is the same relationship extrapolated to
100 samples.
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Thus, for our Kankakee River fish assemblage example (station 1; Box 15.1),
the total estimated species richness for that site would be 30 species (Sobs = 26, a =
4, b = 2). However, our species accumulation function for that site (Figure 15.3)
suggests that about 24 samples (if y = 30, x = 23.47) would be required to detect 30
species. A variance estimator for Stotal and application of equation (15.2) to pres-
ence–absence data are found in Chao (1984). Recently, ecologists have applied
models, originally developed to estimate population size and related parameters,
to estimate species richness for communities that include species with varying
detection probabilities; such models require multiple samples but may offer ad-
vantages over other extrapolation techniques (Boulinier et al. 1998; Bayley and
Peterson 2001).

Similar limitations and assumptions, noted for rarefaction above, apply to ex-
trapolation techniques for estimating species richness. However, we urge extreme
caution in applying any of these techniques or any statistical procedure that de-
rives estimates by extrapolation beyond the boundaries of empirical data. The
nature and form of a relationship may change at wider ranges of variables. This is
dangerous territory indeed, and caution and common sense must be exercised to
avoid reporting and accepting erroneous and invalid findings. Extrapolation pro-
cedures are best employed to develop hypotheses and management scenarios for
testing rather than to be used as a basis for critical management decisions.

15.3.1.2 Diversity

Diversity indices combine information on the number of species in an assemblage
(richness) and their relative abundance (evenness). Unfortunately, there is no
correct means of assigning proportional weighting between these two components,
and thus dozens of diversity indices have been developed and applied by ecolo-
gists seeking to improve on previous forms (Hurlbert 1971; Washington 1984).
What, then, does a diversity index convey? A diversity index is a parameter de-
scribing assemblage structure, but any relationship to ecological function, such as
productivity or stability, remains unclear. Diversity indices have been criticized for
lack of biological relevance and should be considered only one of many tools
available to describe assemblage structure —they are not a substitute for in-depth
examination (Hurlbert 1971; Pielou 1975; Washington 1984).

We provide equations and examples of two common diversity indices applied
at the species level for fishes—Shannon’s H' and Simpson’s D. Shannon’s index of
diversity (Shannon and Weaver 1949) has endured ongoing criticism yet remains
widely used in biology, and it is the most widely applied diversity index in aquatic
systems (Washington 1984). Despite its theoretical and ecological shortcomings,
its use is probably justified as a comparative index until such time that a more
suitable alternative becomes accepted. It was independently developed by Shan-
non and Wiener at about the same time and is often referred to as the Shannon–
Wiener index or function. Shannon’s index (H' ) is based on information theory
and is defined as

H' = –
S

�
i = 1

   

(pi)(logepi),  (15.3)
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where s = number of species, and pi = proportion of the total sample represented
by the ith species.

Another less common, but among the simplest, diversity (or concentration)
index is Simpson’s D (Simpson 1949). Simpson’s index of diversity is based on the
notion that diversity is inversely related to the probably that two individuals sampled
at random from an assemblage will be of the same species. Thus,

D = 
s

�
i = 1  

(pi
2),  (15.4)

D = Simpson’s measure of concentration,
1 – D = Simpson’s diversity index,
s = number of species, and
pi = proportion of the total sample represented by the ith species.

Shannon’s index is sensitive to changes in rare species in the community and is
considered a type I diversity index, whereas Simpson’s index is influenced to a
greater extent by abundant species and is a type II index (Peet 1974; Krebs 1998).
Thus, selection of a diversity index should not be an arbitrary process and may
vary with specific study objectives and investigator interests. Shannon’s, Simpson’s,
and other diversity indices have been represented by various forms that are based
on the original theory proposed (Pielou 1975; Washington 1984; Krebs 1998), so
investigators should report the exact algorithm used to compute the index rather
than simply citing a reference. Example calculations of species diversity indices
for the Kankakee River fish assemblage are presented in Box 15.3.

There are many alternative statistical and practical methods to describe diver-
sity. Shannon’s and Simpson’s diversity indices are nonparametric measures that
imply no assumption about the species abundance distribution of an assemblage.
An alternative approach used by community ecologists to describe diversity is to
use statistical sampling theory to fit distribution models to species abundance
data; examples of these include the logarithmic series, lognormal, geometric se-
ries, uniform, and broken-stick distributions (Gotelli and Graves 1996; Krebs 1998).
Because of the complexity and lack of theoretical or biological justification for
these statistical distribution approaches, nonparametric indices, such as Shannon’s
and Simpson’s have become more widely applied in aquatic science (Washington
1984; Krebs 1998).

15.3.1.3 Evenness

Evenness is a measure of the equitability in relative abundance among species. To
report only diversity as an assemblage structural index confounds the effects of
species richness and evenness; thus, it is appropriate to report richness, diversity,
and evenness when describing fish assemblage structure. There are many ap-
proaches to quantifying evenness, but the most common is to express it as a pro-
portion of estimated diversity relative to the corresponding maximum diversity
for the specific number of species and sample size.
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Box 15.3 Calculation of Species Diversity, Evenness, and Dominance.

Below, we estimate species diversity and evenness of the fish assemblage sample from station 1 of
the Kankakee River, Illinois, which included 648 individuals representing 26 species (Box 15.1).

Shannon’s Diversity Index (H’)
From equation (15.3),

H' = – 
S

�
i = 1

(pi)(logepi).

H’ = – [(0.009)(loge0.009) + (0.253)(loge0.253) + (pi)(logepi) + (0.008)(loge0.008)]
(longnose gar) (gizzard shad) (23 other (slenderhead

species) darter)
= – [(–0.042) + (–0.348) + (–2.002) + (–0.039)]
= 2.431 nats/individual.

Units of expression for H’  are “nats per individual” (if calculated using loge, from information theory;
Pielou 1975), but it is usually reported as a unitless index value.  Although use of loge (as above) has
become convention for calculating H’, any logarithm base may be applied (e.g., log2 or log10), as
resulting index values are easily converted (see Krebs 1998 for multipliers).

Evenness Based on Shannon’s Index (J’)
From equation (15.5), with H’ = 2.431 (above) and 26 species (s),

J ' = H ' 
H 'max 

=
H ' 

loges
 .

J ' = 2.431
 loge26

=
2.431
 3.258

 = 0.746.

All measures of evenness range from 0 to 1.0 and are unitless proportions.

Simpson’s Diversity Index (1 – D)
From equation (15.4),

D =  
S

�
i = 1

(pi
2).

D = 0.0092 + 0.2532 + pi
2 + 0.0082

(longnose gar) (gizzard shad) (23 other species) (slenderhead darter)
= 0.00008 + 0.06401 + 0.07197 + 0.00006
= 0.13612, and

1 – D = 0.86388.

This result (1 – D) is the probability, without units, that two individuals selected randomly from this
sample will be different species.

(Box continues)
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Evenness Based on Simpson’s Index (V’)
From equation (15.6), with 1 – D = 0.8638 (above) and 26 species,

V ' = 1 – D
(1 – D)max 

=  ,  and

V ' = 1 – 0.1361
1 – 1/26

=
0.8639
0.9615

 = 0.8985.

1 – D
1 – 1/s 

Dominance
Based on the three most numerous species, from equation (15.7), dominance (D) is given by

D3 = 
3

�
i = 1

pi .

D3 = 0.253 + 0.221 + 0.069
(gizzard shad) (smallmouth bass) (striped shiner)

= 0.543.

Maximum value for species dominance would be 1.0. This result is a proportion without units but
may also be appropriately expressed (multiplied by 100) as a percentage.

Box 15.3 (continued)

For Shannon’s diversity index (H'), the corresponding index of evenness (J')
is calculated as

J '  = 
H'max

,H'
=

loge s
H'

(15.5)

where H'max = loges = maximum possible value of Shannon’s index, and s = number
of species.

There is disagreement on a theoretical upper limit for Shannon’s index, but in
practice, it rarely exceeds 5.0 for biological assemblages (Washington 1984).

The analogous equation to calculate evenness (V') for Simpson’s diversity in-
dex (1 – D) is

V'  = 
(1 – D)max

1 – D
=

1 – 1/s
1 – D , (15.6)

where  (1 – D)max = 1 – 1/s = maximum possible value of Simpson’s index, and s =
number of species.
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The maximum value that Simpson’s index may attain is nearly 1.0. Because
many variants of Shannon’s and Simpson’s diversity indices have been proposed,
there are an equal number of corresponding algorithms to estimate evenness
associated with those measures of diversity (Pielou 1975; Washington 1984; Krebs
1998). For this reason, we suggest consistently reporting the explicit equation
used to estimate evenness, as well as that for diversity. Example calculations of
species evenness based on Shannon’s and Simpson’s diversity indices for the
Kankakee River fish assemblage are presented in Box 15.3.

Another simple assemblage structural index related to evenness is species domi-
nance, which may be expressed as the relative abundance of a subset of the most
numerous species. For example, the proportion of the assemblage composed of
the two or three most abundant species would, in general, be inversely related to
evenness. The equation to calculate species dominance for the three most abun-
dant species (D3) is simply

D 3 = � pi ,
i = 1

3

(15.7)

where pi = proportion of the total sample represented by the ith species. Species
dominance may be estimated for a variable number of dominant species (usually
two to three). An example calculation is presented for the Kankakee River fish
assemblage in Box 15.3.

15.3.2 Biotic Integrity Indices

The concept of using indicator organisms as descriptors of environmental quality
may date back centuries, but it was not until the early twentieth century that it
became formalized. The “Saprobiensystem,” developed by Kolkwitz and Marsson
(1908) in Europe, delineated zones of organic enrichment and classified animal
species that occupy them. That early biotic index was later applied to river systems
and modified (Chandler 1970), and this led to the prolific development of a vari-
ety of biotic indices for aquatic invertebrates that appears to continue without
consensus (Washington 1984; Rosenburg and Resh 1993). While indicator spe-
cies, such as common carp or salmonid species, have been recognized in fisheries
science for decades, and other multimetric indices have been proposed (e.g.,
Gammon’s [1976] index of well being), the development and first widespread
application of a formal biotic index based on fishes is attributed to James Karr and
his colleagues (Karr 1981; Karr et al. 1986).

15.3.2.1. Rationale

Biotic integrity of an ecosystem is the ability to support and maintain a balanced,
integrated, adaptive community with assemblage characteristics and functional
organization similar to a natural habitat in the region that has not been impaired
by human activities (Karr et al. 1986). Systems with biotic integrity are more resis-
tant and resilient to natural disturbances and may withstand substantial human
influences. Ecological integrity integrates aspects of the chemical and physical
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state of the ecosystem with the biological. Whereas aquatic systems with ecological
integrity may support productive fisheries or other products and services, ecologi-
cal integrity is not necessarily correlated with productivity or diversity.

Biotic indices are developed to describe or quantify ecological integrity based
on known or suspected relationships between indicator organisms and their envi-
ronment and may also include assemblage structural indices. Indicator organisms
may be selected because they are particularly sensitive or tolerant to environmen-
tal degradation, and both types may be incorporated into a single biotic index.
Effective biotic indices cannot be universal; as fauna and environmental stresses
change regionally, so will suitable indicator organisms. Thus, a biotic index devel-
oped for a specific region and environmental stressors may require modification
for a different fauna and environmental relationships. Unfortunately, biotic indi-
ces are often applied uncritically to systems other than those for which they were
developed.

The concept and practice of biotic indices have been widely lauded and criti-
cized on various grounds (Suter 1993; Davis 1995; Simon 1999b). In general, criti-
cisms include a perceived lack of ecological meaning, predictability, diagnostic
power, and direct application to water resource regulation. Such criticisms apply
to many of the multimetric indices or multivariate techniques covered in this chap-
ter and have been refuted by those successfully applying biotic indices. The differ-
ences between opponents and proponents are primarily philosophical and can be
overcome by caution and reason in application of techniques and interpretation
of results.

15.3.2.2 Indicator Species and Guilds

Fishes are especially well suited as taxa to indicate environmental quality (Karr et
al. 1986; Simon 1999b). They occur in all but the most degraded waters; they can
accurately reflect environmental conditions at multiple scales; life history and
geographic distribution information is extensive for many species; and effective
techniques are available to collect them. Finally, fishes are relatively more visible,
understood, and valued by regulators, politicians, and the general public than are
other aquatic organisms.

The indicator fish approach is simple and easily applied without intensive data
needs or analysis. Indicator fishes or guilds may be particularly sensitive or toler-
ant to environmental degradation. The application is more biologically relevant
when indicator guilds are used because the effect of their occurrence may imply
ecological function, such as feeding or reproduction, rather than specific responses
of individual species. Examples of fish guilds to be considered are those based on
feeding and trophic relations (Gerking 1994), reproduction (Balon 1975), or
habitat (Grossman and Freeman 1987; Bain et al. 1988). Furthermore, higher
levels of fish taxa (e.g., families or genera, such as Salmonidae or darters of gen-
era Ammocrypta, Etheostoma, and Percina) may be considered indicator taxa.

Disadvantages of the indicator fish approach lie primarily in its subjectivity and
ecological basis. Although several lists partitioning fish guilds exist (e.g., Balon
1975; Karr et al. 1986; Halliwell et al. 1999; Simon 1999c), standard criteria for
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guild delineation and selection of appropriate guilds are lacking. Another prob-
lem is that mechanisms unrelated to ecological integrity may influence occur-
rence or ecological success of a fish taxon or guild; these may include zoogeogra-
phy, biotic interactions, or harvest (Fausch et al. 1990). Further complicating the
use of indicator fishes or guilds is that responses to environmental conditions in
fishes can vary with space, time, and type or degree of environmental stress, which
could confound conclusions among ecosystems or years.

15.3.2.3  Index of Biotic Integrity

Since its conception and original development for wadeable, warmwater streams
in the Midwestern United States, the index of biotic integrity (IBI, Karr 1981;
Karr et al. 1986) has been modified, as intended by the original authors, and
applied to virtually all other aquatic ecosystems, including coldwater streams, large
rivers, lakes, estuaries, and highly modified habitats, and to various regions of the
United States (Simon 1999a). Today, the IBI is widely applied and serves the func-
tion of a conceptual and procedural framework for assessing biological integrity
based on fish assemblages rather than a prescribed, specific protocol.

The IBI was designed as a composite index to assess biological integrity of aquatic
ecosystems by integrating attributes of the fish assemblage, population, and indi-
vidual by means of relative abundance of species and condition of individuals in a
representative sample of the assemblage. Although assemblage structural indices
(section 15.3.1) utilize relative abundance data and may reflect ecological condi-
tions in some applications, they were not conceived and designed for that func-
tion. The primary advantage of the IBI is that it was specifically developed and
refined, based on ecological relationships of fishes, to describe ecological integ-
rity and anthropogenic alterations of aquatic ecosystems.

The original IBI framework included 12 metrics that describe various aspects
of fish species composition, trophic composition, abundance, and condition (Table
15.2), but metrics have been omitted, augmented, or modified in applying the
IBI to other regions, habitats, and specific ecosystems, usually retaining the origi-
nal ecological framework (Miller et al. 1988). Increasingly, metrics are developed
systematically for a region based on metric variability and empirical relationships
(Hughes et al. 1998; Angermeier et al. 2000). A number rating, or score (5, 3, or
1), based on ecological expectations is assigned to each metric, and metric scores
are summed to yield a composite index score. The IBI scores may then be com-
pared directly or ranges may be assigned to successive categorical integrity classes
from very poor to excellent.

Species composition. The metrics describing species composition were intended
to characterize biological integrity through measures of fish species diversity and
occurrence of relatively tolerant and intolerant species. Species richness or rela-
tive abundance may be modified to reflect that of native fishes in areas affected by
nonnative fishes. Occurrence and relative abundance of specific families or taxa
may also vary among regions and should include species-rich groups with wide
geographic distributions and include one primarily benthic taxon and one
nonbenthic taxon (Karr et al. 1986). Species considered intolerant (or tolerant)
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should include only 5–10% of the species that are most (or least) sensitive to
human alteration of ecosystems.

Trophic composition. Trophic composition metrics are based on the premise that
alterations in food resources and productivity, influenced by water and habitat
quality, are reflected in the trophic structure of the fish assemblage. This extends
the attributes of the IBI to other trophic levels and organisms. As habitat de-
grades, food resources fluctuate more, and omnivores may replace more special-
ized feeders. The presence of piscivores, or other top carnivores, indicates a more
complex food web. For classification purposes, omnivores are defined as species
that consume significant quantities of both plant and animal material, including
detritus (Karr et al. 1986). In regions where insectivorous cyprinids are not com-
mon, other insectivorous fish taxa or other specialized feeder may be substituted.

Fish abundance and condition. Metrics describing fish abundance and condition
were designed to incorporate population and individual level effects of environ-
mental degradation. Obviously, the number of individuals in the sample will be
dependent on effort, and thus, fish abundance must be standardized to units of
catch per effort for comparison among sites (see section 15.2.4 and Chapter 7).
While a metric based on fish numbers accounts for numbers of trophic links, a

Table 15.2 Generalized fish assemblage metrics and scoring criteria for the index of biotic
integrity (IBI) applied to streams (modified from Karr et al. 1986). Scores are assigned to each
metric based on the sample deviation from that expected from a relatively undisturbed
reference system.

Scoring criteria

5 3 1

Attribute category and metric (highest integrity) (lowest integrity)

Species richness and composition
Total number of fish species
Number and identity of darter species Expectations vary with stream size, region, and
Number and identity of sunfish species basin (see section 15.3.2.4 for discussion)
Number and identity of sucker species
Number and identity of intolerant species
Percent individuals as green sunfish <5% 5–20% >20%

Trophic composition
Percent individuals as omnivores <20% 20–45% >45%
Percent individuals as insectivorous cyprinids >45% 20–45% <20%
Percent individuals as piscivores >5% 1–5% <1%

Fish abundance and condition
Number of individuals sampled Expectations vary with stream size, region, and

basin (see section 15.3.2.4 for discussion)
Percent individuals as hybrids 0 >0–1% >1%
Percent individuals diseased or with anomalies 0–2% >2–5%  >5% 

Total IBI score (sum of 12 metrics) 60 12
Integrity class Excellent – Good – Fair – Poor – Very Poor
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metric based on fish biomass may also be incorporated to account for the magni-
tude of trophic transfer and energy sequestered. The metrics for hybrid individu-
als and for disease and anomalies are among those most difficult to apply and are
frequently omitted or replaced (Miller et al. 1988). One strength of the IBI is that
it is a simple field assessment, but if fish need to be preserved for later analysis,
that advantage is diminished. Metrics related to nonnative species abundance or
reproductive guilds have been substituted for the hybrid metric to represent a
similar ecological rationale.

15.3.2.4 Spatial Influences and Reference Systems

The discussion above on IBI attribute categories emphasizes the practice of refin-
ing or replacing metrics for application to specific regions, and, likewise, metric
expectations should be similarly scaled according to stream size and compared
with least-disturbed, reference conditions. This practice will reduce the influence
of confounding factors that are unrelated to human influences on fish assem-
blages and will improve the relationship of index scores to ecological integrity.
Such considerations apply as well to comparison and interpretation of structural
indices (section 15.3.1) and other methods to compare fish assemblages (section
15.4) and are discussed below.

Regional influence. The variation in fish fauna and assemblages among regions
may be influenced by broad-scale factors, such as geological phenomena, river
basin boundaries, historical biogeography, glaciation, and evolution (Matthews
1998). Thus, comparative use of the IBI and, in most applications, fish assem-
blage structural indices or multivariate techniques, should occur within a geo-
graphic region. Typical spatial frameworks for delineating regions in this context
are by ecoregion, drainage basin, or other related hierarchical division (Bailey
1995; Omernick 1995; Omernick and Bailey 1997; Angermeier et al. 2000).

Stream size and longitudinal influence. Numerous studies on the distribution of
stream fishes from headwater reaches downstream to large rivers suggest com-
mon patterns of change in fish assemblages along a longitudinal gradient. In most
systems, species richness and diversity increase with stream size (Horwitz 1978;
Vannote et al. 1980; Wiley et al. 1990), and other assemblage and population
attributes, such as fish density, biomass, growth, body size, and trophic dynamics,
change longitudinally (Matthews 1998). Thus, stream size or longitudinal posi-
tion must be taken into account when comparing fish assemblage data among
sites within and among drainage networks.

Typically, stream longitudinal position, which is generally related to channel size,
is defined by stream order (Horton 1945; Strahler 1957) or watershed drainage
area (in acres or hectares). Because of inconsistencies in definition and reduced
precision associated with the discrete scale (consecutive integers) of stream order,
drainage area is generally a more useful descriptor of stream size and position.

Fausch et al. (1984) presented a simple graphical technique to demonstrate
the effect of stream longitudinal position on fish species richness and to approxi-
mate expected criteria values for IBI applications. When species richness is plot-
ted against stream order or watershed area (log10 transformed), the distribution
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of sites forms a right triangle, where the hypotenuse forms a positive-sloped line
of maximum species richness for a river system or region. The line of maximum
species richness is used in IBI practice to define “excellent” species richness (met-
ric score = 5), which varies with stream size; similarly, sites with richness falling
below the maximum expected may be rated depending on the degree of devia-
tion below the line for a given stream order or watershed area. The line of maxi-
mum expected values can be quantitatively derived by calculating the 95th-per-
centile regression (Blackburn et al. 1992) rather than by visually fitting a line to
perceived maximum values. This technique can be applied to other IBI metrics
associated with species composition (Table 15.2) and may be less relevant to metrics
associated with trophic composition or fish abundance and condition, which ap-
pear to vary less with stream position or size (Karr et al. 1986).

Examination or adjustment of other fish assemblage structural indices, in addi-
tion to IBI metrics, should be considered in most site comparisons within and
among drainage networks. In the absence of data to develop such relationships
for a river system or a region, site comparisons relevant to environmental quality
should be conducted among stream sites of similar longitudinal position or size.
Furthermore, such spatial and size effects apply to limnetic zones of lakes and
reservoirs and should be considered in analogous lentic comparisons among sites.

Reference systems. Reference systems to represent undisturbed or least-disturbed
ecological conditions are a critical component of any biotic or ecological assess-
ment (National Research Council 1992; Hughes 1995; Karr and Chu 1999). Such
systems are critical as a benchmark for comparison to detect and understand ef-
fects of human activities on ecosystems and to serve as a goal for ecological resto-
ration. Therefore, selection of a reference system or definition of reference con-
ditions is of utmost importance in biotic assessment, but no clear criteria exist for
such decisions.

Variation over space and time is key to identifying reference systems or condi-
tions. A system or location within a region with highest IBI metric scores or other
appropriate biotic or physical criteria (e.g., watershed land use or riparian distur-
bance) may serve as reference conditions. Similarly, information from the past,
recent or historical, may provide qualitative or quantitative descriptions of
predisturbance conditions. Ichthyological references, graduate theses, and state
and federal agency reports can be valuable sources of historical data on fish as-
semblages for specific regions.

Searches for information on predisturbance conditions may be difficult but
perhaps the only option in regions exposed to large-scale degradation. For ex-
ample, only 42 high-quality, free-flowing rivers remain in the conterminous United
States, and only 2% of the rivers in those states have features sufficient to receive
federal protection (Benke 1990). Further, Hynes (1970) purported that it would
be extremely difficult to find any stream that has not been altered by humans and
impossible to find any such river—and that assessment was made more than 30
years ago. Typically, a system or site of least disturbance must be substituted for
an undisturbed reference or reference conditions from another region may be
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cautiously applied. Hughes (1995) examined common, alternative, and combined
approaches for determining regional reference conditions.

15.3.2.5. Biotic Integrity Indices in Practice

The IBI was an important advance in biotic assessment methods that has evolved
to a concept rather than a restrictive protocol. Fisheries and aquatic scientists are
free to apply their own experience, perspective, and creativity into assessing eco-
logical integrity based on fish and invertebrate assemblages, as well as physical
attributes of aquatic habitats, riparian zones, and landscapes. Development of an
IBI is a rather intensive endeavor that requires sampling a substantial number of
sites and careful deliberation regarding metric and criteria development and re-
finement. However, there is no reason that investigators undertaking more lim-
ited assessments should not use individual IBI metrics or related assemblage struc-
tural indices (e.g., richness, diversity, or evenness) singly or in aggregate as
quantitative assemblage characteristics for comparison and assessment.

As with other techniques in this chapter, several restrictions apply. For any bi-
otic index to be meaningful, it must be based on a thorough and representative
sample of the fish assemblage. Thus, sampling considerations (section 15.2) are
an important aspect of any assessment program. It is essential that samples reflect
the fish assemblage resulting from the physical and biotic environment rather
than from a sampling bias that may vary among sites. As with most indices pre-
sented in this chapter, biotic indices are relative rather than absolute values, and
their application should reflect that limitation. Finally, a biotic index must have a
demonstrable empirical relationship to environmental quality to be meaningful,
and such steps should be incorporated into biotic index development.

■ 15.4 METHODS TO COMPARE COMMUNITIES

Community indices are useful for summarizing and describing the structure of a
fish assemblage. However, they cannot be used to compare the composition and
relative abundance of species in two or more assemblages directly. For example,
species richness does not take species identity into account, and the IBI does not
provide an explicit means to determine how two or more assemblages differ. Sev-
eral approaches have been developed by ecologists for directly comparing two or
more communities, and most have been used to study fish assemblages. These
techniques can be roughly categorized as (1) resemblance measures for quantify-
ing the similarity among assemblages, (2) classification methods for grouping as-
semblages based on their structure, (3) ordination methods for examining the
relationships among assemblages, (4) categorical data analysis methods for esti-
mating the differences among assemblages, and (5) graphical techniques for dis-
playing the relationships among assemblages. Each of the techniques discussed
below has associated assumptions and limitations that can affect the validity of
community comparisons. Consequently, ecologists often employ two or more tech-
niques to maximize insight and validate patterns indicated by a single method
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(Green and Vascotto 1978; Gauch 1982; Romesburg 1990). However, fisheries
scientists should refrain from data dredging, that is, conducting several analyses
until one produces results that appear to make the most sense or are statistically
significant. Such an approach to community level analysis is fraught with prob-
lems and should be avoided (see Rexstad et al. 1988). Rather, fisheries scientists
should carefully consider the objectives of their study and the system being exam-
ined and develop a set of questions to be addressed through their analyses.

15.4.1 Measures of Community Similarity and Their Characteristics

Fisheries biologists are often interested in quantifying the similarity among fish
communities based on their species composition and abundance. Resemblance
coefficients are used to measure the similarity (or dissimilarity) of two or more
communities with one or more characteristics, such as species presence, abun-
dance, density, or other community functional parameter (Gauch 1982; Romesburg
1990). Thus, resemblance coefficients are a useful and relatively flexible means
for quantifying the similarity among fish assemblages. Similarity and dissimilarity,
however, are generally descriptive measures rather than statistical estimates (cor-
relation coefficients are an exception), and, as such, it is difficult to estimate the
statistical significance of relationships. Such associated significance tests usually
require the use of computer-intensive resampling techniques and specialized soft-
ware and are of limited scientific value (e.g., Van Sickel 1997; Johnson 1999);
hence, we do not recommend their general use.

There are several types of resemblance coefficients, and the use of each de-
pends upon the characteristics of the data and study objectives. Binary coeffi-
cients are used to measure the similarity between two assemblages using only spe-
cies’ presence and absence. Ordinal coefficients are used when species (relative)
abundances have been transformed into ranks presumably to minimize the influ-
ence of sampling bias. Quantitative coefficients require an estimate of species-
specific abundance, such as density, relative abundance, and counts of the num-
ber of individuals. Although resemblance measures can differ markedly in their
data requirements and calculation, the best and most useful share two desirable
characteristics. First, resemblance measures should be independent of the num-
ber of individuals in a sample and the number of species in an assemblage. Sec-
ond, they should increase regularly from a set minimum to a set maximum as two
fish assemblages become increasingly similar (Wolda 1981). Another characteris-
tic to consider is the sensitivity of a particular resemblance measure to size (abun-
dance) displacements. Measures that are insensitive to size displacements con-
sider two assemblages to be similar if their attributes (e.g., density of a species)
differ by an additive or multiplicative function (Figure 15.4). Consequently, dif-
ferent resemblance measures can provide markedly different estimates of the simi-
larity (or dissimilarity) between two assemblages. Fisheries scientists should be
aware of these characteristics and use the resemblance measure that best meets
their needs.
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15.4.1.1 Coefficients for Binary (Nominal) Data

Species’ presence and absence require a similarity coefficient that can be used
with binary data (i.e., data that consist of two states). Binary coefficients are the
simplest, but most imprecise, estimators of community similarity because they
consider only species’ presence or absence. Rare species and abundant species
are weighted equally. Therefore, binary coefficients should be used only when
species’ presence are the only data available or in situations in which sampling
conditions prevented the estimation of species relative abundances.

The best and most commonly used binary coefficients are the Jaccard’s and
simple matching coefficients, which vary from 0 to 1, with 0 indicating no species
in common and 1 indicating identical species composition. Both measures are
independent of the number of individuals in an assemblage (sample) and are
insensitive to size displacements.

Jaccard’s coefficient. The similarity, C, between a pair of assemblages j and k is
calculated as

Cjk = 
p

p + m
, (15.8)

where p is the number of species that are present in both assemblages and m is the
number of species present in one assemblage but not the other. An example cal-
culation of Jaccard’s coefficient is presented in Box 15.4.

Figure 15.4 Species-specific abundances for three hypothetical fish assemblages. A resemblance
measure that is insensitive to size displacement would score assemblages 1 and 3 as most similar
because the species abundances differ by an additive constant (25), whereas a measure that is
sensitive to size displacements would score assemblages 1 and 2 as most similar.
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Box 15.4 Calculation of Jaccard’s and Simple Matching Coefficients

To calculate both Jaccard’s and simple matching coefficients, first determine the number of species
present and absent for both stations and the number of species occurring at one station but not
another. Using the summary data for stations 1 and 2 on the Kankakee River, Illinois (Box 15.1),

number of species present at both stations is p = 18,
number of species absent at both stations is a = 4, and
number of species present at one station but not the other is m = 12.

Jaccard’s Coefficient
From equation (15.8),

Cjk = 
p

p + m
, and

C1, 2 = 
18

18 + 12
= 0.60 .

Simple Matching Coefficient
From equation (15.9),

Cjk = 
p + a

p + m + a
, and

C1, 2 = 
18 + 4

18 + 12 + 4
= 0.65 .

Program
The following SAS program uses the DISTANCE macro, included in SAS/STAT software (version 6.09
or later; SAS Institute 2004), to compute the Jaccard and simple matching similarity coefficients for
fish assemblages at all stations of the Kankakee River example data. Note that the path following
the %INC must be changed to that of the SAS folder containing XMACRO, STDIZE, and DISTNEW
macros on your computer or network. These macros are included with all versions of SAS/STAT
software.

OPTIONS PS = 60 LS=78;

DATA SPECIES;

INPUT STATION $ LOG GZS BLM BUM CAP HOC MIS RDS RYS SAS SFS STS SUM BLR GOR NHS

SHR QLL RVR SVR SAB BKS BLG GSF LMB LOS OSF ROB SMB BAD BLD JOD LOP SLD;

LINES;

STATION1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1

STATION2 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0
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STATION3 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1

STATION4 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1

STATION5 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

STATION6 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1

;

%INC ‘<location of SAS sample folder>/XMACRO.SAS’;

%INC ‘<location of SAS sample folder>/STDIZE.SAS’;

%INC ‘<location of SAS sample folder>/DISTNEW.SAS’;

%DISTANCE(DATA=SPECIES, OPTIONS=NOMISS, SHAPE = SQUARE, ID = STATION,

OUT=JACCARD, METHOD = JACCARD);

PROC PRINT;

%DISTANCE(DATA=SPECIES, OPTIONS=NOMISS, SHAPE = SQUARE, ID = STATION, OUT=MATCH,

METHOD = MATCH);

PROC PRINT;

RUN;

Program Output

Table Jaccard’s coefficient and simple matching coefficient similarity matrices for fish assemblages
at all stations of the Kankakee River example data (Box 15.1).

Station

Station 1 2 3 4 5 6

Jaccard Similarity Matrix
1 1.0000 0.6000 0.7333 0.8519 0.7273 0.8214
2 0.6000 1.0000 0.7143 0.5333 0.6563 0.5667
3 0.7333 0.7143 1.0000 0.6129 0.7273 0.7000
4 0.8519 0.5333 0.6129 1.0000 0.7188 0.8148
5 0.7273 0.6563 0.7273 0.7188 1.0000 0.6471
6 0.8214 0.5667 0.7000 0.8148 0.6471 1.0000

Simple Matching Similarity Matrix
1 1.0000 0.6471 0.7647 0.8824 0.7353 0.8529
2 0.6471 1.0000 0.7647 0.5882 0.6765 0.6176
3 0.7647 0.7647 1.0000 0.6471 0.7353 0.7353
4 0.8824 0.5882 0.6471 1.0000 0.7353 0.8529
5 0.7353 0.6765 0.7353 0.7353 1.0000 0.6471
6 0.8529 0.6176 0.7353 0.8529 0.6471 1.0000
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The Jaccard coefficient is sensitive to the direction of the coding (i.e., asym-
metric); hence, presence or absence should be coded the same for all species.
This measure considers only mutual presence of a species, which should mini-
mize the influence of false absences (i.e., a species is missed) in sampling data.
Therefore, Jaccard’s is the preferred method for analyzing fish assemblage simi-
larity based on species presence.

Simple matching coefficient. The similarity, C, between j and k is calculated as

Cjk = 
p + a

p + m + a
, (15.9)

where p and m are defined above and a is the number of species absent in both
assemblages. An example calculation of the simple matching coefficient is presented
in Box 15.4.

In contrast to Jaccard’s, the simple matching coefficient uses the mutual ab-
sence of a species and should be used only when there is no potential for false
absences (i.e., missed species) in the data. Use of the simple matching coefficient
requires an exact definition of the species pool, which is subjective to some de-
gree, and large species pools may inflate the number of mutual absences and,
thus, similarity.

15.4.1.2 Coefficients for Ranked (Ordinal) Data

The most widely used coefficients for ranked data are also nonparametric correla-
tion coefficients. These resemblance measures are estimated using ranks in place
of actual abundance estimates, and as such, they are unaffected by nonlinear
relationships between species abundances of two assemblages. Ordinal measures
are not as crude as binary coefficients but are less sensitive than are quantitative
coefficients (section 15.4.1.3). Hence, we recommend their use over quantitative
measures only when species abundance estimates are believed to be poor due to
factors such as sampling difficulties.

The most commonly used ordinal coefficients are Spearman’s rank correlation
and Kendall’s tau (Romesburg 1990). In contrast to most resemblance measures,
these coefficients have values that vary from –1 to 1, with –1 indicating different
species assemblages and 1 indicating identical species composition. Both mea-
sures are strongly affected by the total number of individuals in a sample, espe-
cially when there are large numbers of species, and are insensitive to size displace-
ments (Krebs 1998). They are most useful for comparing assemblages in
low-diversity communities but should never be used as similarity measures when
more than half of the abundances in one or more assemblage samples are zero
(Field 1970).

Spearman’s rank correlation. To estimate Spearman’s rank correlation coefficient,
fish abundance data are first sorted and ranked (1 = lowest) for each station. Ties
(i.e., species with equal abundances) are assigned the average of the ranks. For
example, two species with equal abundances in the fifth and sixth positions in the
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sorted list would receive the rank 5.5. The similarity, �, between assemblages r and
s is then calculated using the Pearson product-moment correlation as

�rs =  ,
�(ri – r)2 �(si – s)2

�(ri – r)(si – s)
(15.10)

where ri and si are the ranks corresponding to species i, and r
_
 and s

_
 are the mean

ranks of all species in assemblage r and s, respectively. An alternative formula for
estimating the Spearman’s rank correlation coefficient can be found in Daniel
(1990). An example calculation of Spearman’s rank correlation coefficient is pre-
sented in Box 15.5.

Kendall’s tau. To estimate Kendall’s tau coefficient for assemblages j and k, spe-
cies abundances are sorted from smallest to largest for assemblage j. If ties are
present in assemblage j (i.e., two or more species have the same abundance),
species abundances for those species within assemblage k are sorted in increasing
magnitude within each tied group. The similarity, �, is then calculated as

�jk =  ,
n(n – 1)(0.5)

�Pi – Qi (15.11)

where Pi and Qi are the total number of species in assemblage k with higher ranks
and abundances greater (Pi) and less than (Qi)species i in assemblage j, and n is
the total number of species.

If ties are present in assemblage j, corresponding species in assemblage k are
not counted for Pi and Qi within each tied group. The denominator in equation
(15.11) is also adjusted for ties as

�jk =  ,
n(n – 1)(0.5) – Tj

�Pi – Qi 

n(n – 1)(0.5) – Tk
(15.12)

where Tj = (0.5)�tj(tj – 1); Tk = (0.5)�tk(tk – 1); tj and tk are the number of species
that are tied at a given rank in assemblage j and k, respectively; and n is the total
number of species. An example calculation of Kendall’s tau coefficient with ties is
presented in Box 15.5.

15.4.1.3 Coefficients for Quantitative Data

The best means to characterize the similarity among fish assemblages is through
the use of quantitative resemblance coefficients. In contrast to binary and ordinal
measures, these coefficients use species abundance estimates and are, therefore,
much more sensitive to small differences between two fish assemblages. There is a
wide variety of similarity measures available for use with quantitative data. However,
the two best and most widely used measures in ecology are the percent similarity
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Box 15.5 Calculation of Spearman’s Rank Correlation and
Kendall’s Tau Similarity Coefficients

Species total abundances from stations 1 and 2 of the Kankakee River, Illinois (Box 15.1), are used to
illustrate the calculation of Spearman’s rank and Kendall’s tau coefficients.

Table Species sorted by abundance and ranked for stations 1 and 2 of Kankakee River example
(Box 15.1). Also included are computations for Kendall’s tau that tally the number of species at
station 2 with abundances higher (Pi ) or lower (Qi ) than a given species at station 1.

Number of species
at station 2 with

Species and
Sorted abundance Rank abundance abundances

summary statistics Station 1 Station 2 Station 1 Station 2 Higher (Pi ) Lower (Qi )

Hornyhead chub 0 0 4.5 6.5 18 0
Suckermouth minnow 0 0 4.5 6.5 18 0
Bullhead minnow 0 0 4.5 6.5 18 0
Black redhorse 0 0 4.5 6.5 18 0
Smallmouth buffalo 0 3 4.5 17 14 11
Largemouth bass 0 3 4.5 17 14 11
Johnny darter 0 6 4.5 19 14 12
Redfin shiner 0 22 4.5 24.5 9 16
Orangespotted sunfish 1 0 10.5 6.5 15 0
Blackside darter 1 9 10.5 21 10 12
Sand shiner 1 22 10.5 24.5 8 14
Green sunfish 1 42 10.5 29 5 17
River redhorse 2 0 13.5 6.5 15 0
Bluegill 2 0 13.5 6.5 15 0
Banded darter 4 0 15.5 6.5 14 0
Brook silverside 4 10 15.5 22 9 9
Slenderhead darter 5 0 18 6.5 12 0
Quillback 5 2 18 14.5 11 4
Northern hog sucker 5 2 18 14.5 11 4
Longnose gar 6 7 20 20 9 5
Silver redhorse 8 1 21.5 13 9 3
Rosyface shiner 8 89 21.5 32 2 10
Mimic shiner 10 11 23 23 7 4
Common carp 13 58 24 30 3 7
Spotfin shiner 19 24 25 26 5 4
Logperch 25 0 26 6.5 6 0
Rock bass 30 3 27 17 5 2
Golden redhorse 34 0 28 6.5 5 0
Shorthead redhorse 35 0 29.5 6.5 4 0
Longear sunfish 35 94 29.5 34 0 4
Bluntnose minnow 42 33 31 28 2 1
Striped shiner 45 32 32 27 2 0
Smallmouth bass 143 59 33 31 1 0
Gizzard shad 164 90 34 33 0 0

Average rank 17.5 17.5
Sum 308       150



Community Indices, Parameters, and Comparisons 715

Spearman’s Rank Correlation Coefficient
To estimate Spearman’s rank, species abundances are sorted in ascending order and assigned ranks
(1 = lowest) for each assemblage. Ties are assigned the average of the tied ranks. The first eight
species at station 1 have abundances of 0, and their average rank is calculated as

1 + 2 + 3 + . . . + 8
8

=  4.5 .
36
8

= 

From equation (15.10),

�r s =  , and
� (ri – r )2 � (si – s )2

� (ri – r )(si – s )

�1,2 =  
[(4.5 – 17.5)2 + (4.5 – 17.5)2 + . . . + (34 – 17.5)2][(6.5 – 17.5)2 + (6.5 – 17.5)2 + . . . + (33 – 17.5)2] 

(4.5 – 17.5)(6.5 – 17.5) + (4.5 – 17.5)(6.5 – 17.5) + . . . + (34 – 17.5)(33 – 17.5) 

=
1308.250

(3221.500)(3126.500)

= 0.412.

Kendall’s Tau
To estimate Kendall’s tau, species abundances are sorted for station 1 from lowest to highest, and
because ties occur at station 1, species abundances for station 2 are also sorted within each tied
group. For example, the first eight species at station 1 of the Kankakee River, hornyhead chub
through redfin shiner, have abundances of 0; hence, they are also sorted by their station 2 abun-
dances as shown in the table above.

From equation (15.12),

�j k  =  .
n(n – 1)(0.5) – Tj

�Pi – Qi 

n(n – 1)(0.5) – Tk

Using the sorted abundances for station 2, Pi is estimated for each species (i ) by counting the
number of other species at station 2 (see table) with greater abundance. For hornyhead chub, this is
any species with abundance greater than 0. However, four of these species, smallmouth buffalo
through redfin shiner, have abundances greater than 0 but are not counted because their abun-
dances are tied (all 0) at station 1. This leaves a total of 18 species with greater abundance than
hornyhead chub at station 2. Then Qi is estimated similarly by counting the number of species with
lower abundance, which for hornyhead chub is none (0). The adjustment for ties in the denomina-
tor of equation (15.12), Tj and Tk , is estimated for each station by first counting the number of

(Box continues)
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and Morisita’s indices. Percent similarity is used on relative species abundance
data, and Morisita’s index is employed when data consist of the number of indi-
viduals (whole numbers) per species.

Percent similarity. To calculate the percent similarity index, species abundances
in each assemblage must first be standardized to percentages by dividing the abun-
dance of each species in a sample by the total number of fish in the sample and
multiplying by 100. The similarity, P, between assemblages j and k is calculated as

Pjk = �minimum(pki , pji ), (15.13)

where pji and pki are the relative abundances of species i in assemblage j and k,
respectively, and minimum indicates that the smallest of the two relative abundances
is used in the summation. An example calculation of the percent similarity index
is presented in Box 15.6.

species for each tied abundance value. At station 1, eight species had 0 abundance, 4 had abun-
dances of 1, 2 had abundances of 2, and so on. The adjustments are then estimated as

Tk = (0.5)� tk(tk – 1)

T1 = (0.5) [(8)(8 – 1) + (4)(4 – 1) + (2)(2 – 1) + (2)(2 – 1) + (3)(3 – 1) + (2)(2 – 1) + (2)(2 – 1)]
= 41, and

T2 = (0.5) [(12)(12 – 1) + (2)(2 – 1) + (3)(3 – 1) + (2)(2 – 1)]
= 71.

Thus, replacing the symbols in equation (15.12) with their corresponding values

�1,2 =  
34(34 – 1)(0.5) – 41

308 – 150

34(34 – 1)(0.5) – 71

 = 0.313.

Program

The following SAS program computes Spearman’s rank and Kendall’s tau similarity coefficients for
fish assemblages at stations on the Kankakee River.

OPTIONS PS = 60 LS=78;

DATA SPECIES;

INPUT SPECIES $ STATION1 STATION2 STATION3 STATION4 STATION5 STATION6;

LINES;

Longnose_gar 6 7 0 4 26 5

(input remaining 33 species)

;

Box 15.5 (continued)
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PROC CORR NOPRINT OUTS=SPEARMAN OUTK=KENDALL;

DATA SPEARMAN; SET SPEARMAN; WHERE _TYPE_=’CORR’; DROP _TYPE_;

PROC PRINT;

DATA KENDALL; SET KENDALL; WHERE _TYPE_=’CORR’; DROP _TYPE_;

PROC PRINT;

RUN;

Program Output

Table Spearman’s rank and Kendall’s tau similarity matrices for fish assemblages at stations 1 and
2 of the Kankakee River data (Box 15.1).

Station

Station 1 2 3 4 5 6

Jaccard Similarity Matrix
1 1.0000 0.4122 0.7087 0.7318 0.6943 0.8540
2 0.4122 1.0000 0.4532 0.2912 0.4378 0.4087
3 0.7087 0.4532 1.0000 0.6372 0.4394 0.6565
4 0.7318 0.2912 0.6372 1.0000 0.6601 0.7953
5 0.6943 0.4378 0.4394 0.6601 1.0000 0.6989
6 0.8540 0.4087 0.6565 0.7953 0.6989 1.0000

Kendall's Tau Similarity Matrix
1 1.0000 0.3130 0.5448 0.5762 0.5470 0.7060
2 0.3130 1.0000 0.3609 0.2374 0.3261 0.3288
3 0.5448 0.3609 1.0000 0.4966 0.3169 0.4898
4 0.5762 0.2374 0.4966 1.0000 0.4890 0.6385
5 0.5470 0.3261 0.3169 0.4890 1.0000 0.5106
6 0.7060 0.3288 0.4898 0.6385 0.5106 1.0000

The percent similarity index, also know as the Renkonen index after its creator
(Renkonen 1938), is one of the best quantitative similarity measures (Wolda 1981).
It varies from 0 to 100%, with 0 indicating no species in common and 100%
indicating identical species composition. It is a very robust measure that is not
influenced by the number of individuals in a sample and is insensitive to size
displacements.

Morisita’s index. The similarity, C, between assemblages j and k is calculated
following Morisita (1959) as

Cjk =  ,
(�j + �k)NjNk

2�XijXik
(15.14)

where

�j =  , and
Nj(Nj – 1)

�[Xij(Xij – 1)]
�k =  

Nk(Nk – 1)
�[Xik(Xik – 1)] .
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The number of individuals of species i is given by Xij and Xik , and Nj and Nk are
the total number of individuals in assemblage j and k, respectively. Horn (1966)
developed a simplified version of the index in which each � is calculated without
subtracting 1 from the total number of individuals in the assemblage. This modi-
fied version of Morisita’s index is used only when abundance is expressed as a
proportion, such as relative abundance and density. An example calculation of
the Morisita’s index is given in Box 15.6.

Morisita’s index varies from 0 to 1, with 0 indicating no species in common,
and 1 indicating identical species composition. Unlike other similarity coefficients,
Morisita’s index can be interpreted as a probability (Krebs 1998). It is not signifi-
cantly influenced by the number of individuals in an assemblage sample, unless
that total is very small, and is insensitive to size displacements (Wolda 1981).

15.4.1.4 Distance Measures

Distance coefficients are a special kind of quantitative resemblance measure that
are used to estimate the dissimilarity between two fish assemblages. In contrast to
similarity, low distance (dissimilarity) values indicate that two assemblages are more
similar to one another with 0 indicating identical species composition. Interest-
ingly, any of the similarity measures presented in this chapter can be transformed
into a dissimilarity measure by multiplying its value by –1 or by subtracting from a
constant corresponding to the maximum value (e.g., subtract from 100 the per-
cent similarity index). Distance coefficients are generally used in cluster analysis
(section 15.4.3) and require a quantitative measure of species-specific abundance,
such as numbers of individuals, relative abundance, and density.

The most commonly used distance measures are the Euclidean and Bray–Curtis
coefficients. Both measures are strongly affected by the total number of individu-
als and number of species in a sample and are the only resemblance measures
presented in this chapter that are sensitive to size displacements.

Euclidean distance.  The Euclidean distance, d, between assemblages j and k is
calculated as

djk =  ,�(Xij – Xik)
2 (15.15)

where Xij and Xik are the abundances of species i in assemblage j and k, respec-
tively. Euclidean distance values are strongly influenced by the number of species
in an assemblage. To minimize this effect, researchers often calculate the average
Euclidean distance, d', as

d'jk =  ,�(Xij – Xik)
2

n
(15.16)

where n is the total number of species. Example calculations of Euclidean dis-
tance and average Euclidean distance are presented in Box 15.7. Euclidean dis-
tance and average Euclidean distance can both vary from 0 to infinity, with 0
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Box 15.6 Calculation of Percent Similarity and Morisita’s Indices

Below we calculate percent similarity and Morisita’s similarity indices based on summary fish
abundance data from stations 1 and 2 on the Kankakee River, Illinois (Box 15.1).

Percent Similarity
To calculate percent similarity, species abundances must be expressed as percentages. Totals of 648
and 622 fish were collected from stations 1 and 2, respectively. Thus, species-specific abundances at
each station are divided by their corresponding station totals and multiplied by 100.

From equation (15.13),

Pjk = �minimum (pki, pji ), and

P1,2 = minimum (0.926, 1.125) + minimum (25.309,14.469) + . . . + minimum (0.772, 0.000)
(longnose gar) (gizzard shad) (slenderhead darter)

= 0.926 + 14.469 +… + 0.000
= 50.185%.

Morisita’s Similarity Index
From equation (15.14),

Cj k  =  .
(�j + �k)NjNk

2�XijXik

�1 =  
648(648 – 1)

6(6 – 1) + 164(164 – 1) + . . . + 5(5 – 1)

= 0.135, and 

�2 =  
622(622 – 1)

7(7 – 1) + 90(90 – 1) + . . . + 0(0 – 1)

= 0.096. 

C1,2 =  
(�j + �k)(648)(622)

2[(6)(7) + (164)(90) + . . . + (5)(0)]

= 92,875.079
63,236.000

= 0.681. 

indicating identical assemblages and large distances indicating very different as-
semblage structure.

Bray–Curtis coefficient.  The distance, b, between assemblage j and k is calculated
following Bray and Curtis (1957) as

bjk =  ,� |Xij – Xik|
�(Xij + Xik)

(15.17)
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where Xij and Xik are the abundance of species i in assemblage j and k, respec-
tively. An example calculation of the Bray–Curtis coefficient is presented in Box
15.7. The Bray–Curtis coefficient varies from 0 to 1, with 0 indicating identical
assemblages and 1 indicating no species in common. It also tends to be strongly
influenced by abundant species and should not be used when fish assemblage
samples are dominated by a few very abundant species (i.e., evenness is low,
Wolda 1981).

Box 15.7 Calculation of Euclidean and Bray–Curtis Distances.

Euclidean and Bray–Curtis distances are calculated for summary fish abundance data from stations
1 and 2 of the Kankakee River, Illinois (Box 15.1).

Euclidean Distance
From equation (15.15),

dj k  =  .� (Xij – Xik)2

d1,2 =  (6 – 7)2 + (164 – 90)2 + . . . + (5 – 0)2

(longnose gar) + (gizzard shad) + . . . + (slenderhead darter)

d1,2 =  31,488.00 = 177.449.

Average Euclidean Distance
From equation (15.16),

d'j k  =   .� (Xij – Xik)2

n

d'1,2 =   31488.00
34

= 30.432.

Bray–Curtis coefficient
From equation (15.17),

bj k  =  .
� | Xij – Xik |

� ( Xij + Xik )

b1,2 =  
|6 – 7| + |164 – 90| + . . . + |5 – 0|

(6 + 7) + (164 + 90) + . . . + (5 – 0)

= 
630

1,270
= 0.496.
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15.4.2 Classification Techniques

Similarity coefficients are useful for examining relationships among small num-
bers of fish assemblages. Fisheries scientists, however, often need to compare sev-
eral assemblages simultaneously for the purposes of grouping or classifying them
based on their structure. Cluster analysis includes a set of techniques that can be
used to examine the relationships among two or more communities and group

Program
The following SAS program uses the DISTANCE macro, included in SAS/STAT software (SAS Institute
2004), version 6.09 or later, to compute Euclidean distance for fish assemblages at all stations on the
Kankakee River.  Note that the path following the %INC must be changed to that of the SAS folder
containing XMACRO, STDIZE, and DISTNEW macros on your computer or network.

OPTIONS PS = 60 LS=78;

DATA SPECIES;

INPUT SPECIES $ STATION1 STATION2 STATION3 STATION4 STATION5 STATION6;

LINES;

Longnose_gar 6 7 0 4 26 5

(input remaining 33 species)

;

PROC TRANSPOSE DATA = SPECIES OUT = SPECIES;

%INC ‘<location of SAS sample folder>/XMACRO.SAS’;

%INC ‘<location of SAS sample folder>/STDIZE.SAS’;

%INC ‘<location of SAS sample folder>/DISTNEW.SAS’;

%DISTANCE(DATA=SPECIES, OPTIONS=NOMISS, SHAPE = SQUARE, ID = _NAME_,

OUT=EUCLID, METHOD = EUCLID);

PROC PRINT;

RUN;

Program Output

Table Euclidean distance matrix for fish assemblages at six stations on the Kankakee River
(see Box 15.1).

Station

Station 1 2 3 4 5 6

1 0.0000 177.4486 175.2341 171.6945 275.2181 93.2202
2 177.4486 0.0000 218.1811 185.4104 380.0776 225.1000
3 175.2341 218.1811 0.0000 81.1788 435.1597 211.5349
4 171.6945 185.4104 81.1788 0.0000 435.5250 206.7970
5 275.2181 380.0776 435.1597 435.5250 0.0000 258.5672
6 93.2202 225.1000 211.5349 206.7970 258.5672 0.0000
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them into classes (or clusters) based on their similarity (Romesburg 1990). Classi-
fication, however, is more of a skill than an exact science, and it requires a certain
amount of ecological insight and knowledge of the systems being studied. There
is no single best classification system for grouping fish assemblages or determin-
ing the exact number of groups to distinguish. Thus, a fish assemblage classifica-
tion system developed for one purpose may be inappropriate for addressing an-
other (Romesburg 1990). As with all analytical techniques, we encourage fisheries
scientists to consider their objectives and planned application of their classifica-
tion system carefully before attempting to develop fish assemblage classifications.

There are two basic types of cluster analyses—hierarchical and nonhier-
archical—that have been used by biologists to develop polythetic classifications
(i.e., classifications based on overall similarity). Among these, hierarchical meth-
ods are generally the simplest, most easy to use, and the only clustering methods
considered here that are useful for examining relationships among assemblages.
However, they can become cumbersome when the number of samples (i.e., as-
semblages) is large. Nonhierarchical methods are computationally complex and
require the use of computer programs but are appropriate and useful when the
number of samples is large. Below, we discuss the best, most widely used of these
two clustering methods for ecological classification. For a more thorough treat-
ment of cluster analysis and ecological classification, we recommend Romesburg
(1990) and Everitt (1993).

15.4.2.1 Hierarchical Cluster Analysis

By far, the most widely used form of cluster analysis is hierarchical clustering. It is
used to reveal relationships among assemblages based on resemblance measures
(section 15.4.1). Hierarchical cluster analysis begins with a matrix of resemblance
coefficients (see Box 15.6 for example). Pairs of assemblages are then grouped
sequentially using a clustering method. Clustering begins by grouping the most
similar (or least dissimilar) pair(s) of assemblages. The next most similar pair(s)
is then clustered, and the process continues until all assemblages are contained in
a single cluster. Results are displayed in a diagram, called a dendrogram or tree,
that shows the similarities in the form of a hierarchy (hence, the name). Relation-
ships indicated by hierarchical cluster analysis are significantly influenced by the
characteristics of the resemblance measure and the clustering method. In fact,
different combinations of resemblance measures and clustering methods can pro-
vide quite disparate estimates of relationships among assemblages (Figure 15.5).
Because there is no truly objective means of clustering (Romesburg 1990; Krebs
1998), fisheries biologists should consider the characteristics of resemblance mea-
sures and clustering methods and choose those that make the most sense. Having
previously detailed the characteristics of resemblance measures, we now describe
those of clustering methods.

Single linkage. Single-linkage clustering is the simplest form of hierarchical clus-
ter analysis. It begins with a resemblance matrix and uses the nearest-neighbor
rule to define similarity or dissimilarity among clusters. For distance measures,
assemblages are clustered as follows.
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Figure 15.5 Cluster analyses of fish assemblages at six stations on the Kankakee River, Illinois
(Box 15.1). Trees (a) and (b) were created using Jaccard’s similarity coefficient, (c) and (d) with
Kendall’s tau, and (e) and (f ) with the percent similarity index. Single-linkage clustering method
was used for trees (a), (c), and (e) and complete-linkage for trees (b), (d), and (f ).
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Step 1. Find the pair of assemblages with the smallest distance (most similar) and
combine into the first cluster.

Step 2. Find the second pair with the smallest distance and cluster. This pair can
include two assemblages or an assemblage and the cluster created in step
1 whose nearest-neighbor distance, d, from an assemblage j is defined as

dj(m,n) = minimum (djm, djn), (15.18)

where (m, n) is a cluster containing assemblages m and n, and minimum
indicates that the smallest distance is used in clustering.

Step 3. Find the third pair with the smallest distance and group (cluster). This
pair can include two assemblages, an assemblage and a cluster, or two
clusters whose nearest-neighbor distance, d, is defined as

d(j,k)(m,n) = minimum (djm, djn, dkm, dkn), (15.19)

where (j , k) is the cluster containing assemblage j and k and (m, n) is
defined above.

Step 3 is repeated until all of the assemblages are contained in one cluster.
Single-linkage clustering is illustrated in Box 15.8.

For similarity measures, the nearest-neighbor distance is the highest similarity
value, and hence, the minimum in equations (15.18) and (15.19) is replaced by a
maximum.

Complete linkage. Complete-linkage clustering is also a relatively simple form of
hierarchical clustering. It is very similar to single linkage except that the rules for
defining distances among clusters are the exact opposite. Thus, the first step is
identical to that described above for single linkage. Subsequent steps proceed as
follows.

Step 2. Find the second pair with the smallest distance (most similar) and cluster.
This pair can include two assemblages or an assemblage and the cluster
created in step 1 whose farthest-neighbor distance, d, from an assemblage
j is defined as

dj(m,n) = maximum(djm, djn), (15.20)

where (m, n) is a cluster containing assemblage m and n, and maximum
indicates that the largest distance is used in clustering.

Step 3. Find the third pair with the smallest distance and cluster. Accordingly, the
farthest-neighbor distance, d, between two clusters is defined as

d(j,k)(m,n) = maximum(djm, djn , dkm, dkn), (15.21)

where (j , k) is a cluster containing assemblage j and k, and (m, n) is
defined above. As above, step 3 is repeated until all of the assemblages are
contained a single cluster.
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Box 15.8 Clustering Procedure for Hierarchical Cluster Analysis

Below are dendrograms of fish assemblages at six stations on the Kankakee River, Illinois (Box 15.1),
resulting from single- and average-linkage clustering of Euclidean distance resemblance measure
of summary fish abundance data. Step labels correspond to clustering steps, detailed below.

Initial Resemblance Matrix (Euclidean Distance)

Table Euclidean distance matrix for fish assemblages at six stations of the Kankakee River data
(Box 15.1).

Station

Station 1 2 3 4 5 6

1
2 177.45
3 175.23 218.18
4 171.69 185.41 81.18
5 275.22 380.08 435.16 435.53
6 93.22 225.10 211.53 206.80 258.57

Step 1

The first clustering step is to join the most similar pair of assemblages (i.e., smallest distance), which
is stations 3 and 4, resulting in 1, 2, (3, 4), 5, and 6 at distance 81.18. The resemblance matrix is then
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adjusted to reflect the creation of (3, 4). For single-linkage clustering, the distance between (3, 4)
and station 1 is estimated using equation (15.18), where

dj(m,n) = minimum (djm , djn).

d1(3,4) = minimum (175.23, 171.69)

= 171.69.

For average-linkage clustering, the distance between (3, 4) and station 1 is estimated using
equation (15.22) where

dj (m,n) =  
dj m  +  dj n

N(m,n)

d1(3,4) =
175.23 + 171.69

2

= 173.46.

For each clustering method, compute the distances between (3,4) and the remaining stations and
place into the corresponding revised matrix, shown below.

Table Second resemblance matrix based on single- and average-linkage clustering methods.

Stations Stations

Station 1 2 5 6 (3,4) Station 1 2 5 6 (3,4)

Single-linkage distances Average-linkage distances
1 1
2 177.45 2 177.45
5 275.22 380.08 5 275.22 380.08
6 93.22 225.10 258.57 6 93.22 225.10 258.57
(3,4) 171.69 185.41 435.16 206.80 (3,4) 173.46 201.80 435.34 209.17

Step 2
Next, join the most similar pair shown in the second resemblance matrix. For both clustering
methods, this is stations 1 and 6, resulting in 2, (3,4), 5, and (1,6) at distance 93.22. As above, adjust
each resemblance matrix to reflect the creation of (1,6). With single-linkage clustering, the distance
between (1,6) and (3,4) is estimated using equation (15.19) and distances from the Euclidian
distance matrix:

d(j,k)(m,n) = minimum (djm, djn , dkm, dkn) .

d(3,4)(1,6) = minimum (175.23, 171.69, 211.53, 206.80)

= 171.69.

Box 15.8 (continued)
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With average-linkage clustering, the distance between (1,6) and (3,4) is estimated using equation
(15.23) as

d(j , k )(m,n) = 
dj m  + dj n  + dk m  + dk n

Nj k  + Nm n

d(3,4)(1,6) = 175.23 + 171.69 + 211.53 + 206.80
2 + 2

= 191.31.

Compute the distances between (1,6) and the remaining stations with each clustering method, and
place into the corresponding revised matrix, shown below.

Table Third resemblance matrix based on single- and average-linkage clustering methods.

Stations Stations

Station 2 5 (3,4) (1,6) Station 2 5 (3,4) (1,6)

Single-linkage distances Average-linkage distances
2 2
5 380.08 5 380.08
(3,4) 185.41 435.16 (3,4) 201.80 435.34
(1,6) 177.45 258.57 171.69 (1,6) 201.27 266.89 191.31

Step 3
Join the most similar pair in the third resemblance matrix. For single-linkage distance, this is (3,4)
and (1,6), resulting in 2, 5, and (1,3,4,6) at distance 171.69. With average-linkage distance, join (3,4)
and (1,6) at 191.32. Compute the distances between (1,3,4,6) and stations 2 and 5 with each
clustering method, and place into the corresponding revised matrix, shown below.

Table Fourth resemblance matrix based on single- and average-linkage clustering methods.

Stations Stations

Station 2 5 (1,3,4,6) Station 2 5 (1,3,4,6)

Single-linkage distances Average-linkage distances
2 2
5 380.08 5 380.08
(1,3,4,6) 177.45 258.57 (1,3,4,6) 201.54 351.12

Step 4
Join the most similar pair in the fourth resemblance matrix, 2 and (1,3,4,6), resulting in 5 and
(1,2,3,4,6) at distance 177.45 for single linkage and 201.54 for complete linkage, respectively. Revise
each resemblance matrix to reflect the creation of (1,2,3,4,6).

(Box continues)
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Table Fifth resemblance matrix based on single- and average-linkage clustering methods.

Stations Stations

Station 5 (1,2,3,4,6) Station 5 (1,2,3,4,6)

Single-linkage distances Average-linkage distances
5 5
(1,2,3,4,6) 258.57 (1,2,3,4,6) 356.91

Step 5
Join 5 to (1,2,3,4,6) to create one cluster (1,2,3,4,5,6) at 258.567 and 356.91 for single and average
linkage, respectively.

Program
The following SAS program clusters and plots a dendrogram of fish assemblages at six stations on
the Kankakee River, Illinois, with single-linkage clustering method (METHOD = SINGLE) and
Euclidean distance resemblance measure.

OPTIONS PS = 60 LS=78;
DATA EUCLID (TYPE = DISTANCE);
INPUT NAME $ STATION1 STATION2 STATION3 STATION4 STATION5 STATION6;
LINES;
STATION1 0.000 177.449 175.234 171.694 275.218 93.220
STATION2 177.449 0.000 218.181 185.410 380.078 225.100
STATION3 175.234 218.181 0.000 81.179 435.160 211.535
STATION4 171.694 185.410 81.179 0.0000 435.525 206.797
STATION5 275.218 380.078 435.160 435.525 0.0000 258.567
STATION6 93.220 225.100 211.535 206.797 258.567 0.000
;
PROC CLUSTER DATA = EUCLID OUTTREE = SINGTREE
METHOD = SINGLE NONORM NOSQUARE NOPRINT;  ID NAME;
PROC TREE DATA = SINGTREE HORIZONTAL FC= ‘C’  DIS LEVEL = 0;

RUN;

Program Output

Box 15.8 (continued)

Figure Dendrogram of fish assemblages at six stations on the Kankakee River, Illinois, obtained
with single-linkage clustering method and Euclidean distance resemblance measure.

Station 1

Station 6

Station 3

Station 4

Station 2

Station 5

Name of observation or cluster

0 25 50 75 100 125 150 175 200 225 250 275



Community Indices, Parameters, and Comparisons 729

For similarity measures, the farthest-neighbor distance is defined as the lowest
similarity value of cluster members, and hence, the maximum in equations (15.20)
and (15.21) is replaced by a minimum.

Average linkage. Average-linkage clustering, also known as unweighted pair-group
with arithmetic averaging (Romesburg 1990), is the conceptual middle ground
between single- and complete-linkage methods. The clustering steps are identical
to those defined above. However, the distance between an assemblage, j, and a
cluster (m, n) is defined as

dj(m,n) =  ,djm + djn

N(m,n)
(15.22)

and between two clusters as

d(j,k)(m,n) =  ,djm + djn + dkm + dkn

Njk + Nmn
(15.23)

where Njk and Nmn are the number of assemblages in clusters (j, k) and (m, n),
respectively. Average-linkage clustering is illustrated in Box 15.8.

Dendrograms created with single-linkage clustering tend to be relatively long
and narrow, whereas complete linkage tends to produce short, relatively compact
trees with fewer clusters. Average linkage produces trees that are somewhat inter-
mediate to these two extremes, and it is the most widely used clustering method.
In a detailed analysis, Farris (1969) found that average linkage most faithfully
represented the relationships among objects (e.g., assemblages) based on a math-
ematical analysis of different clustering methods. Nonetheless, we recommend
that fisheries scientists create trees with two or more clustering methods and ex-
amine the fit of each. In the next section, we outline the method used to examine
the adequacy of clustering methods.

Cophenetic correlation. The most appropriate means to assess the fit of each clus-
tering method is by calculating a cophenetic correlation coefficient (Romesburg
1990). The cophenetic correlation coefficient is an unbiased measure of how well
the cluster diagram represents relationships in the resemblance matrix; the larg-
est correlation identifies the best clustering method. The cophenetic correlation
coefficient is simply the Pearson product-moment correlation coefficient (equa-
tion [15.10]) between the resemblance matrix and the cophenetic matrix. The
cophenetic matrix is an array of the distances among assemblages as represented
in a dendrogram. It is estimated by tracing the path connecting each pair of as-
semblages in the dendrogram. An example calculation of the cophenetic correla-
tion coefficient is presented in Box 15.9.

Classification. Classes are formed during hierarchical cluster analysis by cutting
the tree at a specified level of similarity (Figure 15.6). Determining which level of
similarity to cut the tree is highly subjective and depends upon study objectives
(Romesburg 1990). For example, cutting a tree at a high level of similarity would
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Box 15.9 Calculation of a Cophenetic Correlation Coefficient

Fish assemblages of the Kankakee River, Illinois (Box 15.1), were clustered with the single-linkage
method (Box 15.8). Below, we illustrate calculation of the matrix cophenetic correlation coefficient.
The values in the cophenetic matrix are estimated from the single-linkage dendrogram (Box 15.8)
by tracing the path connecting each pair of assemblages. For example, when tracing the linkage
from station 1 upward through the tree and downward to station 2, the greatest distance is 177.45.
The remaining values are similarly estimated and are included in the cophenetic matrix below.

Table Resemblance matrix (Euclidean distance matrix) and cophenentic matrix from single-
linkage clustering for calculation of cophenetic correlation coefficient.

Station

Station 1 2 3 4 5

Resemblance Matrix
1
2 177.45
3 175.23 218.18
4 171.69 185.41 81.18
5 275.22 380.08 435.16 435.53
6 93.22 225.10 211.53 206.80 258.57

Cophenetic Matrix
1
2 177.45
3 171.69 177.45
4 171.69 177.45 81.18
5 258.57 258.57 258.57 258.57
6 93.22 177.45 171.69 171.69 258.57

Table Side-by-side comparison of resemblance and cophenetic matrices for calculation of
cophenetic correlation coefficient.

Matrix column, row Resemblance matrix Cophenetic matrix

1, 2 177.45 177.45
1, 3 175.23 171.69
1, 4 171.69 171.69
1, 5 275.22 258.57
1, 6 93.22 93.22
2, 3 218.18 177.45
2, 4 185.41 177.45
2, 5 380.08 258.57
2, 6 225.10 177.45
3, 4 81.18 81.18
3, 5 435.16 258.57
3, 6 211.53 171.69
4, 5 435.53 258.57
4, 6 206.80 171.69
5, 6 258.57 258.57

Average 235.36 190.92

(Box continues)
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The resemblance matrix then is unraveled and its values are paired with the corresponding values
in the cophenetic matrix as shown above. The cophenetic correlation between the resemblance (r)
and cophenetic (s) matrices is calculated using equation (15.10) as

�r s =  .
� (ri – r )2 � (si – s )2

� (ri – r ) (si – s )

�r s =  
(177.45 – 235.36)(177.45 – 190.92) + . . . + (258.57 – 235.36)(258.57 – 190.92)

[(177.45 – 235.36)2 + . . . + (258.57 – 235.36)2][(177.45 – 190.92)2 + . . . + (258.57 – 190.92)2]

=
77,129.30

[162,332.91][46,673.49]

=  0.886.

Cophenetic correlation coefficients would be calculated for each clustering method. The hierarchi-
cal tree (i.e., dendrogram) with the largest cophenetic correlation would be selected to infer
relationships among fish assemblages.

Figure 15.6 Dendrogram of fish assemblages at six stations on the Kankakee River, Illinois
(Box 15.1), clustered using average linkage. Broken lines represent two cut points for classifying
the fish assemblages. Four classes (1,6), 5, (3,4), and 2 are formed at 75% similarity, whereas two
classes, (1, 6, 5, 3, 4) and 2, are formed at 50% similarity.
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likely result in an excessively large number of groups, which would diminish one
of the advantages of classification (i.e., reducing the data to a manageable size).
Conversely, cutting a tree at a low level of similarity would likely introduce too
much variation (heterogeneity) with each group, which could render the classifi-
cation useless. Good classifications should attempt to minimize the number of
groups created while simultaneously maximizing the within-group similarity.

15.4.2.2 K-Means Cluster Analysis

The most common form of nonhierarchical cluster analysis is k-means cluster-
ing. It is used to group assemblages into k clusters (i.e., k = number of clusters)
based on their Euclidean distances. The k-means clustering procedures differ
markedly from hierarchical clustering. It begins with a matrix of Euclidean dis-
tances and randomly assigns the assemblages to a prespecified number of clus-
ters, k. Using a variance-minimizing algorithm, the assemblages are reassigned
to different clusters on the basis of their similarity (distance) to other assem-
blages in a cluster. This process continues iteratively until the distance within
each cluster is minimized and no assemblages need to be reassigned. The k-
means clustering analysis is relatively robust to outlying data because, unlike
hierarchical cluster analysis, the nature of the relationships among assemblages
is unconstrained. However, the minimizing algorithm used for k-means cluster-
ing is inefficient when the number of samples is relatively low (Hartigan 1985).
Therefore, we recommend k-means clustering only when the number of assem-
blages in the data set exceeds 30.

Similar to hierarchical cluster analysis, determining the number of clusters for
a particular classification with k-means clustering is somewhat subjective. In fact,
there are no completely unbiased methods for determining the number of clus-
ters for any type of cluster analysis (Hartigan 1985). However for k-means cluster-
ing, statisticians have developed several methods that can be used to examine the
relationship between within-cluster similarity and the number of clusters. This, in
turn, can be used to select the optimal number of clusters (k) for a classification.
One such method is to fit k-means clusters for several values of k and plot the
overall R2 versus the number of clusters. The overall R 2 is a measure of predict-
ability of the fish assemblage within a cluster and is analogous to an r 2 in regres-
sion analysis. The optimal number of clusters (k) is considered the lowest value at
which the R 2 begins to level off and reach an asymptote (Figure 15.7).

Another method for ascertaining the optimal number of clusters is the cubic
clustering criterion (CCC) developed by Sarle (1983). Cubic clustering criterion
is an estimator of k-means cluster fit. Similar to the overall R 2 method, the optimal
number of clusters is determined by estimating CCC with k-means clustering for
several values of k and examining a plot of k and CCC to find the smallest value of
k with the lowest CCC (Figure 15.7). There are several other methods that have
been developed for estimating the optimal number of clusters, all of which re-
quire specialized software and a strong background in statistical theory (e.g.,
Milligan and Cooper 1985; Mueller and Sawitzki 1991). For most fisheries applica-
tions, we suggest that scientists use both the R 2 and CCC to help find the optimal
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number of clusters (k). An example SAS program for k-means clustering and the
associated output are provided in Box 15.10.

15.4.3  Ordination Techniques

Ordination is the term for a variety of statistical techniques that ecologists have
used to examine complex multivariate relationships among biotic communities
and their environment. There are two broad classes of ordination—constrained
and unconstrained. Constrained ordination is used to examine the relationship
between assemblage structure and environmental gradients (e.g., stream habi-
tat characteristics or water quality), whereas unconstrained ordination is used
to examine the relationships among assemblages or species. Because we empha-
size assemblage structure in this chapter, rather than function, we consider only
unconstrained ordination. We refer fisheries scientists interested in learning
more about constrained ordination to Ter Braak (1986) and Ter Braak and
Prentice (1988).

Unconstrained ordination is used to summarize complex, multivariate rela-
tionships among assemblages and graphically display these within a small number
of dimensions, usually two to three. Unlike cluster analysis, relationships are scored
on a continuous scale (e.g., they need not be hierarchical or placed into discrete

Figure 15.7 Hypothetical plot of the overall R2 (thick line) and cubic clustering criterion (thin
line) for various cluster sizes created using k-means clustering. Broken line represents the
optimal number of clusters in the classification based on the overall R2 and cubic clustering
criterion.
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Box 15.10 K-Means Clustering Analysis

The following SAS program performs k-means clustering with PROC FASTCLUS on the summary
fish abundance data for six stations on the Kankakee River, Illinois (Box 15.1). Three-letter codes are
used in place of species names (see Box 15.11 for key to codes). The number of clusters, k = 3, is
specified by the MAXCLUSTERS command. Note that this example is for illustration only. The k-
means clustering procedure should be used only when the number of assemblages (samples)
exceeds 30.

Program

OPTIONS PS = 60 LS=78;

DATA SPECIES;

INPUT STATION $ LOG GZS BLM BUM CAP HOC MIS RDS RYS SAS SFS STS SUM BLR GOR NHS SHR QLL RVR SVR

SAB BKS BLG GSF LMB LOS OSF ROB SMB BAD BLD JOD LOP SLD;

LINES;

STATION1 6 164 42 0 13 0 10 0 8 1 19 45 0 0 34 5 35 5 2 8 0 4 2 1 0 35 1 30 143 4 1 0 25 5

STATION2 7 90 33 0 58 0 11 22 89 22 24 32 0 0 0 2 0 2 0 1 3 10 0 42 3 94 0 3 59 0 9 6 0 0

STATION3 0 6 29 0 10 0 10 4 5 4 3 69 0 4 35 10 8 1 2 1 0 13 0 6 2 26 0 15 195 0 1 3 51 6

STATION4 4 6 3 1 14 0 0 0 15 1 2 14 0 0 36 7 2 4 0 3 0 9 2 3 0 39 8 31 151 1 0 0 42 7

STATION5 26 432 44 15 36 7 2 0 8 5 23 51 4 1 9 2 35 17 0 14 3 10 1 7 8 48 31 27 165 0 4 2 2 4 2

STATION6 5 194 35 0 13 0 0 2 35 1 8 14 1 0 55 7 22 14 5 4 0 6 0 1 0 37 3 62 204 1 0 0 7 2

;

PROC FASTCLUS DATA = SPECIES MAXCLUSTERS = 3 OUT = CLUSTER SHORT;

VAR LOG GZS BLM BUM CAP HOC MIS RDS RYS SAS SFS STS SUM BLR GOR NHS SHR QLL RVR SVR SAB BKS BLG

GSF LMB LOS OSF ROB SMB BAD BLD JOD LOP SLD;

ID STATION;

PROC SORT; BY CLUSTER;

PROC PRINT NOOBS; VAR CLUSTER STATION DISTANCE;

RUN;

Program Output

Table Output for SAS’ FASTCLUS procedure for k-means clustering of fish abundance data for six
stations on the Kankakee River, Illinois (Box 15.1). The number of clusters, k = 3, is specified by the
MAXCLUSTERS command. Settings for other commands (Replace = FULL, Radius = 0, and Maxiter =
1) are left at SAS/STAT default settings; see SAS manual for details (SAS Institute 2004).  Note that k-
means clustering procedure should be used only when the number of assemblages (samples)
exceeds 30 (illustrated here with six samples). The root mean square between members within-
group standard deviation is given by RMS SD. Maximum distance from seed to observation is the
greatest difference between a random-number seed to an observation in that cluster. Criterion
based on final seeds = 14.8912. Overall R2 is a measure of predictability of the fish assemblage
within a cluster. Further explanation of table values follows.

Cluster Summary

Maximum Distance
distance between

RMS from seed to Nearest cluster
Cluster frequency SD observation cluster centroids

1 1 0 3 319.3
2 2 22.4843 92.7052 3 129.7
3 3 20.3094 125.7 2 129.7
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Statistics for Variables

Variable Total STD Within STD R 2 R 2/(1 – R 2)

Longnose gar 9.14330 2.89636 0.939793 15.609272
(Other 32 species)
Slenderhead darter 2.60768 3.32499 0.024510 0.025126
Overall 31.24607 21.05932 0.727448 2.669025

Pseudo F-statistic  4.00a

Approximate expected overall R 2 0.7274a

Cubic clustering criterionb

Cluster Membership

Cluster Station Distance

1 5 0.000
2 2 92.705
2 4 92.705
3 1 61.506
3 3 125.706
3 6 91.995

a The two values are invalid for correlated variables.
b None calculated because of small sample size.

The output summary indicates that three clusters were specified (MAXCLUSTERS = 3). The remain-
ing variables in the summary are additional clustering options; see SAS manual for details. In the
first part of the table, distance between cluster centroids is used to examine the overall relationship
among cluster members. Clusters 2 and 3 have the smallest distances, and hence, their members
are more similar than those in cluster 1. The statistics for variables portion of the table is used to
examine the change in R 2 with the number of clusters (k). The overall R 2 (0.727) and cubic clustering
criterion (none was calculated because of small sample size) would be used to estimate the optimal
number of clusters for the classification (Figure 15.7). The final portion of the table contains cluster
membership and members’ Euclidean distances from the cluster centroid (i.e., the cluster mean),
which can be used to examine similarity among cluster members. For example, cluster 3 contains
stations 1, 3, and 6. Among these, stations 1 and 6 are the most similar because they have the
smallest distances (61 and 92).
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clusters), and hence, ordination is a better technique for examining relationships
among assemblages. Unconstrained ordination is generally not used for classifica-
tion but can be useful for verifying those relationships indicated by cluster analy-
sis and for suggesting alternative classifications.

There are several unconstrained ordination methods, and each has its advan-
tages and limitations. The most commonly used techniques are principal compo-
nent analysis (PCA) and nonmetric multidimensional scaling (NMDS). Of the
two, PCA produces the most detailed and quantifiable measures of the relation-
ships among assemblages (Cliff 1987). However, in an extensive evaluation of
ecological ordination methods, Minchin (1987) found that PCA performed very
poorly when relationships were nonlinear, whereas NMDS was the most robust
technique. Further, he suggested that NMDS was the most appropriate ordina-
tion method for ecological applications. Relationships among fish assemblages
are likely to be nonlinear to varying degrees. Hence, the relationships indicated
by PCA could be biased. To maximize ecological insight and minimize the poten-
tial for bias, we recommend that fisheries scientists use both techniques and com-
pare their results.

15.4.3.1 Principal Component Analysis

Principal component analysis reduces species (relative) abundances into linear
combinations (i.e., principal components) that are uncorrelated with each other
(Stevens 1992). It emphasizes the variation among assemblages, rather than simi-
larities, and assumes that approximately linear relationships exist among fish as-
semblages. Prior to PCA, species abundances are standardized by estimating the
correlation or covariance between species. Fisheries scientists should always stan-
dardize using correlation, which is the default for most statistical software. Based
on the correlation matrix, PCA begins by finding the linear combination of spe-
cies-specific abundances that accounts for the greatest amount of variation among
samples. This linear combination is called the first principal component, which is
simply a linear regression using (standardized) species abundances as predictors
of a principal component score. The collection of the corresponding linear re-
gression coefficients (one coefficient per species) is called the eigenvector of the
first principal component, and the amount of variance explained is estimated as
the eigenvalue.

Following the estimation of the first principal component, PCA finds a second
linear combination (regression) of species abundances that accounts for the larg-
est amount of the remaining variance (i.e., after the variance attributable to the
first component is removed) and is pairwise uncorrelated with the first compo-
nent. This is the second principal component, which also has an eigenvector and
eigenvalue. The third principal component then is derived to be uncorrelated to
the first two components and accounts for the third largest amount of variance.
The process of creating uncorrelated linear combinations (principal components)
is continued with each component accounting for the remaining variation until
none remains. Thus, PCA attempts to summarize the pattern of variation among
assemblages with a smaller number of components (compared to the number of



Community Indices, Parameters, and Comparisons 737

species) that accounts for most of the variance in the original data set. For most
applications, this can be accomplished with fewer than five principal components.

The relationships among assemblages are determined by examining plots of
principal component scores, with similar assemblages being located close together
and dissimilar ones farther apart. For example, fish assemblages in stations 1 and
6 on the Kankakee River are similar to one another but are very different from
those at stations 2 and 5 (Figure 15.8). Principal component scores are computed

Figure 15.8 Plots of the first two principal components (PCs) of fish assemblages at six stations
on Kankakee River, Illinois. The upper plot (a) was created using the PC scores from an analysis
with summary data in Box 15.1. The bottom figure (b) was created using the PC scores from an
analysis using eight sequential fish samples collected at each station (see Box 15.1 for summed
data). The crossbars in panel (b) represent the mean and standard errors of sample scores for
each station and can be used to examine the degree of overlap in assemblage structure.
Principal component axes were interpreted using component loadings (Box 15.11).
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for each assemblage (or sample) using the principal component eigenvectors (i.e.,
linear regression coefficients), and hence, each assemblage has a score for each
principal component.

Each principal component is interpreted for ecological meaning by examining
the principal component loadings, which are the Pearson’s correlation coefficients
between the component scores and species-specific abundances. These are also
referred to as factor loadings or simply factors. Large loadings (in absolute value)
are interpreted as having the greatest influence on that component. For example,
if three species loaded high on a particular component, the component would be
interpreted in terms of some characteristic these species have in common, such as
taxonomy, habitat use, or environmental tolerances. Identifying the loadings of
components to use for interpretation, however, is somewhat subjective. Because
loadings are Pearson correlations, many fisheries scientists interpret only load-
ings that are statistically significant. These statistical tests are significantly influ-
enced by sample sizes (Cliff 1987). For example, a species with a 0.20 loading
would share only 4% of the variance with the principal component but could be
statistically significant when sample sizes are large. Rather, a good general rule-of-
thumb is to use species with loadings greater than |0.4| for interpretation when
there are small numbers of species in the analysis (<20) and |0.6| for more spe-
cies-rich assemblages (Stevens 1992). An example SAS program and output for
PCA are provided in Box 15.11.

Theoretically, the maximum number of principal components in an analysis of
fish assemblages is equal to the number of variables (species) analyzed. Thus,
researchers must choose how many components to include in their analysis. There
is no perfect criterion for selecting the number of components to retain. How-
ever, several techniques have been developed to assist the analyst. The most widely
used of these is called the scree test (Cattell 1966). With this method, eigenvalues
are plotted against their corresponding principal component number (i.e., first
component = 1, second = 2, etc.). Eigenvalues generally decrease rapidly (steep
slope) with increasing component number and then level off (shallow slope).
The transition between these two slopes is known as the break point (Figure 15.9),
and the components with eigenvalues above the breakpoint are retained for sub-
sequent analysis. Another widely used approach is to retain all of the components
with eigenvalues greater than 1 (Kaiser 1960). This method virtually ensures that
important components will be retained but also tends to include additional com-
ponents that have little explanatory value (Hakstian et al. 1982). A third criterion
is based on practical considerations. There are two difficulties associated with
using large numbers of principal components for examining the relationships
among assemblages. First, three dimensions are difficult to display in a single
figure and are substantially more difficult to comprehend than two. Second, four
or more dimensions render ordination practically useless as a method of under-
standing complex relationships. Thus, we recommend that only two components
be retained in fish assemblage analyses if these account for at least 70% of the
variance; otherwise three components should be retained. However, if three com-
ponents account for less than one half the variation, we suggest refraining from
using PCA and consider NMDS as a more parsimonious alternative.
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Box 15.11 Principal Component Analysis

The following SAS program performs principal component analysis (PCA) on the summary fish
abundance data from six stations of the Kankakee River, Illinois (Box 15.1). Component loadings are
estimated for the first three principal components, and scores are plotted for the first two components.

Program

OPTIONS PS = 60 LS=78;

DATA SPECIES;

INPUT STATION $ LOG GZS BLM BUM CAP HOC MIS RDS RYS SAS SFS STS SUM BLR GOR NHS SHR QLL RVR SVR

SAB BKS BLG GSF LMB LOS OSF ROB SMB BAD BLD JOD LOP SLD;

LINES;

STATION1 6 164 42 0 13 0 10 0 8 1 19 45 0 0 34 5 35 5 2 8 0 4 2 1 0 35 1 30 143 4 1 0 25 5

STATION2 7 90 33 0 58 0 11 22 89 22 24 32 0 0 0 2 0 2 0 1 3 10 0 42 3 94 0 3 59 0 9 6 0 0

STATION3 0 6 29 0 10 0 10 4 5 4 3 69 0 4 35 10 8 1 2 1 0 13 0 6 2 26 0 15 195 0 1 3 51 6

STATION4 4 6 3 1 14 0 0 0 15 1 2 14 0 0 36 7 2 4 0 3 0 9 2 3 0 39 8 31 151 1 0 0 42 7

STATION5 26 432 44 15 36 7 2 0 8 5 23 51 4 1 9 2 35 17 0 14 3 10 1 7 8 48 31 27 165 0 4 2 2 4 2

STATION6 5 194 35 0 13 0 0 2 35 1 8 14 1 0 55 7 22 14 5 4 0 6 0 1 0 37 3 62 204 1 0 0 7 2

;

PROC PRINCOMP DATA=SPECIES OUT = PRIN;

VAR LOG GZS BLM BUM CAP HOC MIS RDS RYS SAS SFS STS SUM BLR GOR NHS SHR QLL RVR SVR SAB BKS BLG

GSF LMB LOS OSF ROB SMB BAD BLD JOD LOP SLD;

PROC CORR NOPRINT OUTP = LOADING NOSIMPLE NOPROB;

VAR PRIN1 PRIN2 PRIN3;

WITH LOG GZS BLM BUM CAP HOC MIS RDS RYS SAS SFS STS SUM BLR GOR NHS SHR QLL RVR SVR SAB BKS

BLG GSF LMB LOS OSF ROB SMB BAD BLD JOD LOP SLD;

TITLE ‘*** COMPONENT LOADINGS ***’;

PROC PRINT DATA = LOADING NOOBS; WHERE _NAME_ NE ‘’;

PROC PLOT DATA=PRIN; PLOT PRIN2 * PRIN1 = ‘*’ $ STATION /;

TITLE ‘*** PRINCIPAL COMPONENT SCORES ***’;

RUN; TITLE; QUIT;

Program Output

Table Partial output of SAS program for principal component (PC) analysis. See “Component
Loadings” at end of table for species abbreviations. Component loadings are Pearson correlation
coefficients.

Simple Statistics (Partial)

LOG GZS BLM BUM CAP

Mean 8.000000000 148.6666667 31.00000000 2.666666667 24.00000000
SD 9.143303561 159.1963149 14.81890684 6.055300708 19.17289754

Correlation Matrix (Partial)

LOG GZS BLM BUM CAP HOC MIS RDS RYS

LOG 1.0000 0.9211 0.4812 0.9609 0.4438 0.9644 –0.3062 –0.1519 –0.1120
GZS 0.9211 1.0000 0.6948 0.8522 0.2727 0.8719 –0.3171 –0.2574 –0.1588
BLM 0.4812 0.6948 1.0000 0.3722 0.2583 0.4298 0.3477 0.0687 0.0333

(Box continues)
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15.4.3.2 Multidimensional Scaling

Nonmetric multidimensional scaling models the relationships among two or more
assemblages in a specified number of dimensions based on their similarity or dis-
similarity (Kruskal and Wish 1984). It is a robust ordination technique that does
not require an assumption of normality or linearity of relationships among assem-
blages and can usually fit a model in fewer dimensions than can PCA. Nonmetric

Box 15.11 (continued)

Eigenvalues of the Correlation Matrix

PC Eigenvalue Difference Proportion Cumulative

1 13.4751939 3.2555850 0.3963 0.3963
2 10.2196089 5.5254938 0.3006 0.6969
3 4.6941151 1.7841269 0.1381 0.8350
4 2.9099883 0.2088945 0.0856 0.9206
5 2.7010937 2.7010937 0.0794 1.0000
6 0.0000000 0.0000000 0.0000 1.0000
7 0.0000000 0.0000000 0.0000 1.0000
(Remaining 27 PCs)

Eigenvectors

PC1 PC2 PC3 PC4 PC5 PC6 PC7

LOG 0.148222 0.259093 0.030061 –0.029427 –0.064273 –0.019554 –0.064777
GZS 0.104941 0.279880 –0.065667 0.058686 0.087773 –0.009625 –0.043083
BLM 0.104793 0.139913 –0.073891 0.061684 0.477267 –0.031307 –0.012889
(Remaining species and 27 PCs)

Component Loadings

SpeciesSpecies Abbreviation PC1 PC2 PC3

Longnose gar LOG 0.54410 0.82827 0.06513
Gizzard shad GZS 0.38522 0.89472 –0.14227
Bluntnose minnow BLM 0.38468 0.44727 –0.16009
Bullhead minnow BUM 0.40982 0.84812 0.30129
Common carp CAP 0.98347 –0.11637 –0.08999
Hornyhead chub HOC 0.42955 0.84878 0.29467
Mimic shiner MIS 0.32226 –0.53181 0.20040
Redfin shiner RDS 0.74136 –0.64720 –0.10607
Rosyface shiner RYS 0.68056 –0.54750 –0.41512
Sand shiner SAS 0.87490 –0.48009 –0.02615
Spotfin shiner SFS 0.81830 0.28838 –0.28268
Striped shiner STS 0.12277 0.11097 0.73543
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Suckermouth minnow SUM 0.35570 0.89406 0.15593
Black redhorse BLR –0.18744 –0.11634 0.87537
Golden redhorse GOR –0.92506 0.00075 –0.23981
Northern hog sucker NHS –0.84410 –0.32879 0.33545
Shorthead redhorse SHR –0.09627 0.83134 –0.22237
Quillback QLL 0.08542 0.87966 –0.25527
River redhorse RVR –0.55565 0.01944 –0.41357
Silver redhorse SVR 0.17510 0.94825 –0.02850
Smallmouth buffalo SAB 0.96851 0.21751 0.08016
Brook silverside BKS 0.28808 –0.23178 0.86445
Bluegill BLG –0.32942 0.30074 –0.14319
Green sunfish GSF 0.84888 –0.52367 –0.05485
Largemouth bass LMB 0.68457 0.57695 0.43733
Longear sunfish LOS 0.89030 –0.34000 –0.26148
Orangespotted sunfish OSF 0.31102 0.86433 0.25246
Rock bass ROB –0.59897 0.43907 –0.52590
Smallmouth bass SMB –0.74860 0.43763 0.23112
Banded darter BAD –0.44120 0.08443 –0.52494
Blackside darter BLD 0.97080 –0.23332 –0.01678
Johnny darter JOD 0.80895 –0.46298 0.30348
Logperch LOP –0.70992 –0.34408 0.55491
Slenderhead darter SLD –0.69835 0.16420 0.50953

The first two principal components accounted for 69.7% of the variation among fish assemblages
and were retained for analysis. The first component accounted for 39.6% of the variation and
loaded heavily and positively on minnows (RDS, RYS, SAS, SFS) and backwater species (CAP, SAB,
GSF, LMB, LOS) and negatively on rheophilic species (GOR, NHS, SMB, LOP, SLD). The second compo-
nent accounted for 30.1% of the variation and loaded heavily and positively on large-river species
(LOG, GZS, BUM, HOC, SUM, SHR, QLL, SVR, OSF) and negatively on small stream-dwelling species
(RDS). The plot of the first two principal components (Figure 15.8a) indicates that assemblages at
stations 2 and 5 had larger numbers of minnow and backwater species, whereas stations 1, 3, 4 and
6 contained greater numbers of rheophilic species. Station 5 also included greater numbers of
large-river species, and station 2 had greater numbers of small stream-dwelling species.

multidimensional scaling begins with a matrix of resemblance coefficients (sec-
tion 15.4.1) and uses an iterative procedure and algorithm to find the set of coor-
dinates for each assemblage that, when plotted, most closely approximates the
relationships indicated by the resemblance matrix. For example, similar assem-
blages should be located closer together in an NMDS plot and dissimilar assem-
blages farther apart. The number of coordinates depends upon the specified num-
ber of dimensions (e.g., two dimensions = two coordinates). The degree of

Component Loadings (continued)

SpeciesSpecies Abbreviation PC1 PC2 PC3
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correspondence between the resemblance coefficients and an NMDS plot is mea-
sured as stress, with lower stress values indicating better fit. Thus, NMDS itera-
tively finds the best-fitting coordinates by minimizing stress.

There are several algorithms that can be used to fit NMDS coordinates (Green
and Rao 1972). The calculation and theory behind each are technical and be-
yond the scope of this chapter. However, there are two practical methods fisheries
scientists can use to examine the fit of an NMDS model and determine the opti-
mal number of dimensions. The first is the final estimate of stress or other related
measure (e.g., badness-of-fit in SAS Institute 2004) that is estimated during the
final iteration. Low values indicate better fit, and NMDS models with stress greater
than 0.15 should be considered suspect (Kruskal and Wish 1984). The second
method is inspection of a Shepard diagram, which is a scatterplot of the estimated
similarity (or dissimilarity) among assemblages as shown in the NMDS plot versus
the observed (actual) similarities (Shepard 1963). A Shepard diagram for a good-
fitting model should resemble a smooth curve or a straight line (Box 15.12). Dia-
grams that resemble a stair-step or L-shaped function indicate a poor-fitting model,
due to an incorrect specification of number of dimensions or the use of an incor-
rect algorithm. An example SAS program and output for NMDS are provided in
Box 15.12.

Figure 15.9 Scree plot of principal component eigenvalues from the analysis of Kankakee River
fish assemblages (Boxes 15.1 and 15.11). Broken line is shown for illustration, and arrow indicates
break point. Based on the scree test, principal components 1–3 would be retained for analysis.

0

2

4

6

8

10

12

14

1 2 4 5 6

Ei
g

en
va

lu
e

Principal component

Break point

3



Community Indices, Parameters, and Comparisons 743

(Box continues)

Box 15.12 Nonmetric Multidimensional Scaling

The following SAS program performs nonmetric multidimensional scaling (NMDS) analysis on the
summary fish abundance data from six stations of the Kankakee River, Illinois (Box 15.1). The
resemblance measure is percent similarity, the scaling algorithm is monotonic (LEVEL = ORDINAL),
and two dimensions are specified (DIM = 2).  For more options, consult the SAS manual (SAS
Institute 2004).

Program
OPTIONS PS = 60 LS=78;

DATA PSI;

INPUT STATION $ STATION1 STATION2 STATION3 STATION4 STATION5 STATION6;

LINES;

STATION1 100.0 50.8 62.6 56.7 73.0 81.4

STATION2 50.8 100.0 38.0 37.3 49.6 46.5

STATION3 62.6 38.0 100.0 77.5 44.5 59.2

STATION4 56.7 37.3 77.5 100.0 43.7 64.3

STATION5 73.0 49.6 44.5 43.7 100.0 68.1

STATION6 81.4 46.5 59.2 64.3 68.1 100.0

;

PROC MDS DATA = PSI DIM=2 SHAPE=SQUARE LEVEL=ORDINAL OUT=MDSOUT OUTRES=RESID NONORM;

ID STATION;

DATA MDSOUT; SET MDSOUT; WHERE _TYPE_ = ‘CONFIG’;

PROC PLOT DATA=MDSOUT; PLOT DIM2 * DIM1 = ‘*’ $ STATION /;

PROC PLOT DATA=RESID; PLOT FITDATA * FITDIST = ‘*’ /;

TITLE “SHEPARD DIAGRAM”;

RUN;

TITLE;

QUIT;

Program Output

Table Nonmetric multidimensional scaling analysis on the summary fish abundance data from six
stations of the Kankakee River, Illinois (Box 15.1). The resemblance measure is percent similarity, the
scaling algorithm is monotonic (LEVEL = ORDINAL), and two dimensions are specified (DIM = 2).
Other command settings are SAS defaults (Shape = SQUARE, Condition = MATRIX, Coef = IDENTITY,
Formula = 1, Fit = 1, Mconverge = 0.01, Gconverge = 0.01,  Maxiter = 100, Over = 2, and Ridge =
0.00010). The convergence criteria were satisfied.

Badness Change in
Iteration of-fit type Criterion criterion Monotone Gradient

0 Initial 0.1655
1 Monotone 0.0237 0.1418 0.1608 0.7467
2 Gau-New 0.0153 0.008313
3 Monotone 0.0101 0.005246 0.0115 0.7041
4 Gau-New 0.0101 0.0000406
5 Monotone 0.003382 0.006670 0.009464 0.5672
6 Gau-New 0.002792 0.000590 0.0221
7 Gau-New 0.002792 6.8241 x 10-7 0.000167

Convergence measures
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Similar to PCA, relationships among assemblages are determined by examin-
ing NMDS plots, and similar assemblages are located proximally and dissimilar
assemblages distally. These relationships, however, are influenced by the char-
acteristics of the resemblance measure, which is similar to hierarchical cluster
analysis. For example, NMDS with Jaccard’s similarity index suggests that fish
assemblages at all stations on the Kankakee River are very different from one
another, whereas NMDS with Kendall’s tau suggests that assemblages at stations
1, 4, and 6 are most similar, and the percent similarity index suggests that the
assemblage at station 4 is most similar to station 3 (Figure 15.10). Unlike PCA,
NMDS has no formal or quantifiable means to interpret the various dimensions
(i.e., no loadings). Thus, it requires insight and further examination of assem-
blage characteristics to determine the underlying pattern (gradient) associated
with each dimension.

Nonmetric multidimensional scaling models can be fit with one to n dimen-
sions, where n is the number of assemblages (samples). The optimal number of
dimensions can be determined, similar to PCA, by examining a scree plot of stress

Box 15.12 (continued)

Figure Shepard diagram, which is a scatterplot of the estimated similarity (or dissimilarity) among
assemblages as shown in the NMDS plot versus the observed (actual) similarities (Shepard 1963).

The badness-of-fit criteria (stress) declined smoothly among iterations and converged after seven
iterations at 0.002792. The Shepard diagram displayed a smooth, linear relationship, which indicated a
good fit for the two-dimensional NMDS model. The two-dimensional NMDS plot indicated that
assemblages at stations 1 and 6 were most similar, as were those at stations 3 and 4 (Figure 15.10c).
Fish assemblages at stations 2 and 5, however, differed from one another and from those at the other
four stations. These relationships are also consistent with those indicated by PCA (Figure 15.8).
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Figure 15.10 First two dimensions for nonmetric multidimensional scaling analysis of fish
assemblages at six stations on the Kankakee River, Illinois (Box 15.1), with (a) Jaccard’s similarity,
(b) Kendall’s tau, and (c) percent similarity resemblance matrices. Similar assemblages are
located proximally and dissimilar assemblages are more distant.
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against the corresponding number of dimensions or by examining a Shepard dia-
gram (Green and Rao 1972). However, as with PCA, we suggest that fisheries
scientists limit the maximum number of dimensions to three due to practical
considerations, such as interpretability.

15.4.4 Other Multivariate Techniques—Discriminant Analysis

Fisheries scientists often need to determine how two or more fish assemblages
differ and if assemblage composition is predictable. In these instances, assem-
blages are treated as discrete response categories (e.g., assemblages A, B, and C)
with species (relative) abundances as their characteristics (i.e., predictors). Cat-
egorical data analysis is the generic term for a variety of statistical techniques for
analyzing data with categorical responses (Agresti 1990). It can be used to find
the species (or combination thereof) that best characterize an assemblage and
can also be used to examine predictability of assemblage structure (Peterson and
Rabeni 2001). In contrast to the other techniques in this chapter, categorical data
analysis can be employed only when multiple samples (replicates) are collected
from each assemblage. Hence, the quality of categorical data analysis is signifi-
cantly influenced by sample size. To ensure reliable results, fisheries scientists
should use categorical data analysis only when each assemblage has at least 20
samples (Cliff 1987).

There are several categorical data analysis techniques, the most widely used
of which is discriminant analysis. Discriminant analysis is a linear statistical tech-
nique, requiring assumptions of normality and constant variance. It is relatively
robust to minor violations of these assumptions (Stevens 1992) and should be
appropriate for most practical applications in fisheries. However, biologists should
consider alternative techniques when data are severely nonnormal and variances
are heterogeneous. Fisheries scientists interested in alternative techniques may
consult Agresti (1990) for logistic methods, Hand (1982) for nonparametric meth-
ods, and Breiman et al. (1984) for tree-based methods.

Discriminant analysis is a multivariate statistical technique, related to PCA, that
reduces species (relative) abundances into linear combinations (i.e., discriminant
functions) that are pairwise uncorrelated (Lachenbruch 1975; Klecka 1980). Dis-
criminant analysis begins by finding the linear combination of species-specific
abundances that accounts for the greatest differences among assemblages; hence,
it is the best discriminator for separating (characterizing) the assemblages. This is
in contrast to PCA, which simply accounts for the greatest amount of variation in
the data. The linear combination is called the first discriminant function, which is
a linear regression with species abundances as predictors. The amount of vari-
ance among assemblages that is explained by the discriminant function is esti-
mated as the eigenvalue.

Similar to PCA, discriminant analysis then finds a second discriminant func-
tion that accounts for the largest amount of the remaining differences among
assemblages and is pairwise uncorrelated with the first function. This is the sec-
ond discriminant function, which is the second best discriminator for separating
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the assemblages. The process of fitting discriminant functions then continues
with consecutive discriminant functions representing smaller and smaller differ-
ences among assemblages. The maximum number of discriminant functions is
determined by number of assemblages and the number of species analyzed. If the
number of assemblages (k) is fewer than the number of species, the maximum
number of discriminant functions is k – 1; otherwise, it is equal to the number of
species. The statistical significance of each discriminant function can be deter-
mined with a residual testing procedure (Stevens 1992). Statistically significant
functions are generally retained for interpretation.

Discriminant functions can be interpreted by two methods. The first is to ex-
amine the standardized discriminant function coefficients, which are estimated
by multiplying each raw coefficient by the standard deviation of the correspond-
ing species abundance. The second is to examine the discriminant function–vari-
able correlations, which are analogous to PCA loadings. For both methods, the
species with the larger coefficients and correlations (absolute value) are consid-
ered to have the greatest influence on the function, but they occasionally provide
conflicting results. For example, a species can have a high standardized coeffi-
cient and a low correlation (and vice versa) for the same function. This generally
occurs when some species abundances are strongly correlated. Discriminant func-
tion coefficients are partial regression coefficients. That is, they are estimated
after the effects of the other species have been removed. Hence, they tend to be
influenced by intercorrelations among species. The discriminant function–variable
correlation, however, is a more direct estimate of the relationship between a spe-
cies and the function and is generally more stable when sample sizes are smaller
(Stevens 1992). Therefore, we recommend use of discriminant function–variable
correlations to interpret discriminant functions and use of the standardized coef-
ficients to determine which variables are redundant (i.e., correlated).

Fish assemblage characteristics are interpreted by examining plots of discrimi-
nant scores. These scores are computed for each replicate sample by means of the
discriminant function coefficients and are usually averaged for each assemblage.
Discriminant function scores are generally plotted in two dimensions. The sepa-
ration among assemblages along a discriminant function axis corresponds to the
degree to which they differ on a particular function.

Assemblage predictability. Discriminant analysis can also be used to classify samples
into one or more groups (e.g., assemblages) based upon species composition and
abundances, and it can be used, via a V-fold cross-validation procedure, to assess
the accuracy of assemblage structure classifications (Peterson and Rabeni 2001).
In this procedure, samples are randomly placed into V groups, the samples from
one group are excluded, and a model is fit with the data in the remaining V – 1
groups. The excluded group’s samples are then classified using the discriminant
model. This procedure is repeated for each group, and the proportion of
misclassifications, among groups, is used to assess the predictability of the assem-
blage structure. A special case of cross-validation occurs when V equals the total
sample size, which is called “leave-one-out” cross-validation (Lachenbruch 1975).
Although cross-validation is a useful technique for examining the accuracy of as-
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semblage structure classifications, it is noteworthy that high classification errors
can also result from poorly fitting models due to factors such as nonnormal data.
Hence, fisheries scientists should consider examining the error rate for various
models to ensure that misclassification errors are the result of unpredictable fish
assemblage structure rather than a poor-fitting model.

Discriminant analysis example. We demonstrate discriminant analysis by use of
our example data set from the Kankakee River, Illinois, where six sites were each
sampled eight times (see Box 15.1 for summed data). In total, 3,995 individuals
and 34 species were collected during the survey. The 48 samples (6 sites × 8 samples)
were used to assess differences among the assemblages at each station and to
determine if assemblage structure was predictable. In Box 15.13, we present the
SAS program used to perform the discriminant analysis of the fish assemblages
and the associated output.

Discriminant analysis of those fish assemblages indicated that the first three of
five functions were statistically significant and accounted for 93.3% of variance
among assemblages. The minimal amount of variance explained by the remain-
ing two functions suggested that they were redundant; consequently, they were
dropped from the analysis. The first function discriminated among assemblages
based on the abundance of longnose gar, bullhead minnow, largemouth bass,
blackside darter, and golden redhorse and accounted for 53.2% of the variance.
The second function accounted for 32.3% of the variation and discriminated
among assemblages based on the abundance of logperch. The third function dis-
criminated among assemblages based on the abundance of redfin shiner, gizzard
shad, shorthead redhorse, silver redhorse, and smallmouth bass and accounted
for 7.9% of the variation among assemblages.

Biplots indicated that assemblages at stations 2 and 5 differed from the oth-
ers with higher densities of longnose gar, bullhead minnow, largemouth bass,
and blackside darter and lower densities of golden redhorse (Figure 15.11).
Assemblages at stations 3 and 4 also tended to have higher densities of logperch
than did those at stations 1 and 6, whereas the assemblage at station 2 could be
differentiated from that of station 5 by having higher densities of redfin shiner
and lower densities of gizzard shad, shorthead redhorse, silver redhorse, and
smallmouth bass. As expected, the relationships among assemblages indicated
by the discriminant function biplots were virtually identical to those suggested
by the principal component plots (Figure 15.8). This finding reflects the simi-
larity in procedures used to calculate discriminant functions and principal
components.

The leave-one-out cross-validation procedure indicated a poor overall classifi-
cation error rate of 50%, which was lower than would be expected by random
(83.3%). The greatest assemblage predictability was for stations 2 and 5, with
classification error rates of 25%. The high classification error rates for assem-
blages at stations 1 and 4 (75%) suggested that their assemblages were relatively
unpredictable. The fish assemblage samples from stations 3 and 4 were most of-
ten misclassified as one another, which suggested that they were the most similar
assemblages.
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(Box continues)

Box 15.13 Discriminant Analysis

Program

OPTIONS PS = 60 LS=78;

DATA SPECIES;

INPUT STATION $ LOG GZS BLM BUM CAP HOC MIS RDS RYS SAS SFS STS SUM BLR GOR NHS SHR QLL RVR

SVR SAB BKS BLG GSF LMB LOS OSF ROB SMB BAD BLD JOD LOP SLD;

LINES;

(input data lines)

;

PROC DISCRIM DATA= SAMPLES NOCLASSIFY SHORT CANONICAL OUT = SCORE OUTSTAT= STATS;

CLASS STATION;

DATA STDCOEF; SET STATS; WHERE _TYPE_ = ‘SCORE’;

PROC TRANSPOSE DATA = STDCOEF OUT = STDCOEF; ID _NAME_;

PROC PRINT NOOBS;

TITLE ‘** STANDARDIZED CANONICAL DISCRIM FUNCTION COEFFICIENTS **’;

DATA CORR; SET STATS; WHERE _TYPE_ = ‘STRUCTUR’;

PROC TRANSPOSE DATA = CORR OUT = CORR; ID _NAME_;

PROC PRINT NOOBS;

TITLE ‘** VARIABLE CANONICAL DISCRIM FUNCTION CORRELATIONS **’;

PROC MEANS DATA = SCORE NOPRINT; BY STATION; VAR CAN1 CAN2 CAN3 CAN4 CAN5;

OUTPUT OUT = CANMEANS MEAN = CAN1 CAN2 CAN3 CAN4 CAN5;

PROC PRINT NOOBS;

TITLE ‘** MEAN CANONICAL SCORES **’;

RUN;

TITLE;

QUIT;

Program Output

Table Eigenvalues for canonical discriminant functions based on fish abundance data from six
stations of the Kankakee River, Illinois (Box 15.1). Eigenvalues estimate the amount of variance
among assemblages that is explained by the discriminant function.

Function Eigenvalue Difference Proportion Cumulative

1 71.9663 28.2795 0.5315 0.5315
2 43.6868 33.0355 0.3227 0.8542
3 10.6513 5.3225 0.0787 0.9328
4 5.3288 1.5621 0.0394 0.9722
5 3.7667 0.0278 1.0000

Table Residual test of discriminant functions testing the null hypothesis that the canonical
discriminant functions in the current row and all that follow are 0.

Likelihood Approximate Numerator Denominator
Function ratio F-value df df P > F

1 0.00000087 4.60 170 49.838 <0.0001
2 0.00006367 3.32 132 42.446 <0.0001
3 0.00284502 2.14 96 33.825 0.0068
4 0.03314817 1.74 62 24 0.0672
5 0.20978877 1.63 30 13 0.1756
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Table Standardized canonical discriminant function coefficients (Can1–5), which are estimated by
multiplying each raw coefficient by the standard deviation of the corresponding species abun-
dance. Fish species abbreviations are given in Box 15.11.

Species Can1 Can2 Can3 Can4 Can5

BAD 2.22457 –0.48972 0.64003 –0.79062 0.08280
BLG –1.68944 –0.30942 –1.21861 1.09008 –0.81268
BLD –0.98030 –0.68695 0.07823 0.57650 –0.92412
BLR –1.17705 –0.17038 –0.79393 –0.72426 0.29653
BLM –3.33386 –2.79803 –0.39095 –1.58555 0.49815
BKS –1.49200 –1.21403 –0.76243 –0.05284 0.78281
BUM –5.06659 2.34851 0.23292 1.26939 0.22113
CAP –0.19464 –0.26258 0.75233 –0.29933 0.40622
GOR 2.07015 –1.73841 –0.17166 1.57722 –0.99228
GSF –0.03456 –1.95688 –1.17854 –0.52994 –1.59839
GZS 3.41728 –2.95221 1.35361 –1.60174 –1.54082
HOC 1.53056 –1.61176 2.94328 –0.66275 0.21363
NHS –4.99973 2.02565 –0.84181 –0.05209 1.14016
JOD 3.16295 –0.00467 0.71130 –0.66375 –0.43669
LOG –0.85862 –1.16071 0.60182 –0.65685 0.30545
LMB –4.06244 4.20083 –2.07917 0.50675 1.50131
LOP 1.89960 5.17398 0.23476 –0.36722 –1.63614
LOS 2.59106 –0.68042 –1.03481 1.71630 –0.57696
MIS 1.08908 1.69851 0.55843 1.01839 –2.34229
SHR 2.20270 –0.64959 0.60190 –0.76786 0.69662
OSF –1.05600 0.03937 –0.54739 2.12078 –1.37153
QLL –2.04450 0.26525 0.15850 1.02008 0.58319
RDS 1.05416 2.87170 –0.73884 –0.99056 1.55117
RVR –2.45861 1.14824 –0.26552 0.00837 0.90398
ROB –0.46791 –1.95681 –0.83695 –0.67286 0.56299
RYS 1.55350 –3.03223 –0.76696 2.59213 –1.64421
SAS –4.88904 1.58556 0.67048 –1.08944 2.55940
SVR –1.30226 0.15896 0.09574 –0.37498 –0.22452
SLD 0.45848 –2.07767 0.53864 –0.47588 –0.45735
SMB 4.38130 2.71061 2.16573 –0.02066 1.69134
SAB –1.18708 –1.36536 –1.25310 0.41939 –0.07079
SFS –2.65351 2.37492 0.55013 –0.41617 –0.50139
STS 1.88926 1.12735 0.66837 0.01674 0.07120
SUM 2.62921 0.93052 0.48263 0.23275 0.03670

Box 15.13 (continued)
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Table Variable–canonical discriminant function correlations (Can1–5), or the discriminant
function–variable correlations, which are analogous to PCA loadings. Fish species abbreviations
are given in Box 15.11.

Species Can1 Can2 Can3 Can4 Can5

BAD 0.23811 –0.14468 0.13118 –0.05207 –0.21766
BLG 0.11125 0.01246 0.14516 0.16810 –0.31712
BLD –0.44303 –0.04790 –0.20957 –0.18865 –0.13599
BLR 0.00311 0.34322 0.03631 –0.14784 0.18479
BLM –0.12122 –0.21289 0.30191 –0.33172 –0.02541
BKS –0.13964 0.05261 –0.08348 0.04821 0.07028
BUM –0.55716 0.14021 0.50691 0.21321 –0.00930
CAP –0.32469 –0.00431 0.11495 –0.00423 –0.03166
GOR 0.61771 0.00697 0.26700 0.15737 0.17672
GSF –0.39040 0.03887 –0.31092 –0.12480 –0.06229
GZS –0.31260 –0.33744 0.45179 –0.11546 0.02747
HOC –0.40317 0.08760 0.36608 0.09808 0.01048
NHS 0.28916 0.18871 –0.04219 0.04614 0.13469
JOD –0.30252 0.14858 –0.26393 –0.22838 0.03947
LOG –0.46128 –0.10398 0.40494 0.13456 –0.11298
LMB –0.46566 0.16627 0.15313 –0.04932 0.04056
LOP 0.34406 0.54093 0.27623 0.12823 –0.09737
LOS –0.10547 –0.04831 0.03102 0.09769 –0.13537
MIS –0.06203 0.06283 –0.14418 –0.38620 –0.20545
SHR 0.14154 –0.16356 0.54160 –0.20291 0.00342
OSF –0.42115 0.07686 0.46911 0.37731 –0.00603
QLL –0.10668 –0.30767 0.40928 0.16711 0.24778
RDS –0.22552 –0.07220 –0.46580 –0.24083 0.02768
RVR 0.24577 –0.12735 0.09575 –0.15821 0.24201
ROB 0.17531 –0.16398 0.45425 0.20168 0.20621
RYS –0.11243 –0.30703 –0.25619 –0.09533 0.05399
SAS –0.38583 –0.01101 –0.28355 –0.16861 –0.05566
SVR –0.18831 –0.07547 0.52481 0.06790 –0.16480
SLD 0.36209 0.27481 0.06532 0.12263 –0.09039
SMB 0.34025 0.18790 0.41150 0.18409 0.23553
SAB –0.40926 –0.03277 –0.03778 –0.04076 –0.06411
SFS –0.33468 –0.20200 0.20987 –0.19623 –0.14918
STS –0.07438 0.10649 0.13131 –0.18815 –0.16235
SUM –0.34175 –0.01094 0.35967 0.10455 0.12402

(Box continues)
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Table Mean canonical scores (Can1–5). Canonical scores are computed for each replicate sample
by means of the discriminant function coefficients and are averaged for each station assemblage.

Station Can1 Can2 Can3 Can4 Can5

1 7.78886 –3.07963 2.56286 –2.12270 –2.64169
2 –8.98018 –3.55705 –5.12470 –1.34585 –0.77444
3 4.46916 10.80398 –0.87505 –1.87546 1.61638
4 5.14086 2.54201 –1.64292 4.16695 –1.14496
5 –13.00349 2.19170 4.37312 0.79536 0.06922
6 4.58479 –8.90100 0.70670 0.38170 2.87549

Table Cross-validation summary to assess the accuracy of assemblage structure classification.

Station
and summary 1 2 3 4 5 6 Total

Number of Observations and Percent Classified into Station

1 2 0 1 4 0 1 8
25.00 0.00 12.50 50.00 0.00 12.50 100.00

2 0 6 1 0 0 1 8
0.00 75.00 12.50 0.00 0.00 12.50 100.00

3 0 1 3 4 0 0 8
0.00 12.50 37.50 50.00 0.00 0.00 100.00

4 3 0 2 2 0 1 8
37.50 0.00 25.00 25.00 0.00 12.50 100.00

5 0 2 0 0 6 0 8
0.00 25.00 0.00 0.00 75.00 0.00 100.00

6 2 0 0 1 0 5 8
25.00 0.00 0.00 12.50 0.00 62.50 100.00

Total observations 7 9 7 11 6 8 48

Error Count Estimates for Station

Rate 0.7500 0.2500 0.6250 0.7500 0.2500 0.3750 0.5000

Box 15.13 (continued)

Station

15.4.5  Graphical Techniques

There are a number of graphical techniques available with statistical computer
applications to plot multivariate data, which are useful to describe and compare
visually fish assemblage compositions. Such graphical techniques are helpful in
examining broad trends among samples, detecting relationships among assem-
blages, and identifying outlier data. A convenient and simple graphical technique
of this type is the scatterplot matrix. This graphical matrix is a series of two-dimen-
sional biplots of the species abundances comparing two assemblages or samples,
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Figure 15.11 Discriminant function (DF) biplots for three functions of fish assemblages at six
stations on the Kankakee River, Illinois (Boxes 15.1 and 15.13). Function interpretation and
direction of positive influence (arrows) are shown at right and the bottom.
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where each point on the plot represents the number of individuals (or density) of
a species. When these biplots are fit with regression lines or ellipses and arranged
in a matrix, trends in relationships among assemblages may be revealed and out-
lier species or assemblages can be identified.

Presented in Figure 15.12 are scatterplot matrices, including 95% bivariate
normal density ellipses fit to each plot, that compare the six fish assemblages
from the Kankakee River, Illinois example data (Box 15.1). Assemblage similarity
is interpreted by examining the shape of the ellipse. Similar assemblages tend to
have more linear, elongate ellipses, whereas a circular ellipse depicts dissimilar
assemblages. An exploratory scatterplot matrix (Figure 15.12a) to identify simi-
larities among assemblages can suggest a reordering of assemblage samples to
more clearly reveal groups of similar assemblages (Figure 15.12b). This visual pre-
sentation suggests that assemblages at stations 1, 5, and 6 share a similar composi-
tion of fish abundances, as do the assemblages of stations 3 and 4, and that the
station 2 assemblage is distinct from the others. This finding is virtually the same
as that derived by multidimensional scaling, based on a percent similarity resem-
blance matrix (Figure 15.10c). Examination of individual points (one for each
species) within the scatterplot matrix also indicates a number of outlier species
that can explain differences among assemblages and may warrant additional analy-
sis and interpretation.

Other graphical techniques that may be applicable to revealing attributes of,
and relationships among, fish assemblages are Chernoff faces, star plots, sun-ray
plots, and Andrews’ plots (Johnson 1998). These techniques all share the proper-
ties that trends are relative, rather than absolute, and their detection depends
upon the discerning eye and interpretive ability of the fisheries scientist; still,
these techniques may reveal findings that could remain undisclosed by other more
quantitative procedures.

■ 15.5 SUMMARY

Several common themes emerge from this chapter that characterize a general
approach and provide guidance toward the description and comparison of fish
assemblages. (1) Usually, more than one quantitative approach or technique is
available to describe or compare fish assemblages. (2) The most appropriate ap-
proach depends on scientific objectives and data form, quality, and quantity. (3)
Comparison of results from more than one approach may be useful to elucidate
trends and overcome bias or artifacts of any single technique. (4) Analytical tech-
niques should be selected prior to analyses, based on objectives and application,
rather than posthoc conformity to expectations. (5) Most results related to fish
assemblages are relative values that are meaningful in a comparative context rather
than in an absolute sense. In such applications, absolute probabilities (P-values)
and statistical significance (�-levels), to which many fisheries scientists are accus-
tomed, are less applicable, and reliance upon them may confuse interpretation.
This observation, however, does not excuse the scientist from a quantitative ap-
proach; on the contrary, intensive data description, exploration, and comparison
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Figure 15.12 Scatterplot matrices of fish assemblages at six stations on the Kankakee River,
Illinois (Box 15.1), with stations arranged by number (a) and according to similarity of assem-
blages (b). Curved-line enclosures represent the 95% bivariate normal density ellipse. Station
plots enclosed by thick-lined boxes (b) depict similar fish assemblages.
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are required to study fish at the community level. (6) Results of quantitative tech-
niques are only valid if associated assumptions are not violated to a substantial
degree. (7) The quality of results depends on quality of data. Discussion of data
quality, logistic constraints, sampling bias and efficiency, analytical limitations,
and other sampling and analytical concerns should not be avoided. Finally, the
complexity of analyses at the community level precludes any strict protocol and
allows for development of novel approaches that are limited only by the knowl-
edge and creativity of the scientist; such quantitative methods and our under-
standing of them are likely to improve further in time.
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■ 16.1 INTRODUCTION

This chapter focuses on the analysis and interpretation of predator–prey interac-
tions among vertebrates and invertebrates in freshwater systems associated with fish-
eries. All aquatic species are subject to predation during some phase of life
(Mittlebach and Persson 1998). Predator–prey interactions play a major role in
determining the structure and function of aquatic communities (Brooks and Dodson
1965; Carpenter et al. 1985; Kerfoot and Sih 1987; Northcote 1988) by influencing
parameters such as survival, size structure, growth, behavior, and distribution, as
well as biodiversity and water quality of these systems. These interactions are medi-
ated by the physical–chemical environment (Kitchell 1979; Crowder et al. 1981;
Coutant 1985; Gregory 1994) and habitat characteristics (Cooper and Crowder 1979;
Wiley et al. 1984; Walters and Juanes 1993; Sogard 1994), which, in turn, are af-
fected by human-induced alterations to the environment (Coutant et al. 1979; Jenkins
1979; Sandheinrich and Atchison 1990; Mesa 1994; Mesa et al. 1994).

Predation can regulate the dynamics of prey populations directly by reducing
recruitment and survival (Miller et al. 1988; Luecke et al. 1990a; Tonn et al. 1992)
or indirectly by altering prey behavior (Eggers 1978; Stein 1979; Clark and Levy
1988; Lima and Dill 1990), distribution, habitat choice, foraging, or growth (Dill
and Fraser 1984; Werner and Gilliam 1984; Wurtsbaugh and Li 1985; Clark and
Levy 1988; Jakobsen et al. 1988; Ibrahim and Huntingford 1989; Fraser and Gilliam
1992; Milinski 1993; Sogard 1994) or by altering competition and predator–prey
interactions (e.g., Paine 1980; Werner et al. 1983; Mittlebach 1986, 1988; Persson
1991; Persson et al. 2000). Humans are very efficient aquatic predators: fishing
can have large direct and indirect effects by selectively removing piscine preda-
tors, thereby altering food web structure and ecosystem function (He and Kitchell
1990; Schindler et al. 1998; Gislason and Sinclair 2000; Link and Garrison 2002).
Prey can also influence predators as prey quantity and quality affect feeding rates,
growth, and reproductive success of predators. Temporal and spatial changes in
prey availability and vulnerability may influence movement and distribution pat-
terns of predators.
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Understanding the role of predation is important for successfully managing
both self-sustaining and artificially enhanced fisheries, protecting water quality,
conserving sensitive species, and maintaining the ecological integrity of aquatic
communities. Because larval and juvenile fishes serve as both predators and prey,
recruitment success is often related to the size-dependent ability to forage on
available prey (Mittlebach 1981), temporal and spatial patterns in food supply,
and interactions with predators and competitors (Dettmers et al. 1996; Mittlebach
and Persson 1998; Persson et al. 2000). Introductions of nonnative predators and
prey have resulted in extirpations, reduced biodiversity, and significant changes
in community structure (Brooks and Dodson 1965; Zaret and Paine 1973; Nesler
and Bergersen 1991; Schindler et al. 1998). Managers should consider whether
host waters can absorb the additional consumption demand by stocked fishes or if
predation losses will undermine the goals of a stocking program. Overfishing preda-
tors or enhancing prey populations can disrupt predation rates and result in
depensatory declines in predatory fish populations (Johnson and Goettl 1999;
Walters and Kitchell 2001; Post et al. 2002). Trophic interactions can also affect
water quality. When linkages among multiple trophic levels are strong, changes in
abundance at one level can result in a trophic cascade through some or all trophic
levels from apex predators to primary producers, thus affecting water transpar-
ency (Carpenter et al. 1985; Carpenter and Kitchell 1988; Luecke et al. 1990b;
Brett and Goldman 1996). However, the magnitude and effects of predation vary
under different environmental and ecological conditions (Abbey and MacKay 1991;
Persson et al. 1991; Beauchamp et al. 1999).

In this chapter, we outline methods for analyzing predator–prey interactions at
multiple levels: from mechanistic to holistic studies and from examining behavior
of individual predators or prey to quantifying predator–prey interactions and de-
termining their effects on the structure and function of freshwater populations,
communities, and ecosystems (Table 16.1). Topics are organized into sections on
field, experimental, and modeling approaches with regard to spatial, temporal,
and size relationships, which commonly underlie predator–prey interactions and
are important for minimizing interpolation–extrapolation error in the analysis.
Other authors provide descriptive, empirical, and theoretical reviews of preda-
tor–prey interactions and the effects of predation on inland aquatic systems (Stroud
and Clepper 1979; Zaret 1980; Kerfoot and Sih 1987; Carpenter 1988; Carpenter
and Kitchell 1993).

■ 16.2 PREDATOR–PREY QUESTIONS: OBJECTIVES AND APPROACHES

The complexity of predator–prey interactions often requires a complementary,
multi-pronged approach that uses some combination of field observation and
measurement, experimentation or management manipulation (e.g., stocking,
introductions, harvest, or removal), and modeling. The design and analysis of a
predator–prey study should be guided by specific information needs, and the study
objectives and approaches should follow logically from these questions. Common
questions in freshwater fisheries vary in scale and complexity from the behavior
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Table 16.1 A spectrum of perspectives for studying fish predation varying from the mechanis-
tic, organismal level (top of table) to the more holistic, ecosystem level (bottom of table).
Selecting the appropriate approaches and analytical tools will depend on the research question
and the ecological phenomena of interest.  Note that uncertainty in measurements may be
lower at the mechanistic level but transferability to dynamics in nature may be questionable.
Studying more holistic phenomena may rely on integrating results from a variety of measure-
ments and approaches, with a concomitant increase in uncertainty as errors may be com-
pounded. Abbreviations are as follows: analysis of variance (ANOVA); multivariate analysis of
variance (MANOVA); available prey to predator ratios (AP/P); forage species biomass to con-
sumer biomass ratio (F/C); and proportional stock density (PSD)

Research question Approaches Analytical tools Examples

Predator and Laboratory trials ANOVA, MANOVA, multiple Wahl and Stein 1988;
prey behavior regression, path analysis, Hambright 1991;

and ethograms Christensen 1996;  Einfalt
and Wahl 1997

Predator prefer- Laboratory trials Electivity indices Hambright 1991;  Einfalt
ences (e.g., Diet composition and Wahl 1997
species or Field measurements Electivity indices Pyke 1984;  Mittlebach and
size) Stable isotope analysis Osenberg 1994;  Vander

Optimal foraging Zanden et al. 2000

Predation rate Laboratory trials Functional responses— Koski and Johnson 2002
versus prey linear, nonlinear, and
abundance or multivariate regression
availability

 “Balance” between Field measurements Indices: AP/P, F/C, and PSD Swingle 1950; Anderson and
prey and predator Weithman 1978;  Ploskey
populations and Jenkins 1982

Consumption Field-based estimates Fullness-gastric evacuation Elliott and Persson 1978;
in terms of methods Ney 1990
prey biomass, Simulation modeling Production-based models Ney 1990
nutrients, Bioenergetics models Kitchell et al. 1977;  Ney 1993
dollars, or con- Stable isotopes Mass-balance models Trudel et al. 2000
taminant fluxes or tracers

In situ foraging Field observations Spatially explicit models Brandt et al. 1992;  Stockwell
behavior and simulation and Johnson 1997; Luo

modeling et al. 2001
Bioenergetics models Stewart et al. 1981;  Baldwin

et al. 2000;  Burke and Rice
2002

Visual foraging models Wright and O’Brien 1984;
Beauchamp et al. 1999

Ecosystem structure Natural and planned Bioenergetics models Kitchell 1992;  Schindler et
and function: for ecosystem “experi- al. 1998
example, the role ments” and simula- Multispecies virtual pop- Pope 1991
of fishing, trophic tion modeling ulation analysis
cascades, key Ecopath/Ecosim Walters and Kitchell 2001;
stones, and cul- Walters et al. 1997
tivation effects
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and interactions of individual predators or prey to community or ecosystem level
dynamics (Table 16.1). Does predation occur? How much predation occurs? Can
predation regulate specific prey populations? What factors contribute to the tim-
ing, duration, and magnitude of predation? Can the effects of predation be mini-
mized or maximized? More specific questions may follow from the primary ques-
tions above. Which predators (species and size) eat which prey (again, by species
and size); when is predation occurring (timing and duration of predation), and
where is it occurring (is it basinwide or in specific or isolated habitats)? What are
the appropriate spatial, temporal, and body size scales that relate to specific preda-
tor–prey interactions? What characteristics of predators, prey, or their habitat fos-
ter or inhibit predation? Do predators feed selectively on specific prey or feed
opportunistically on a variety of prey in proportion to their abundance? Can prey
supply support a desirable size structure and abundance of predators?

The nature of each question and desired level of resolution determine the types
of studies (e.g., field sampling, experiments, and modeling) and corresponding
analyses that should be employed. Effective studies require tight integration of sam-
pling and experimental design tailored to the study objectives with explicit defini-
tion of independent and response variables, sampling or experimental units, and
appropriate measurement units (e.g., numbers, biomass, nutrients, dollars, or con-
taminant loading). The desired level of resolution should be specified: presence
versus absence of predation; a quantified estimate of predation (in biomass or num-
bers of prey consumed); predation translated into a mortality rate for prey; preda-
tor–prey “balance”; or the strength of different factors contributing to predator–
prey interactions. Here, we briefly discuss common questions related to predator–prey
interactions and introduce some alternative approaches to address them.

Is there evidence of predation (presence versus absence)? This question can be ad-
dressed by laboratory experiments (e.g., will a predator eat this prey under ex-
perimental conditions?), an approach that is particularly useful in situations with
novel predators or prey, such as invasions (e.g., Nesler and Bergersen 1991; Moyle
and Light 1996a, b). Presence of predation may also be addressed by sampling
stomach contents of potential predators at times and locations where predation
most likely occurs (will the predator eat this prey under natural conditions?);
however, stomach contents provide a short-term snapshot of feeding by some in-
dividuals and may not be representative of feeding by the predator population
over longer periods. Alternatively, stable isotopes (Peterson and Fry 1987) and
growth provide broader-scale integration of the feeding history of a consumer but
with less temporal resolution. A predation signal may be inferred from stable
isotope analysis (e.g., �15N), especially in relatively simple aquatic communities
where the prey of interest could produce a unique isotopic signature (Vander
Zanden et al. 2000; Johnson et al. 2002).

Under what conditions will predation occur? Experiments can examine specific
factors that influence predation such as predator–prey size relationships (Juanes
1994), prey density (Peterman and Gatto 1978; Koski and Johnson 2002), habitat
elements (Savino and Stein 1982), alternative prey, and environmental conditions;
however, spatial scale, oversimplification, or experimental artifacts may constrain
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the generality of these results (Huston 1999). Field data on diet and distribution
can identify potentially important influences on predation if stratified by size-
class of predators, at appropriate temporal and spatial scales, and accompanied
by data on ambient environmental conditions. Such comprehensive studies, how-
ever, are logistically challenging. Inferences may suffer from small sample sizes in
many temporal–spatial–size cells. Experimental and field data can be combined
to construct foraging models (e.g., functional response models [Peterman and
Gatto 1978; Eby et al. 1995], encounter rate models [Gerritsen and Strickler 1977;
Beauchamp et al. 1999]; spatially explicit growth models (Brandt et al. 1992); or
optimal foraging models [Mittlebach and Osenberg 1994]).

How much predation occurs? Estimates of per capita consumption rates in the
wild can be computed from diel gut fullness and evacuation rates (Eggers 1977;
Elliott and Persson 1978) or by using mass-balance and energy budget models
(Forseth et al. 1992; Hanson et al. 1997; Trudel et al. 2000; Chapter 12). These
estimates require considerable investment in the collection of data on temporal
and size-specific diet composition, the thermal experience of the consumers, and
for bioenergetics models, incremental growth by the consumer. Estimates of the
size structure and relative or absolute abundance of predators are required to
expand estimates of individual consumption to population level predation rates.

What fraction of the prey population is lost to predation (predatory impact)? This analy-
sis compares quantitative estimates of predation losses to estimates of prey abun-
dance. When dealing with size-structured populations over extended periods, these
comparisons would be stratified by time interval and by size-classes of predators
and prey. Spatial stratification might also be required if predator–prey interac-
tions differ significantly among locations. If the predation period is long in com-
parison to the growth rate or reproductive cycle of prey, then predation rates
should be compared with the production rate of prey rather than just to prey
biomass.

Can prey populations support the desired growth and production of predators? If
predator–prey relationships can be quantified, are appropriately sized prey abun-
dant enough, at times and locations where predators can encounter and success-
fully consume them, to satisfy target or observed growth rates for a given density
of predators? This requires the ability to translate prey biomass, size structure,
abundance, and distribution into the fraction of the prey population that can be
consumed through functional response curves (Holling 1966; Peterman and Gatto
1978), encounter rate models (Gerritsen and Strickler 1977), and capture success
models. Alternatively, simple empirical relationships such as proportional stock
densities (PSD) of predators and prey (Gabelhouse 1984), available prey to preda-
tor ratios (AP:P; Jenkins and Morias 1978), mass-balance models (production:
biomass; Ney 1990), and production-conversion efficiency relationships (Eck and
Brown 1985) provide holistic estimates of the prey supply or balance required to
support predator populations. Ecopath and Ecosim models (Christensen and Pauly
1993, 1994, 2001) provide estimates of biomass transferred among species or func-
tional groups at each trophic level in an ecosystem. Most of these approaches
estimate trophic rates on an annual time step for whole populations or feeding
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guilds but require considerably less data than interactions that can be modeled at
finer temporal, spatial, taxonomic, or ontogenetic scales with bioenergetics mod-
els or field-based estimates.

■ 16.3 CONCEPTUAL FRAMEWORK FOR ADDRESSING
PREDATOR–PREY INTERACTIONS

Predator–prey interactions occur only under conditions that allow detection and
successful capture of prey. It is important to recognize and define the segments of
predator and prey populations included in a particular type of analysis. The pre-
dation sequence (search, encounter–detection, attack, and capture) provides a
useful framework for organizing questions about predator–prey interactions and
identifying the most appropriate or feasible methods (laboratory or field experi-
ments, field measurements, or modeling) for addressing these questions (Holling
1966; Box 16.1).

Whether dealing with individuals or larger segments of predator and prey popu-
lations, the predation sequence is related to the abundance, availability, and vul-
nerability of prey (Box 16.2). A prey population exists at some abundance in an
aquatic system, but only a fraction of that abundance may be available to preda-
tors due to incomplete temporal and spatial overlap between prey and predators.
Where, when, and how predators search will determine what fraction of the prey
population is available for encounter. Encounters depend on how prevailing envi-
ronmental and habitat conditions affect detection of prey that overlap with preda-
tors in time and space (e.g., Beauchamp et al. 1999). Of the available fraction, a
smaller proportion of prey may be vulnerable to consumption due to predator
avoidance behavior (e.g., refuging), size constraints, and evasion capabilities that
reduce capture success once prey are encountered. Given an encounter, prey
vulnerability to capture depends on morphological and behavioral characteristics
of both the prey and predator, and the probability of an attack is influenced by
how inclusion of that prey in the diet would affect the rate of net energy gain to
the predator.

Diet composition patterns and prey electivities from field samples subsume the
combined effects of the prey abundance–availability–vulnerability hierarchy. In
contrast, laboratory experiments can explore how individual factors contribute to
variability in predator–prey interactions under different conditions. Models pro-
vide a conceptual framework for incorporating field data, experimental results,
and theory into a mechanistic simulation of predator–prey responses to different
conditions.

Predator–prey investigations vary from studies on the behavior of individual
predators or prey to community and ecosystem level responses, patterns, and dy-
namics, which may require one or a combination of field, experimental, or mod-
eling approaches (Table 16.1). As analyses progress from individual to systemwide
responses, the potential for propagation of error increases tremendously. There-
fore, identification of key factors that contribute to the variability in predator–
prey responses and appropriate incorporation of these factors into experimental
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Box 16.1 Elements of the Predation Sequence

Behavioral elements of the predation sequence (Holling 1966) are described below (see figure),
followed by a listing of common or feasible approaches (lab or field experiments, field measure-
ments, or modeling) for studying these topics.

Prey Search

Search. Aquatic predator–prey interactions occur in three-dimensional space and can be complex
due to highly mobile predators and prey utilizing different habitats or locations over a variety of
spatial and temporal scales. Predators employ either active or stationary (sit-and-wait) foraging
modes (Norberg 1977; Bell 1990; O’Brien et al. 1990). The temporal distribution and movement
patterns of predators and their prey reflect these foraging strategies.

Temporal and spatial overlap of predators and prey can be inferred from distribution patterns in
catch per unit effort (C/f) data when sampling each with comparable methods and by assuming
similar catchability among sizes, species, times, or locations (see Chapters 3, 7, and  8). Overlap may
be determined more directly with biotelemetry (Chapter 14), hydroacoustics, and active net
sampling in pelagic environments (Brandt 1996). At the microhabitat scale, experimental (e.g., Eklov
and Hamrin 1989; Eklov and Diehl 1994; Christensen 1996), video, or acoustic surveillance methods
(e.g., Boisclair 1992; Collins et al. 1991; Collins and Hinch 1993) can be effective for determining
search patterns in natural habitats or experimental arenas.

The search strategy (i.e., periodicity, location, search mode, or search image) may be specialized for
a specific habitat, prey type, or combination and based on the mobility of predator or prey, patch
dynamics, antipredator responses, such as schooling or shoaling, diel migration, or sheltering
patterns.

Approaches for studying this element are lab and field experiments, modeling, and field
measurements.

Encounter. Predator–prey encounters are a function of the sensory mechanisms used to detect
food or threats (e.g., visual [Wright and O’Brien 1984; Henderson and Northcote 1985; Hughes and
Dill 1990; Breck 1993; Beauchamp et al. 1999], chemical [Atema 1980], or pressure and tactile
[Gerritsen and Strickler 1977; Janssen 1997] detection fields). Therefore the number of encounters,
at least in open-water environments, depends on the temporal distribution patterns of prey and
predators and the area or volume searched times the density of prey contained within or passing
through that search volume.

Approaches for studying this element are field measurements with modeling and lab experiments.

Predator Response to Encountered Prey

Optimal foraging rules (Pyke 1984; Stephens and Krebs 1986) for maximizing net energy gain per
unit time provide a useful framework for predicting the predator’s response after encountering a
specific prey organism. Prey selectivity indices provide empirically derived measures of the
proportional contributions of various prey to the diet in relation to the proportions of these prey
that were available in natural or experimental environments; however, field estimates of the overall
abundance or density of prey has generally been used as a crude substitute for the amount of prey
actually available to, or encountered by, the predators.

(Box continues)
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designs, stratification schemes in field sampling, and architecture and scaling of
models is critically important for minimizing estimation error.

■ 16.4 STUDY DESIGN AND ANALYSIS OF FIELD DATA

Field observations might provide the first evidence of predation. Common objec-
tives of a field data collection program include recording the timing, duration,
and spatial extent of predator–prey interactions to bound interactions in space
and time; describing the size structure of the predator and prey populations (Chap-
ter 9) and size relationships of predator–prey interactions; estimating the abun-
dance of predators and prey (Chapters 7 and 8); and collecting data on food
habits (Chapter 11) of potential predators to determine the existence or relative
magnitude of predation.

Orient or reject. Upon encounter, predators either orient toward prey and continue the predation
sequence or reject the prey and resume searching or other activity.

The approach for studying this element is lab experiments.

Follow. The predator maneuvers toward prey to maintain close proximity and seek opportunity to
attack. The follow segment can range from being quite prolonged to an abrupt transition from
orienting to pursuing and striking prey.

The approach for studying this element is lab experiments.

Pursue. Predator accelerates toward prey to close distance in preparation for striking.

The approach for studying this element is lab experiments.

Strike. Predator attempts to grasp, injure, or stun prey. A strike can result in a hit (capture) or miss.
If missed, search resumes for another prey.

The approach for studying this element is lab experiments.

Capture. Once captured, a predator could either ingest the prey or expel it and resume searching.

The approach for studying this element is lab experiments.

Ingest. The probability of successfully capturing and consuming prey given an attack is depen-
dent on morphological and behavioral traits of both prey and predator. The net energy gained by
ingesting each prey depends on its mass, energy density (J/g), and the time and energy required to
capture and handle that prey item.

The approach for studying this element is lab experiments.

Digest. Digestion rate will determine the maximum volume of food that can be consumed per
unit time and can depend on temperature and prey size and type.

Approaches for studying this element are lab experiments and models.

Box 16.1 (continued)
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Resume search. During the last step in the predation sequence, predators either continue
searching for prey or initiate other activity such as vigilance, refuge-seeking, territorial defense,
thermoregulation, migration, courtship, or spawning.

Approaches for studying this element are lab experiments and field measurements (telemetry).

Because predation generally varies over time, with increasing body size (espe-
cially piscivory), and across some spatial dimension, these factors should be inte-
grated explicitly into the sampling design. A stratified sampling design (Chapter
3) could be used to determine the temporal, spatial, and size-related dimensions
of the predator–prey interactions. For instance, to evaluate predation on forage
fishes in a lake or reservoir, the objectives of the sampling design would include
(1) determining the seasonal distribution of predators (e.g., from catch per unit
effort [C/f ] data) among habitats and regions of the water body (e.g., benthic,
pelagic, and littoral) and in relation to their prey; (2) determining the size struc-
ture of the predator and prey populations over the size range of interest; (3)
determining the proportional weight contribution of forage fishes and other prey
to the diet of different sizes of predators during each season; (4) and perhaps
determining the abundance of predators and the abundance or availability of

Figure Behavioral pathways from search through ingestion for a fish predator foraging on prey.
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Box 16.2 Hierarchical Measures of Prey Accessibility to Predators

Abundance
Interactions may not involve all members of the predator and prey populations. Consequently,
abundance may not be the most ecologically relevant metric in predator–prey interactions.
Population estimates or indices of relative abundance can be generated using standard methods,
including mark–recapture, area or volume swept, depletion estimates, virtual population analysis
(see Ricker 1975; Van Den Avyle 1993; Chapters 7–9), and hydroacoustics (Brandt 1996).

Availability
Temporal and spatial overlap allows some probability of encounter between predators and prey.
Segregation may result from stage-specific distribution patterns related to environmental require-
ments or behavioral modification (e.g., foraging mode or predator avoidance). Ambient environ-
mental conditions or habitat characteristics can mediate predator–prey encounters and the nature
of their interactions. Data on seasonal or diel movement and distribution patterns, the effects of
environmental conditions on physiology, detection capabilities of predators and prey, behavioral
plasticity of predators and prey, and habitat complexity, gained through methods of capture,
observation, hydroacoustics, and telemetry, give insight on availability.

Vulnerability
Only a fraction of the available prey is actually vulnerable to predators. Many factors reduce the
probability of prey capture given an encounter, such as size–gape relationships, behavioral
avoidance, evasion, vigilance, effects of habitat characteristics, temperature, turbidity, light, prey
density, and predation rates or handling times as functions of predator–prey size relationships.
Statistical analyses primarily involve analysis of variance (ANOVA), multivariate analysis of variance
(MANOVA), and linear and nonlinear regressions.

prey. Generally, samples should be collected in a spatially representative manner;
whether this requires formal stratification by region, habitat type, or depth will
depend on characteristics of the water body, the species involved, and the specific
study question. Fish should be captured with methods adapted to collect a repre-
sentative sample of the population’s size structure within each season and habitat
type. The sampling design should allocate all data and specimen collection meth-
ods among representative spatial units, and this procedure should be repeated
seasonally or at the temporal scale that is relevant to the study question. Species
residing primarily in littoral or lotic habitats can be collected with active-capture
methods (e.g., beach seining, electrofishing, pop nets, angling, or toxicants) or
passive-capture methods (gill nets, trap nets, traps, or set lines) appropriate for
the habitat characteristics and behavior and size range of the target species. Pe-
lagic species can also be collected via active capture (surface, midwater, or bottom
trawling; purse seining; or trolling) or passive capture (gill netting, set lines, or
traps). This core sampling effort supplies the data for analyzing spatial–temporal
distribution patterns and population size structure and provides some or all of
the specimens needed for diet analysis or for determining age and growth. Addi-
tional collections might be required to satisfy sample size requirements for size-
specific, seasonal diet analysis, but data from these supplementary samples would
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not necessarily be included in the analysis of size structure or spatial–temporal
distribution patterns unless the additional sampling effort associated with these
samples could be accounted for in calculations of C/f  in an unbiased manner.

16.4.1 Distribution, Size Structure, and Abundance of Predator and Prey Populations

The distribution, size structure, and abundance of populations define boundaries
on predator–prey interactions. Similar data collection methods are often employed
for all three types of analyses. Distribution patterns dictate whether overlap in
time and space provides the opportunity for predators and prey to interact and
thus defines the availability of prey to predators. The size structure of the prey
population determines the fraction of prey that is vulnerable to size-selective preda-
tors. The abundance and size structure of predators determine the magnitude of
predation losses imposed on prey populations and how predation losses may be
distributed among age- or size-classes of prey. If prey abundance is known, then
population level predation rates can be converted into predation-specific mortal-
ity rates, and the relative importance of predation to the overall mortality of prey
can be evaluated (e.g., Jones et al. 1993; Cartwright et al. 1998; Baldwin et al.
2000). Abundance estimates of predators or prey commonly represent the largest
source of uncertainty in most analyses of population-level consumption.

Temporal distribution patterns vary considerably among life stages and spe-
cies. These patterns must be identified and incorporated into the design of any
population or community assessment program. Abundance estimates should ex-
plicitly define the target sizes or ages of the population and any restrictions im-
posed on the estimation procedure by sampling limitations. Different capture
methods impose biases due to size or species selectivity and differential effective-
ness among habitats (Chapters 3 and 9). Sampling with complementary methods
can relieve some of these biases (Figure 16.1), and correction factors can be used
in the analysis phase (e.g., size selectivity in gill nets: Rudstam et al. 1984; Van Den
Avyle 1993). Although catch rates will not be directly comparable among sam-
pling methods, the spatial–temporal patterns of maximum densities of each spe-
cies could be inferred from the location and timing of peak C/f  within each sam-
pling method. It is important to acknowledge possible sampling biases and evaluate
their potential effects on analyses either verbally or more formally through sensi-
tivity analysis.

Population assessment techniques must be tailored for specific taxa and habi-
tats. Population estimates from combined hydroacoustic–midwater trawl surveys
have become routine for pelagic freshwater species like juvenile sockeye salmon
and kokanee (Burczynski and Johnson 1986; Parkinson et al. 1994; Beauchamp et
al. 1997), trouts (Stables and Thomas 1992; Yule 2000), ciscoes and whitefishes
(Brandt et al. 1991; Luecke and Wurtsbaugh 1993), smelts (Burczynski et al. 1987;
Appenzeller and Leggett 1995), and shads (Schael et al. 1995). Population esti-
mates require intensive effort for littoral species (cove-rotenone treatments, deple-
tion estimates, mark–recapture estimates, and relative abundance expansions) and
river and stream fishes (e.g., depletion or mark–recapture estimators). Population
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Figure 16.1 Depth distribution and relative abundance of potential predators and prey in
Alturas Lake, Idaho (Beauchamp et al. 1997). Data were obtained with complementary sampling
methods. (A) Hydroacoustics data provided volumetric densities for three size-classes of fish by
depth and diel period. In right-most panel are temperature (temp, °C) and dissolved oxygen
(DO, mg/L). Fish occupying the bottom and perimeter slope zones of the lake during daylight
could not be detected until they dispersed into limnetic regions during dusk and night.
Midwater trawling indicated that the pelagic targets at all depths were predominantly kokanee.
Older age-classes of kokanee (in and below the thermocline) and redside shiners (above the
thermocline) were vulnerable to sinking gill nets but not to trawls. (B) Depth-specific catches
obtained with sinking gill nets indicated that high densities of potentially piscivorous northern
pikeminnow (N. pikeminnow) and rainbow trout were primarily distributed in the upper 20 m
along the slope zone, whereas predatory bull trout used all depths of the slope zone but at
lower densities. Better information on movement and distribution patterns of the piscivores
would require ultrasonic telemetry or more intensive hydroacoustic sampling and analysis.
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assessments for deepwater demersal species or pelagic piscivore populations in
freshwater systems may require a wide range of methods to estimate relative or
absolute abundance of various species (e.g., hydroacoustics, volume- or area-swept
approaches, distance sampling techniques, cove-rotenone treatments, depletion
estimates, mark–recapture estimate, virtual population analysis, relative abundance
from C/f, and others; Van Den Avyle 1993; Chapter 8).

16.4.2 Food Habits of Predators

A comprehensive treatment of food habits analysis is provided in Chapter 11, so
only those aspects particularly relevant to analysis of predator–prey interactions
are presented here. Predator–prey studies generally focus on particular prey spe-
cies and perhaps some important alternative prey (e.g., a species that might buffer
the effects of predation on the focal prey species). Beyond these species, addi-
tional prey items may be treated collectively as just “other food” for simplicity.
Consequently, many analyses can focus on just the prey species of interest when
examining the effects of different factors (independent variables) on the response
variable (e.g., prey size or proportion of the focal prey in the diet). Some notable
exceptions to this simplification scheme include electivity indices and optimal
foraging models (Mittlebach and Osenberg 1994) because the full suite of prey
species or groups is required for computations using these methods.

16.4.2.1 Explanatory Variables for Diet Analysis

Changes in feeding behavior and diet composition of predators can often be ex-
plained by factors such as body size, time (diel period, season, or year), and space
(habitats, depths, regions, or geographic areas) and may vary in response to changes
in availability or vulnerability of prey. At a minimum, predators should be sampled
to detect seasonal changes in the proportion of the focal prey in the diet for each
size-class of consumer. Spatial factors may influence diet composition of preda-
tors, with differences found between pools and riffles or nearshore and offshore
zones (Beauchamp 1990; Beauchamp et al. 1992; Schindler and Scheuerell 2002),
among depths (Beauchamp 1994; Stockwell and Johnson 1997), between macro-
phytes and open water areas (Savino and Stein 1982; Mittlebach 1984, 1988; Werner
and Hall 1988; Persson and Eklov 1994), and, during prey migrations, in areas
near tributaries or dams versus other zones (Poe et al. 1991; Rieman et al. 1991;
Winemiller and Jepsen 1998). Conversely, the combined effects of predator move-
ment and prey dispersal can homogenize diets from different vertical or horizon-
tal regions of the basin (Cartwright et al. 1998; Baldwin et al. 2000, 2002).

16.4.2.2 Categorization of Continuous Data

Although diet data should always be initially examined in raw form (e.g., body
length or sampling date), response variables often show similar patterns across a
range of values for the explanatory variables. In these circumstances, different
ranges of the explanatory variable could be grouped into categories to facilitate
further analysis. Common examples include grouping continuous explanatory
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variables, like predator body lengths, into discrete size categories or pooling sample
collection dates into broader, ecologically relevant periods. However, pooling con-
tinuous variables into categories might not always be appropriate. The challenge
is to minimize the number of categories without pooling important sources of
variability. Post hoc exploration of the data might be necessary to determine the
appropriate number of categories and their boundaries. For instance, size catego-
ries of predators could be determined by inspecting scattergrams of predator
lengths (continuous data) and the percentages of key prey in the diet by weight to
identify the size-classes corresponding with no predation, increasing predation,
and one or more plateaus of high(er) predation that indicate seasonal or ontoge-
netic shifts in diet composition (Figure 16.2).

Figure 16.2 A scattergram of the proportion (by weight) of fish prey in stomachs versus
predator length. The scattergram of 327 nonempty stomachs of lake trout, sampled across all
seasons in Flathead Lake, Montana (D. Beauchamp, unpublished data), was used to stratify
length data into size categories that minimized diet variation within size-classes by isolating
most of the variability in a transition size-class (300–375 mm in total length, shaded area). Lake
trout greater than 375 mm were considered fully piscivorous, with fish prey contributing up to
100% of the stomach contents. Note that fish prey were absent in some stomachs from all sizes
of predators.
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16.4.2.3 Determination of Diet Composition

The stomach contents of aquatic predators may contain prey that vary over one to
three orders of magnitude in length and six orders of magnitude in mass (e.g.,
zooplankton to prey fishes); therefore, the variables chosen to characterize a
predator–prey interaction will depend upon study objectives. Mean weight propor-
tions (termed MWi in Chapter 11; see Table 11.1 for descriptions of common diet
indices) of prey in the diet are often the most useful response variable in predator–
prey interaction studies. Weight proportion reflects the relative importance of each
prey species to the energy budget of the consumer and can be used to estimate the
loss of prey (in biomass or numbers) from predation by using bioenergetics models
or other estimators of consumption (Ney 1990; Bowen 1996; Chapter 11). Counts
or numerical percentages of prey in the diet are useful when evaluating prey en-
counter or consumption rates, as in optimal foraging models (e.g., Mittlebach and
Osenberg 1994), and contribute to calculations of prey electivity. Frequency of oc-
currence Oi (the percentage of predators in the sample that contain a specific prey
species) provides useful supplementary information about the fraction of predators
in a sample that contain specific prey but should rarely be used as the primary
response variable when analyzing predator–prey interactions.

When estimating the weight contribution of various prey to the diet, data
should be recorded as dry weight, blotted-dry wet weight, or volumetric propor-
tions for individual stomach samples. Samples should be collected within a sam-
pling design that provides spatially representative samples of each size-class of
consumer for each ecologically relevant period of the study. Each nonempty
stomach is considered an individual sampling unit wherein the observed prey
proportions are associated with the size of the consumer, the location and time
of capture, and concurrent physical, chemical, and biotic conditions. For each
prey category, the weight proportion, Wi , from each stomach is averaged with all
other nonempty stomachs in the sample (MWi) within each size-class of preda-
tor during each period of interest (Box 16.3). This analytical approach gives
equal weight to the dietary proportions from each nonempty stomach, regard-
less of the level of stomach fullness. This minimizes the influence of rare stom-
achs that contain large quantities of a particular prey because each stomach can
represent only 100% of one stomach out of N samples and attempts to reflect
the average diet composition of all consumers within the same size × time cell.
As with other methods, this approach has some limitations but produces less
volatile estimates of diet composition.

Important underlying assumptions can be evaluated directly through pilot or
supplemental studies. For instance, one can account for the assumption of similar
digestion rates for all major prey taxa and test directly for diel differences in prey
composition. Differential digestion among prey taxa becomes a greater concern
if temperatures enter the warmer portion of a consumer’s thermal range and if
the prey of interest are small, soft-bodied organisms (e.g., larval fishes), which
digest rapidly. This concern can be minimized by preliminary diel sampling to
identify the timing of peak stomach fullness (e.g., dawn, midday, before dusk,
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Box 16.3 Analysis of Diet Composition of Lake Trout by Season and Size-Class

The objective of this diet study was to estimate the proportional weight contribution of each prey
type in the diet of lake trout by season and size-class in Flathead Lake (D. Beauchamp, unpublished
data). To simplify the example, prey categories are reduced to just fish and invertebrates. Spatially
representative samples of each size-class of lake trout were collected during winter, spring,
summer, and fall from overnight sets of sinking experimental variable-mesh gill nets. Each season,
two sampling locations were selected randomly in each of five regions and four depth intervals of
the lake. Each lake trout stomach was considered a sampling unit, and its diet was associated with
the total body length, weight, location, depth,  date, and season of capture recorded on the same
row. Lengths were categorized into length-classes based in part on visual inspection of the
scattergram of length versus fish proportions in Figure 16.2. This abbreviated data set illustrates a
useful format for analyzing diet composition data in spreadsheets or statistical packages. Other
columns can be added for additional information (e.g.,  habitat,  gear type, and diel period). Diet
data are recorded first as the mass (g) of each prey category measured directly from the stomach
contents (in columns Fish and Invert). Each prey category is then converted to a proportion of the
total prey found in each stomach (in columns FishP and InvertP), computed as the weight of each
prey category divided by the total weight of all prey from that stomach. Most analyses are con-
ducted on prey proportions (e.g., diet composition by length-class and season). Note that prey
mass and proportions are left blank for empty stomachs, as in fish 14.

Table Abbreviated data set of diet composition (fish versus invertebrate) of lake trout. The blotted
wet mass of each prey category is measured for individual fish stomachs (fish number) and each
prey category is then converted to a proportion of the total prey found in each stomach (in
columns FishP and InvertP). Season abbreviations throughout this chapter are spring (spr), summer
(sum), autumn (aut), and winter (win).

Total Length- Fish
Fish length class weight
number Date Season (mm) (mm) (g) Fish Invert Total FishP IInvertP

1 6/8/98 Spr 374 301–375 400 1.08 0.45 1.53 0.71 0.29
2 6/8/98 Spr 453 376–500 730 0.00 1.67 1.67 0.00 1.00
3 6/9/98 Spr 301 301–375 180 0.10 0.03 0.13 0.77 0.23
4 6/9/98 Spr 403 376–500 440 0.00 0.16 0.16 0.00 1.00
5 6/9/98 Spr 622 501–625 1,990 0.00 0.10 0.10 0.00 1.00
6 6/9/98 Spr 813 626–1,000 4,830 6.67 0.00 6.67 1.00 0.00
7 6/9/98 Spr 479 376–500 830 0.00 12.59 12.59 0.00 1.00
8 6/9/98 Spr 615 501–625 1,910 0.91 0.04 0.95 0.96 0.04
9 6/9/98 Spr 675 626–1,000 3,020 0.08 0.00 0.08 1.00 0.00
10 6/9/98 Spr 664 626–1,000 2,310 0.67 0.13 0.80 0.84 0.16
11 6/9/98 Spr 705 626–1,000 3,090 9.38 2.81 12.19 0.77 0.23
12 6/9/98 Spr 745 626–1,000 3,245 5.74 0.00 5.74 1.00 0.00
13 6/9/98 Spr 575 501–625 1,400 0.86 5.78 6.64 0.13 0.87
14 6/9/98 Spr 330 301–375 285
15 6/15/98 Spr 293 100–300 210 0.00 0.10 0.10 0.00 1.00
16 6/15/98 Spr 287 100–300 195 0.00 0.28 0.28 0.00 1.00
17 6/15/98 Spr 332 301–375 280 0.14 0.33 0.47 0.30 0.70
18 6/15/98 Spr 379 376–500 445 0.00 0.33 0.33 0.00 1.00
19 6/15/98 Spr 539 501–625 995 0.00 0.44 0.44 0.00 1.00
20 6/15/98 Spr 845 626–1,000 4,540 7.15 0.00 7.15 1.00 0.00
. . .
609 8/24/01 Sum 435 376–500 0.00 0.50 0.50 0.00 1.00

Prey weight (g)
Diet

proportions
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The data above represent a segment of a larger data set for predators during winter and spring. The
sample sizes,  mean proportions by weight (termed MWi in  Table 11.1), and 2SE for fish and
invertebrates consumed by each length-class × season combination were summarized below in a
Microsoft Excel spreadsheet by means of the “pivot table” analysis tool; the same summarization
could also be produced using analogous tools in other spreadsheet software, PROC MEANS in SAS,
or “multi-dimensional pivot tables” in SPSS.

Table Summary of lake trout diet composition data. The mean proportion by weight (N = number
of nonempty stomachs) and 2SE for both food categories are given by length-class × season.

Diet proportions  

Length-class (mm) and season N Fish 2SE Inverts 2SE

100–300
Winter 0
Spring 8 0.00 0.00 1.00 0.00
Summer 15 0.01 0.06 0.99 0.06
Fall 12 0.00 0.00 1.00 0.00

301–375
Winter 5 0.00 0.00 1.00 0.00
Spring 23 0.37 0.21 0.63 0.21
Summer 10 0.11 0.21 0.89 0.21
Fall 28 0.15 0.14 0.85 0.14

376–500
Winter 25 0.21 0.17 0.79 0.17
Spring 67 0.20 0.10 0.80 0.10
Summer 20 0.10 0.14 0.90 0.14
Fall 27 0.30 0.18 0.70 0.18

501–625
Winter 34 0.47 0.17 0.53 0.17
Spring 42 0.37 0.15 0.63 0.15
Summer 19 0.17 0.18 0.83 0.18
Fall 26 0.35 0.19 0.65 0.19

626–1,000
Winter 26 0.83 0.15 0.17 0.15
Spring 77 0.79 0.09 0.21 0.09
Summer 13 0.74 0.25 0.26 0.25
Fall 20 0.90 0.14 0.10 0.14
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after dusk, or night) and the variability in diet composition among diel periods
(Figure 16.3). Net retrieval or active sampling should then be scheduled to maxi-
mize the number of samples captured during or slightly after the period of peak
stomach fullness. If diet composition varies dramatically between the period with
peak fullness and other periods, then stomach samples may be needed from two
to three times per day to portray diet composition (or to determine feeding chro-
nology and estimate daily consumption, see section 16.4.2.5); alternatively, prey
reconstruction methods (Swenson and Smith 1973; Diana 1979) might be required
to obtain good diet composition estimates.

16.4.2.4 Statistical Analysis of Diet Composition

Descriptive statistics for dietary responses by predators can be summarized effec-
tively in spreadsheets (e.g., pivot tables in Microsoft Excel or analogous data sum-
mary tables in other spreadsheet programs, such as PROC MEANS in SAS [SAS

Figure 16.3 Diet composition and stomach fullness can change dramatically over a 24-h
period. In this example (D. Beauchamp, unpublished data from Flathead Lake), the dusk samples
captured peak stomach fullness for all three prey categories and provided the most representa-
tive diet samples for the predator. Fish prey would have been severely underrepresented if
stomach contents were sampled only during mid-day, whereas zooplankton would have been
seriously underrepresented in dawn samples. This potential diel variability should be consid-
ered when designing a sampling program and analyzing diet samples of predators with regard
to the limitations of sampling methods and study design.
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Institute 1990] or multidimensional pivot tables in SPSS [SPSS 1999]) to produce
a table of averages, standard deviations, maximum, minimum, or median values,
and sample sizes for response variables for any combination of independent vari-
ables or factors (e.g., Box 16.3). Careful design and formatting of the data set and
careful selection of response and predictor variables can greatly facilitate these
analyses.

Because proportions of key prey species in diet composition generally vary in
response to more than one predictor variable, statistical methods should be ca-
pable of simultaneously examining the effects of several factors on the average
proportion of key prey species in the diet of predators. Changes in proportions of
key prey with size of the predator can be examined by regression, whereas the
effects of seasons, size-classes of predators, and habitat groups can be analyzed
effectively using various analysis of variance (ANOVA) techniques (see Chapter
11). The ANOVA techniques are relatively robust to moderate deviations from
normality when sample sizes are adequate because of the central tendencies of
the data. For instance, in diets of lake trout from several western lakes, mean
proportions of the major prey types tended to stabilize at sample sizes of 7–15
nonempty stomachs per season × size-class cell (D. Beauchamp, unpublished data).
The diet proportions of focal prey can also be transformed (e.g., by square root or
arcsine transformations for weight proportions) to achieve or approach normality
in the distribution of means (or slope coefficients for regressions). Alternatively,
various ANOVA techniques can be applied to rank-transformed weight propor-
tions for each prey species of interest. The single-factor version of this nonpara-
metric method is the Kruskal–Wallis test, but this test becomes awkward and inef-
fective when more than one factor is involved. Multifactor ANOVAs on
rank-transformed data offer less statistical power than do parametric ANOVAs of
similar design but can be helpful for determining the relative importance of the
main effects of different predictor variables, such as size-class, time, habitat type,
or region, on the proportion of focal prey in the diet of predators. Although rank-
transformed ANOVAs identify significant main effects, and levels of these effects
can be compared with multiple- range tests (Conover and Iman 1981), a major
disadvantage of rank-transformed ANOVAs is that significant interaction terms
cannot be interpreted as in a parametric ANOVA (Hora and Conover 1984;
Thompson 1991). If significant interactions exist, the relative importance of prey
in response to different levels of a factor must be examined separately within each
level of the other factor involved in the interaction. Despite these limitations,
rank-transformed ANOVAs provide a useful framework for organizing and priori-
tizing how results are reported.

16.4.2.5 Field-Based Estimates of Consumption

A daily consumption rate for the average predator can be estimated from field
data by using methods appropriate to the feeding chronology of the consumer,
such as stomach fullness–gut evacuation rate methods and prey reconstruction
(see and Ney 1990 for reviews). The most common approach involves serial sam-
pling of stomach contents over a 24-h period. A temperature-dependent stomach
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evacuation rate, R, is applied to the mean mass of food in the stomach, S, over the
24-h period to obtain a daily consumption estimate, Cd , for the average predator.

Cd  = 24 · S · R , (16.1)

where the stomach evacuation rate, R (h–1), is the proportion of food digested per
hour. It is obtained as the slope of the proportion of food (Wt /W0) remaining t
hours after feeding and is generally expressed as a decaying exponential function
of time t (Eggers 1977; Elliott and Persson 1978):

Wt /W0 = a · e –Rt. (16.2)

The intercept, a, should theoretically equal 1.0, and the slope R(h–1) repre-
sents the evacuation rate. The evacuation rate generally increases with increasing
temperature and can also vary considerably among prey types or sizes (He and
Wurtsbaugh 1993). Daily ration size should be calculated separately for different
size-classes of predators or if diet composition varies considerably among size-
classes. Daily consumption can be partitioned among prey types based on the
proportional contribution by weight of each prey category to the diet. Multiplying
daily consumption estimates of the focal prey by the number of predators in each
appropriate size-class and the duration of the interaction in days generates the
biomass of prey consumed by each size-class of predator over a given period.

For top predators, adequate sample sizes may be difficult to achieve for each
size × time cell. Field-generated estimates of daily consumption reflect the ambi-
ent environmental conditions immediately preceding and during the period of
sample collection, and estimates can vary considerably from day to day (Smagula
and Adelman 1982) and seasonally (Cochran and Adelman 1982). Consequently,
a field-generated estimate of consumption may have limited generality to broader
periods of interest longer than 1 d.

16.4.2.6 Special Considerations for Analyzing Short-Term Acute Predation

The temporal scale of predator–prey interactions can be extremely important
when attempting to quantify consumption in response to large pulses of prey
(e.g., recruitment pulses, stocking, or migration of prey). Sampling should be
scheduled to measure the magnitude and duration of the predatory response
accurately. In systems where we have examined predation on stocked juvenile
walleye, pikes, and trouts and salmons, the response has been immediate, severe,
and of relatively short duration (e.g., 2 d to 2 months: Wahl et al. 1995; Cartwright
et al. 1998; Baldwin et al. 2000).

Samples collected prior to stocking provide baseline data on the diet compo-
sition of predators. Stomach samples should be collected for at least three con-
secutive days during and after stocking, then once every 2–3 d, followed by a
progressively lower frequency of sampling (Figure 16.4). The reduction in sam-
pling frequency can be adjusted by evaluating how quickly the proportional
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Figure 16.4 Sampling frequency can affect the amount of interpolation error in estimates of
predation when acute periods of interaction are potentially short lived. In this example, a 10-d
sampling interval (upper panel) missed the rapid decline of focal prey in the diet and results
in an overestimate of the duration and magnitude of the predation response. The adjustable
sampling frequency scheme (middle panel) captured the initial decline by sampling on three
consecutive days before sampling effort was progressively reduced as the proportion of prey
in the diet stabilized through time. The adjustable sampling frequency design minimized
interpolation error and required less than half the effort as that of a daily sampling regimen
(lower panel).
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contribution of the focal prey, by weight or volume of the stomach contents,
changes in the diet between sampling dates. If the prey disappears quickly from
the diet (e.g., within a couple days), then sampling can be reduced to measure
monthly or seasonal changes as appropriate. If the diet composition changes
measurably, but at a more moderate rate, then a relatively frequent sampling sched-
ule should be maintained (e.g., sample once every 3–7 d) until the prey of inter-
est disappears or stabilizes at a relatively constant percentage of the diet through
time. The rate of change of focal prey in the diet can be calculated by regressing
its weight percentage in the diet against the number of days after the pulse of
prey appeared.

The spatial extent of predator–prey interactions during acute predation peri-
ods is important as well because we need to know what fraction of the predator
population is involved in order to estimate the total magnitude of predation losses.
If prey are concentrated in a localized area (e.g., stocking locations or location
where larval or juvenile fishes are migrating into lakes or reservoirs from streams
or spawning areas), predators may concentrate in response to an influx of prey.
Alternatively, predation may involve only those predators that happen to occupy
that region. Studies should be designed to detect whether the relative density of
predators (e.g., measured by C/f ) or their dietary response (measured by the
proportional weight contribution of focal prey in the diet) changes between areas
of high prey concentrations and other regions. Sampling along a distance gradi-
ent from the point of prey entry as well as before and after prey entry (a BACI
design, that is, before–after-control-impact design) addresses this issue.

■ 16.5 ANALYSIS OF DATA FROM BEHAVIORAL EXPERIMENTS
AND RELATED MODEL DEVELOPMENT

Several aspects of predator–prey interactions of fishes can be assessed under con-
trolled experimental conditions to help understand foraging ecology in natural
systems and answer fisheries management questions. A number of systems have
been used for these types of experiments, varying from aquaria to large pools and
tanks; these should be scaled to the size of the fish of interest. Experimental re-
sults can be used to construct models that simulate processes that underlie preda-
tor–prey interactions. Several techniques can be used to record behavior, includ-
ing direct observation in real time (with entry directly to a portable computer)
and videography.

16.5.1 Predation Sequence

The generalized predation sequence described in section 16.3 can be documented
with several nonoverlapping categories (Wahl and Stein 1988; Box 16.1): inactive
(resting and motionless), search (moving, not orienting to prey), observe (mo-
tionless but oriented to an individual prey), follow (moving and orienting to prey),
pursue (following at burst speed), attack (striking at prey), and capture (grasping
prey). Because these behaviors may be correlated, multivariate analysis of variance
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(MANOVA) is the preferred analysis approach for these data (Box 16.4). Behav-
ioral probabilities can be calculated at each step in the sequence (e.g., orient–
follow–pursue or strike–capture). Handling time can be defined as the time from
prey capture until search is resumed (in the vein of Werner and Hall 1974; Mayer
and Wahl 1997) or as the time required to ingest prey (Holling 1966).

Important differences exist among fish functional groups in components of
the predation sequence. Because planktivores ingest many small prey with rela-
tively low mobilities, they have higher capture success (usually >80%; Confer and
Blades 1975; Mayer and Wahl 1997) than do piscivores (usually <70%; Wahl and
Stein 1988; Einfalt and Wahl 1997). Similarly, planktivorous prey are small and
relatively defenseless, so prey are pursued, captured, and ingested within a sec-
ond or less (Mittelbach 1981; Koski and Johnson 2002) whereas handling times
for individual prey by piscivores are considerably higher (3–6 min for pikes, Wahl
and Stein 1988; 2–10 min for walleye, Einfalt and Wahl 1997). An interesting
exception is found for bluegill foraging on an exotic cladoceran (Daphnia lumholtzi).
Because of the large helmet and tail of this cladoceran, bluegill face foraging
constraints more similar to piscivores (Kolar and Wahl 1998). In general, because
of the high capture success and short handling times of planktivores, search time
is of much greater importance to a particulate feeder than is capture success (Juanes
1994) or handling time. For benthivores, or drift-feeders (e.g., trouts and salmons
in streams), feeding territories are common in many species, suggesting that prey
are patchily distributed and search costs are high; thus consumers might shift
costs from search to territory defense.

16.5.2 Optimal Foraging

Animals forage by selecting prey that maximize the rate of energy intake while
minimizing costs associated with searching and handling prey (Stephens and Krebs
1986). Optimal foraging models are often employed to predict diet selection for
given characteristics of the predator and prey and can successfully predict re-
source use (Mittelbach 1981; Mittelbach and Osenberg 1994). To increase fitness,
predators choose prey that minimize energy spent on search, capture, and han-
dling while maximizing energy intake. Energy return (J/min) can be calculated as

En =  i = 1

n

� �iEi – Cs

i = 1

n

��iThi Pi

,
T 1 + 

(16.3)

for each prey type i out of n available prey types. The parameter �i is the number
of encounters with prey i during a feeding trial (sensu Charnov 1976); Ei is the
expected energy gain (J) per individual prey item; Pi is the probability of a cap-
ture occurring after an encounter; Cs is the energy cost of searching; and Thi is the
handling time for each prey type i. Prey types are added sequentially until E/T
is maximized (Pyke 1984). In this and many formulations of optimal foraging
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Box 16.4 Multivariate Analysis of Variance for Predator–Prey Behavioral Data

The multivariate analysis of variance (MANOVA) is appropriate for cases in which several dependent
variables have been measured in a single experiment. This technique is more appropriate than
performing multiple univariate tests, which  can increase the probability of a type I error (Scheiner
1993). As a result, this test is generally appropriate for analysis of multiple behaviors in the preda-
tion sequence (Box 16.1). Below we use a SAS program to perform a MANOVA in an example
concerning the effects of predator size and prey density on behaviors in the predation sequence.

In our hypothetical example, we examine the effect of walleye length, prey density, and their
interaction on individual walleye feeding behaviors in aquaria experiments (similar to T. Galarowicz,
Central Michigan University, and D. Wahl, unpublished data). Foraging was examined for three
different sizes of walleye (20, 50, and 100 mm) feeding at three different densities (1, 10, and 25
bluegill per m3) of optimal-sized bluegill prey. Five replications at each size and density combination
were performed with five individual walleye. The total number of searches, orientations, follows,
pursuits, strikes, and captures in the predation sequence (Box 16.1) were recorded for each trial.

We first perform a MANOVA. If significant multivariate effects are found (known as a protected
ANOVA), we then examine the univariate responses (ANOVAs) for significant effects. The ANOVAs
that are not significant are deleted, and the remaining ANOVAs are run again. In the MANOVA, a test
for significant differences among groups is based on eigenvectors (linear combinations of all
dependent variables) and eigenvalues of the matrix (the amount of variation explained by eigen-
vectors). Pillai’s trace is the measure most robust to violations of assumptions and is the most
commonly used statistic.

One consideration when using MANOVA is that power decreases as the number of response
variables increases, which can lead to type II error. It is also possible to use a univariate approach
and a Bonferroni adjustment to alpha. In addition, MANOVA can  be used only when all subjects
have been measured for all response variables;  it is assumed that multivariate error effects are
normal and covariances equal among groups (Scheiner 1993). Other assumptions are the same as
for ANOVA.

Below, we examine the effect of three distinct classes of walleye length (20, 50, and 100 mm) and
prey density (1, 10, 25 per m3), and the interaction of predator length and prey density on the total
number of searches, orientations, follows, pursuits, strikes, and captures in the predation sequence.
Each combination of predator size and prey density was replicated five times using different
walleye. The total number of searches, orientations, follows, pursuits, strikes, and captures were
recorded for each trial.

Program

data fishprey;

input length density search orient follow pursue strike capture;

cards;

(input data);

proc glm;

class length density;

model search orient follow pursue strike capture=length density

length*density;

manova h=length density length*density /printe printh;

run;
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Output and Interpretation

Table Results of MANOVA examining the total number of searches, orientations, follows, pursuits,
strikes, and captures in the predation sequence  for three different size-classes of walleye (20, 50,
and 100 mm) feeding at three different densities (1, 10, and 25 bluegill per m3) of optimal-sized
bluegill prey.

Source Pillai’s trace F (df ) P

Length 1.01 5.42 (12, 64) <0.0001
Density 1.07 6.26 (12, 64) 0.0001
Interaction 0.67 1.15 (24, 136) 0.31

The MANOVA test shows that foraging behaviors of walleye were significantly affected by both
walleye length and bluegill density but not by their interaction. Because the interaction was not
significant, the analysis should be run again without the interaction term.

Table Individual ANOVAs for predation sequence behaviors with walleye length and bluegill
density as independent variables. The F-statistic has 2, 36 df.

ANOVA

Walleye length Bluegill density

Behavior F P F P

Searches 13.67 0.0001 65.47 0.0001
Orientations 12.41 0.001 57.73 0.0001
Follows 5.32 0.009 61.95 0.0001
Pursuits 17.87 0.0001 93.80 0.0001
Strikes 1.99 0.15 27.51 0.0001
Captures 2.29 0.11 28.43 0.0001

Individual ANOVAs show walleye length affected the number of each behavior in the predation
sequence from search through pursuit but did not affect the number of strikes and captures. Larger
walleye initiated more searches, orientations, follows, and pursuits than did smaller walleye but
attacked a lower proportion of the prey. As a result, the number of captures was similar across size-
classes of walleye. Density of bluegill prey significantly affected all components of the predation
sequence. At higher prey densities, walleye increased the number of all individual behaviors.
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models, the true costs associated with components of the predation sequence,
from orientation through capture, are often not accounted for explicitly in the
models. These costs are extremely difficult to determine in laboratory experi-
ments but could be important if predation costs differ significantly among prey.
Other constraints on fitness (predation, reproduction, and habitat) may result in
a fish not foraging optimally, and several assumptions of these models may not be
met (e.g., prey encountered sequentially rather than simultaneously). Neverthe-
less, these models have been usefully applied to understanding several aspects of
predator–prey interactions, particularly under experimental conditions.

16.5.3 Size and Species Selection

Size-specific attributes of the predator, prey density, and characteristics of the
prey can all influence predator–prey interactions. Changes in prey type may be
associated with an increase in predator size. Prey size can constrain selection for a
variety of prey types, including zooplankton (Bremigan and Stein 1994; Mayer
and Wahl 1997) and fish (Hambright 1991; Juanes 1994; Christensen 1996;
Lundvall et al. 1999). Prey encounter rates increase with size-related changes in
swimming speeds (Gerritsen and Strickler 1977) and size-dependent reactive dis-
tances to invertebrates (Breck and Gitter 1983) and larval fishes. In contrast, the
effect of prey size on the reaction distance of piscivorous fishes to larger (postlar-
val) fish prey appears to differ among taxa: sunfishes exhibited increasing reac-
tion distance with prey size (Howick and O’Brien 1983), whereas lake trout showed
no effect of reaction distance to prey size (Vogel and Beauchamp 1999). Many
fish undergo ontogenetic diet shifts and change their diet as they grow. These
shifts are associated with changes in ability to capture more energetically benefi-
cial prey types successfully and are often correlated with discrete periods of growth
that may occur at critical periods in the life history of fishes (Buijse and Houthuijzen
1992; Stahl and Stein 1994). Several electivity indices are available that can be
used to assess changes in prey preferences by predators (see Chapter 11).

It is often assumed that fish predators actively choose the sizes and species of
their prey. This concept is central to optimal foraging models, which have been
used to account for the influence of prey species and sizes on diet composition of
predators (Werner 1974; O’Brien et al. 1976; Werner and Mittelbach 1981). How-
ever, a review of laboratory studies with controlled prey densities showed a variety
of piscivorous fish chose the smallest prey available, and many of the prey con-
sumed were smaller than optimal (Juanes 1994), suggesting that prey capture was
a passive process (Sih and Moore 1990) rather than predators actively choosing
prey. Under this scenario, predators attack all sizes of prey as encountered, but
differential vulnerabilities lead to smaller, more vulnerable prey being consumed
in higher proportions (Juanes 1994). Although prey handling times and associ-
ated optimal foraging models have been used to explain planktivore foraging
successfully, these models have been criticized as unrealistic for piscivores forag-
ing on mobile prey. These prey require measurable energy demands involved
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with stalking and capturing that can vary considerably with size of prey (Sih and
Moore 1990). Foraging behavior of piscivores, such as pikes (Wahl and Stein 1988),
largemouth bass (Savino and Stein 1982; Hambright 1991), and walleye (Einfalt
and Wahl 1997) have been examined extensively. Differences in cost–benefit rela-
tionships (handling time/prey dry mass) have successfully predicted selection for
different prey species, but piscivores sometimes select larger prey (see Figure 16.5,
an example for walleye) than predicted by an optimal foraging model, at least in
confined experimental arenas. For piscivores, prey encounter rates may be more
important than handling times in determining prey size selection, and different
decision rules may be necessary to evaluate foraging decisions (Breck 1993).

Several studies have focused on prey morphology and behavior as factors de-
termining species selection (e.g., Wahl and Stein 1988; Einfalt and Wahl 1997).
Fusiform or soft-rayed prey are generally preferred over sunfishes, and several
mechanisms have been proposed to account for these preferences. Prey differ
behaviorally in response thresholds (Webb 1986) and escape tactics (Savino and
Stein 1982; Wahl and Stein 1988; Einfalt and Wahl 1997). These prey-specific
behaviors can also interact with habitat complexity to determine foraging success
of predators (Savino and Stein 1982; Savino et al. 1992). In addition, body mor-
phology can influence capture success and handling time (Webb 1986; Wahl and
Stein 1988; Hambright 1991) with predators choosing larger sizes of fusiform
minnows than deep-bodied sunfishes.

16.5.4 Functional Response Curves

Prey density is an important factor determining foraging success and can influ-
ence search time and behavior of predators (see Box 16.4 for analysis of prey
density and predator lengths on feeding behaviors). Functional response curves
are used to describe the relationship between prey abundance and the number of
prey eaten per predator (Holling 1959; Figure 16.6) and can be a useful, experi-
mentally based approach for modeling the link between ambient prey availability
and feeding rates. The type I functional response curve describes a linear in-
crease in the number of prey consumed with prey density but is often unrealistic
as the predator eventually becomes satiated. The type II curve is often more real-
istic and can be defined as

Neaten = a · Ti N/(1 + a · Th · N ), (16.4)

where a is the attack coefficient (attacks/s), Ti is the total time available for for-
aging (seconds), Th is the handling time per prey, and N is the prey density.
Nonlinear least-squares regression (SAS procedure NLIN) can be used to esti-
mate parameters for these equations (Juliano 1993; Box 16.5). The type III equa-
tion may be appropriate when the predator switches the prey of interest as that
type becomes more common or the predator learns to hunt more effectively for
that prey.
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Figure 16.5 Example of cost–benefit relationships (handling time/prey dry mass) used to
predict prey size and species selection for 150-mm age-0 walleye feeding on different sizes of
bluegill and golden shiner prey (from Einfalt and Wahl 1997). Handling times were recorded for
individual walleye in aquaria (N = 10) fed individual prey that varied in 4-mm size increments. To
determine size preference, predators were fed five prey, one from each size-class. Minimum
handling time/dry mass values indicate optimal values and suggest differences between prey
species (13–20% of predator length for bluegill and 27–33% for golden shiner). Walleye have a
more difficult time handling deep-bodied prey with spines such as bluegill compared with
fusiform soft-rayed prey such as golden shiner. An optimal foraging construct successfully
predicted differences in prey size selection with walleye choosing smaller bluegill than golden
shiner; however, prey preference was for larger individuals of both species than predicted.
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Figure 16.6 Functional response curves describing the relationship between prey abundance
and the number of prey eaten per predator per unit of time. The terms of the type I equation
(a) are n = number of prey, T = duration of foraging period, a = the predator’s capture efficiency,
and N = prey density. Some of these same terms apply to type II and type III equations. Two
formulations of the type II response are shown; equation (b) gives the relationship in the form
of Michaelis-Menten kinetics, where k is the asymptote (maximum feeding rate) and D is the
half-saturation coefficient (prey density at which feeding rate is half of maximum). The same
coefficients are used in the type III functional response (equation [d]). Equation (c) is a type II
response specified in terms of foraging parameters where Th = handling time.
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Box 16.5 Functional Response Curves

Functional response curves quantify predator feeding rates as a function of prey density. The
following example demonstrates how a functional response curve was determined for kokanee
feeding on zooplankton.

The functional response, or the relationship between predator feeding rate and the density of its
prey, is a fundamental framework for studying predator–prey interactions (Begon et al. 1996; Gotelli
1998). Three basic curves are commonly found, depending on the mechanics of the predation
process (Figure 16.6). Functional responses are useful for predicting how changes in prey popula-
tions may affect fish feeding rates. They are also essential components of models that seek to
predict fish foraging behavior and growth rates in the wild (e.g., Stockwell and Johnson 1997;
Stockwell et al. 1999).

Laboratory experiments to estimate the parameters of a functional response involve trials in which
predator consumption rate is measured under a range of prey densities. Pilot experiments can be
used to estimate the variance in consumption rate among trials. That variance can then be used in a
power analysis to estimate the number of trials needed to estimate the parameters of the func-
tional response to within the desired level of precision (Chapter 3). Prey density in trials should
cover the range of densities that are expected in the wild, and investigators should evaluate
whether the experimental setup adequately mimics predator–prey conditions in the wild. The
manner in which trials are conducted may affect fish behavior. For example, for some species
intraspecific aggression in the confines of a laboratory arena may require the investigator to
conduct trials with individual fish. If the same individual fish is to be used in multiple trials then
the investigator should evaluate bias from possible carryover effects such as learning during
previous trials.

Table Zooplankton (Daphnia) density, number of Daphnia consumed, trial duration, and kokanee
consumption rate  from a subset of laboratory trials by Koski and Johnson (2002).

Zooplankton density Daphnia Trial duration Consumption rate
(Daphnia/L) consumed  (min)  (Daphnia/min)

3.0 176 9.41 18.7
4.0 234 9.57 24.5
5.0 267 9.57 27.9
7.5 259 8.30 31.2
8.3 324 9.57 33.9
9.9 364 9.82 37.1
10.9 370 9.61 38.5
12.5 345 9.44 36.5
13.1 356 9.57 37.2
15.6 368 9.44 38.9
17.0 406 9.97 40.8
23.4 416 9.32 44.7
26.0 392 9.90 39.6

The following SAS program was used to fit a nonlinear regression by least squares and obtain the
parameters of a type-2 functional response. The model’s intercept was forced through the origin on
theoretical grounds. Note that nonlinear regression models are more difficult to fit than are linear
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ones. They also require the user to input starting parameter values; reasonable starting values are
essential to insure rapid and accurate fitting of parameters. Starting values can be determined from
a visual inspection of plots showing feeding rate as a function of prey density. The parameter k
(maximum consumption rate) can be estimated from a plot if the data cover a sufficiently broad
range of prey densities such that an asymptote is apparent. Given an estimate of k one can then
estimate D (prey density at half of maximum consumption rate, k/2).

Program

data typeIIfr;

input N C;

/* k = maximum consumption rate

D = density at which consumption rate is 1/2 max

N = prey density

C = consumption rate (n/T)*/

proc nlin;

model C=(k*N)/(b1+N);

parameters k = 50, D = 5; /* Input starting values for estimates of k and D*/

output out=b p=yhat u95m=u95m l95m=l95m;    /* Prints observed, predicted, and

95% confidence intervals around the mean*/

proc print;

run;

proc gplot data=b;

plot C*N yhat*N /overlay; /* Plots predicted and observed values to examine lack

of fit*/

symbol1 value=plus;

symbol2 interpol=join;

run;

Output

Table Results of SAS program used to fit a nonlinear regression by least squares to obtain the
parameters of a type-2 functional response for kokanee feeding on Daphnia. Parameters are k
(maximum consumption rate) and D (prey density at half of maximum consumption rate, k/2).

Regression

Source df Sum of squares Mean square F-value Approximate P > F

Regression 2 16121.7 8060.4 2564.13 <0.0001
Residual 11 34.5785 3.1435
Uncorrected total 13 16155.3
Corrected total 112 627.5

Parameter Estimates

Parameter Estimate Approximate SE Approximate 95%  confidence limits

b0 (k) 50.0521 1.8421 45.9977 54.1065
b1 (D) 4.1969 0.5419 3.0041 5.3897

(Box continues)
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Figure Observed (circles) and predicted (dashed line) consumption rate (n/T, Daphnia per minute)
as a function of zooplankton density (N, Daphnia per liter), and the upper and lower 95% confi-
dence limits (CI, solid lines) on the regression line fit by nonlinear regression. Residuals from the
regression (diamonds) are also plotted against zooplankton density.

Interpretation
Kokanee feeding rate increased rapidly as zooplankton density was increased, but the increase in
their feeding rate began to slow at higher zooplankton densities, suggesting that handling time
was beginning to limit consumption rate. However, feeding trials at zooplankton densities greater
than the 26 Daphnia/L shown here (which undoubtedly occur in the wild) would be necessary to
describe fully the functional response for this planktivore. Goodness-of-fit indicators suggest a
good fit of the type-II model to the data: the regression explained a large fraction of the total
variation in the data, there was no pattern in the residual plot (see figure), and the 95% confidence
limits on the regression fit were not large. Akaike’s Information Criterion (AIC; Burnham and
Anderson 2002) could also be used to evaluate the appropriateness of the type-II model versus
alternative models (e.g., a type I or a type III).

Box 16.5 (continued)

16.5.5 Application of Experimental Results to Management

Experimental studies of predator–prey interactions can be useful in helping guide
a variety of fisheries management decisions. As an example, survival and growth
can be highly variable for stocked sport fishes, and stocking strategies can be guided
by information from predator–prey experiments. Losses to predation have been
quantified for several species of stocked sport fishes, including pike (Stein et al.
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1981; Wahl and Stein 1989), walleye (Santucci and Wahl 1993), channel catfish
(Santucci et al. 1994), and Pacific salmons and trouts (Oncorhynchus spp.; Cartwright
et al. 1998; Baldwin et al. 2000). Information on the effects of prey availability and
predation on growth and survival of stocked fishes can be used to make decisions
about when, where, and at what size to stock fishes (Box 16.6). Similarly, under-
standing of predator–prey interactions under experimental conditions have been
usefully applied to predicting effects of exotic species (i.e., zebra mussels and
round gobies) and have helped to guide and develop management options. These
are just a few of the many ways in which these types of studies can be useful in
management situations.

■ 16.6 MODELS OF PREDATION RATES IN NATURAL SYSTEMS

Modeling approaches span a continuum of empirically through mechanistically
based constructs. The experimental data section above (section 16.5) introduced
models that were developed directly from controlled experiments on prey selec-
tion, optimal foraging, and functional response models, whereas this section will
focus on models used to quantify predation in natural systems. Estimating the
amount of prey consumed by predators is a common but challenging goal in preda-
tor–prey investigations. Predation rates can be calculated directly from field-based
consumption estimates (e.g., Eggers 1977; Elliott and Persson 1978) or indirectly
using empirical relationships (e.g., production:biomass ratios and predator–prey
biomass ratios) or simulation models that are often supported by field measure-
ments or laboratory experiments. Each method has strengths and weaknesses and
differs considerably with regard to data requirements, validity of assumptions,
and the degree of resolution along various dimensions of interest (Ney 1990).
The most suitable approach will depend on the level of resolution required (e.g.,
annual averages versus finer temporal scales; whole population or trophic level
averages versus size- or age-structured processes or individual predators; or whole-
basin averages versus finer spatial scales) and on the type and quality of data or
sampling resources available. Three mass- or energy-balance approaches (pro-
duction-based estimates, bioenergetics models, and EcoPath with EcoSim model)
and an encounter rate model are presented below. These methods should be
viewed as complementary or sequential approaches, based on the primary ques-
tion of interest, existing information, and available resources.

16.6.1 Production-Based Estimates of Consumption

Simple approaches such as production-based models provide first-order approxi-
mations of annual predation rates and can be computed quickly if common popula-
tion dynamics data are available (Ney 1990). These estimates require knowledge of
annual production by cohorts of predators (i.e., abundance and biomass at the
beginning and end of a year) and food conversion efficiency. In these models,

Pt = Gt · Bt , (16.5)
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where production P represents the amount of mass or energy accrued by a popu-
lation or cohort per unit time (including growth of individuals that die during
that interval), Gt is the instantaneous growth of the average individual during
time t (e.g., t = 1 year), and Bt is the mean biomass of the population or cohort
during the time interval. The instantaneous growth of the average individual, Gt ,
is given by

Box 16.6 Case Study of Predation and Stocking of a Sport Fish

Stocking or introductions of sport and forage fishes are common management actions. Sport fish
species are stocked to maintain fisheries in waters where habitat degradation and overexploitation
have reduced existing populations or to establish new populations in waters such as ponds and
reservoirs. Fish may be stocked at catchable size for immediate harvest or as juveniles in a put-
grow-and-take stocking strategy. In Midwestern reservoirs, smaller northern pike are more
vulnerable to predation by largemouth bass than are larger individuals (Wahl and Stein 1989), so
size at stocking influences predatory mortality (see flow diagram  below). Predation mortality on
stocked northern pike declined from 30% for 145-mm fish to about 2% for 205-mm fish (panel [A],
left side flow diagram), as indicated by increased C/f (panel [B]).

Prey preference and prey demographics also influence both survival and growth of stocked
piscivores. In laboratory experiments, northern pike captured herrings, carps, and minnows more
successfully than they captured sunfishes (Wahl and Stein 1988; panel [C]), and they preferred
gizzard shad over bluegill in the field. Morphology (body depth and spines) and antipredatory
behavior unique to each prey species (bluegill are more evasive) contribute to differential vulner-
ability. As a result, northern pike grow more slowly with sunfish prey than with herrings (panel [D]).
In addition to prey preference, availability of appropriately sized prey will also influence growth of
stocked sport fishes (Madenjian et al. 1991; Santucci and Wahl 1993; Wahl and Stein 1993; Johnson
et al. 1996). Access to the appropriate forage base is more important for smaller stocked fishes than
for larger ones. As diet breadth increases (owing to increased gape sizes), predator dependence on
specific sizes and types of prey declines (Stahl and Stein 1994). In addition to growth, prey charac-
teristics influence survival of stocked sport fishes. Survival of northern pike is lower in sunfish
communities than in those with herring or carp and minnow prey (Wahl and Stein 1988). Reduced
survival may relate directly to reduced capture ability or indirectly to reduced growth and the
resulting increased vulnerability to predation or disease.

Timing of stocking can influence predatory losses as well. Cool water temperatures in autumn
reduce food consumption rates by largemouth bass, thus reducing the potential for predatory
impact by warmwater predators. In contrast, as cooler fall temperatures reduce thermal stratifica-
tion in coldwater lakes and reservoirs, spatial overlap can increase between coldwater predators
like trouts and their prey (Baldwin et al. 2002), as most of the water column approaches optimal
growth temperatures for the predators, and predation rates increase (Baldwin et al. 2000).

These and similar results for other stocked sport fish species suggest that stocking should be
pursued within an ecological framework that integrates the relative importance of predator–prey
interactions across all life stages (Wahl et al. 1995). This framework provides a guide for making
management decisions concerning species, sizes, and timing of fish introductions into systems
with specific characteristics. Similar approaches can assess potential negative consequences of
stocking on community structure and function. In this way, the use of stocking as a management
tool can be optimized.
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Figure Diagram of how experimental and field results can be used to address a management
problem. Predation mortality for northern pike stocked into Midwestern reservoirs was higher for
smaller than larger northern pike (A, lab experiments and field trials). This differential predation
mortality was also reflected by higher catch per unit effort of the larger size-groups of northern
pike stocked in reservoirs (B). Juvenile northern pike exhibited higher capture success rates on soft-
finned fathead minnow and gizzard shad compared with spiny-rayed bluegill in lab experiments
(C), and this was reflected in higher growth rates for northern pike in reservoirs where the pre-
dominant prey were gizzard shad rather than bluegill (D). When combined with information about
the environmental conditions and community structure of the host waters, these type of results
enable informed decisions about when, where, and at what size to stock sport fishes.

Gt = loge(Wt/W0)/t , (16.6)

where W0 and Wt are the mean weights of individuals at the beginning and end of
the interval, respectively. Food conversion efficiency, CE, is the amount of growth
(Wt  – W0) by an individual that resulted from consuming a known quantity of
food, C ' (e.g., from long-term controlled growth experiments using natural prey):
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CE = (Wt – W0)/C '. (16.7)

The estimated consumption Ct over time t  would then be

Ct = Pt /CE. (16.8)

If conversion efficiency was assumed to remain at a constant 10% for all age-
classes and years, then total annual consumption of all prey species by the preda-
tor could be easily calculated in a speadsheet based on the relationships above
(Box 16.7).

In reality, estimates of food conversion efficiency are rare for fish feeding in
natural environments, as such estimates depend on estimates of individual con-
sumption and growth over specified time intervals. Moreover, conversion efficien-
cies can change dramatically with body size, temperature, and food quality, thus
potentially causing major errors in consumption estimates. Knowledge of the popu-
lation dynamics of predators in some freshwater systems may also be insufficient
to estimate annual production. If the predation events of interest vary consider-
ably among size-classes of predators, through time, or among habitats, then very
serious interpolation or extrapolation errors may result if the sampling design
and subsequent analysis do not account for these important sources of variability.
Nonetheless, such estimates could provide valuable “first-cut” evaluations for ques-
tions such as, Can predation potentially account for enough mortality to regulate
specific prey populations?

If such an analysis suggested that predation removed a very small fraction of
prey (e.g., mortality < 1%), then the direct effects of predation could be dismissed
as a major source of mortality, even though the production-based estimator of
consumption potentially erred several-fold from actual mortality. In this case, the
uncertainty around the predation estimate did not exceed a threshold value at
which predation losses were considered a serious source of mortality. However, if
the consumption estimates suggested that predation represented, say, greater than
30% of the prey population, and the associated uncertainty resulted in a three- to
fivefold difference in the predation estimate, then fisheries scientists might con-
clude that (1) predation could be a significant source of mortality, and (2) addi-
tional study might be required to reduce the greatest sources of uncertainty.

Ney (1990) proposed a variation of the conventional production-based ap-
proach, where consumption, Ct , represented constant multipliers of predator pro-
duction, P, and biomass B:

Ct = 2 · P + 3 · B. (16.9)

This approach implies that annual maintenance costs require the equivalent of
three times the predator’s body mass in food per year, and that after these meta-
bolic demands are met, 50% of the remaining energy can be converted into growth
while the remaining 50% is lost as waste. Consumption estimates from this method
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Box 16.7 Production-Based Estimate of Consumption

Presented here is an hypothetical example of a production-based estimate of consumption of a
focal species, prey A, by each age-class of a predator population. Fisheries scientists wish to
calculate a quick, first-order estimate of predation on prey A and want to know which age- or size-
classes consume the most biomass of prey A.

Table Consumption of prey A by age-class of predator. The mean body weight, W; the instanta-
neous growth of the average individual, Gt ; abundance, Nt ; cohort biomass Bt ; and annual average
production, Pt , of prey A in the diet varies among ages (t). Annual production, Pt , is divided by
conversion efficiency (CE = 10% in this example) to estimate annual consumption, Ct , per cohort.

Predator Total con- Consump-
age sumption Percent tion
(t ) W(g) Gt Nt Bt Pt CE Ct (g) prey A prey A

0 0.3 3.9120 1,000 300 9,389 0.1 93,890 0% -
1 15 2.6856 300 4,500 68,079 0.1 680,790 5% 34,040
2 220 0.7156 210 46,200 40,200 0.1 402,000 25% 100,500
3 450 0.2187 147 66,150 13,534 0.1 135,340 40% 54,136
4 560 0.0690 103 57,624 3,479 0.1 34,790 75% 26,093
5 600 72 43,218 0.1

In this example, overall annual consumption was greatest for age-1 predators (680,790 g/year);
however, since the percentage of prey A in the diet increased with the age of the predator, age-2
predators consumed the greatest annual biomass of prey A (100,500 g/year) based on  this
production-based estimate of annual consumption.

Note that conversion efficiency for piscivores can vary widely (e.g., CE = 5% to 30%) depending on
variation in thermal conditions and energetic value of the primary prey. A first-order approximation
of CE for multi-cohort piscivore populations could be 20% (e.g., Lane et al. 1979) and is consistent
with a generalized annual energy budget for carnivorous fish of 60% of the consumed energy
going to metabolism, 20% to waste, and 20% to growth (Brett and Groves 1979).

The data above are hypothetical, so no variability for the estimators is available. Because Pt is a
product (Pt = Gt · Bt ), and Ct and CE are ratio estimates (Ct = Pt /CE; CE = G/C’ ), error estimates for
products and ratios would be needed to compute error around the estimates for consumption
using this method. Note that C’ used in calculating CE would be derived independently from a
different data set (e.g., consumption in a controlled growth experiment or an average from other
studies) than the consumption Ct we are trying to estimate here.

Var(P ) = G 2 · var(B) + B 2 · var(G) – var(B) · var(G). 
^ – –

Var(CE) = CE2^ var(G)
G2

var(C' )
C' 2

2cov(G, C' )
P · C'

+ –[ [.

Var(C ) = C 2^ var(P)
P2

var(CE)
CE2

2cov(P, CE)
P · CE

+ –[ [.
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compared favorably to independent field-derived estimates or bioenergetics model
simulations, but the production-based and bioenergetic estimates of consump-
tion diverged for older cohorts of predators (Ney 1993).

16.6.2 Bioenergetics Modeling

Bioenergetics modeling, particularly the Wisconsin bioenergetics model (Hewett
and Johnson 1987, 1992; Hanson et al. 1997), has become a frequently used tool for
estimating consumption or predation rates (e.g., Stewart et al. 1981; Hartman and
Margraf 1992; Jones et al. 1993; LaBar 1993; Beauchamp et al. 1995; Baldwin et al.
2000; Johnson and Martinez 2000) or growth potential (e.g., Brandt et al. 1992) for
many of the major freshwater fishes and some predatory invertebrates like mysid
shrimp. Bioenergetics models are based on an energy balance equation:

Consumption =
Metabolism (standard and active plus specific dynamic action [SDA]) +

Waste (excretion and egestion) + Growth,

where maximum daily consumption and metabolism are modeled as species-spe-
cific functions of body mass and temperature (see Chapter 12 for more detail).
The models are most commonly used to estimate the consumption required to
satisfy growth observed or targeted over a specified time interval (Kitchell et al.
1977). These models are data intensive, requiring many species-specific param-
eters and extensive inputs from field data, but they offer the flexibility to address
trophic responses at high temporal, spatial, and size-structured resolution if ad-
equately supported by directed field sampling (Ney 1990, 1993; Brandt and
Hartman 1993; Hansen et al. 1993).

Consumption estimates are constrained by growth increments observed for
each age-class or growth cohort over specified time intervals, and seasonal con-
sumption can be partitioned into predation rates on different prey categories by
incorporating seasonal diet information from field sampling. An important ad-
vantage of the Wisconsin bioenergetics model is that it operates on a daily time
step and can account for temporal changes in predator size, diet composition,
temperature, and prey quality (energy density). Therefore, important short-term
interactions like acute predation events can be simulated effectively. The input
data requirements for this model can be demanding, but most data (size at age,
size structure, diet, distribution, and temperature) are often recorded by fisheries
scientists during routine population monitoring surveys. Data from routine
assessments may not be collected at the frequency required to address specific
predator–prey issues, but minor modifications to sampling and data recording
protocols can satisfy the input requirements for these models. When compared
with independent estimates of consumption, the Wisconsin bioenergetics model
has performed well for a variety of salmons and trouts (Beauchamp et al. 1989;
Brodeur et al. 1992; Ruggerone and Rogers 1992; Cartwright et al. 1998; Madenjian
and O’Connor 1999) and largemouth bass (Rice and Cochran 1984) but differed
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significantly from field-based estimates for pike (Wahl and Stein 1991) and perches
(Boisclair and Leggett 1989a, 1989b, 1989c, 1989 d; but see Hewett et al. 1991 and
Boisclair and Leggett 1991). A more thorough description of the Wisconsin bioen-
ergetics model’s construction, testing, refinement, and comparisons with alterna-
tive approaches (e.g., field-based stomach fullness and gut evacuation rate meth-
ods) are presented elsewhere (Ney 1990, 1993; Hansen et al. 1993; Chapter 12).
We will explain how bioenergetics models can be used to quantify predator–prey
interactions at multiple trophic levels and emphasize considerations for study
design and analysis that minimize interpolation or extrapolation error.

Trophic interactions can be quantified by estimating the biomass or numbers
and sizes of prey consumed by different predators in a food web. Consumption
rates by individuals from each species or life stage can be estimated using a bioen-
ergetics model, given field estimates of (1) incremental growth for each age-class
of consumer; (2) the temporal diet composition of each age-class over the period
of interest; (3) the average daily temperatures experienced by consumers (termed
“thermal experience”); and (4) the energy density of the consumer and prey.
Predation rates by individuals from each age- or size-class can be expanded to
population level consumption rates if the mortality rates, abundance, and size
structure of the consumer’s population is known. As with other methods, the major
challenge of this modeling approach is to minimize interpolation or extrapola-
tion errors caused by inappropriately pooling input data across size-classes or life
stages, by lumping dynamic periods of feeding, distribution, or growth with static
periods, or by careless expansions from individual predation rates to population
level impacts on prey populations.

16.6.2.1 Growth Inputs

Annual growth.—The accuracy of the consumption estimates are dependent on
accurate estimates of growth by the predator because the Wisconsin bioenergetics
model calculates the amount of food required to achieve the changes in the body
weight of predators over specified time intervals. Annual growth increments should
be considered the longest acceptable growth period used for fitting consump-
tion. However, when modeling acute predation over relatively short periods, fit-
ting consumption to an annual growth increment could produce considerable
error in the estimated predation rate (discussed in following section on seasonal
growth). Routine monitoring data often provide estimates of annual growth, either
by tracking the modal lengths of each age-class through time or by back-calculating
length at age from otoliths, scales, or other appropriate bony parts (Summerfelt
and Hall 1987; Ricker 1992; Chapter 5). These length-at-age estimates are con-
verted to weight-at-age estimates using length–weight regressions and provide a
first approximation of annual weight change by different age-classes in the con-
sumer population. Body mass at a given length can vary tremendously, so direct
measurements of weight at age, when available, are preferred over the back-calcu-
lation method. Unfortunately, weights are recorded less frequently than are lengths.
The accuracy and precision of these estimates will depend entirely on inherent
variability of the data and the adequacy of the sample sizes for each age-class.
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Accuracy and precision of annual growth increments can be improved tremen-
dously by generating size and growth estimates from a relatively short, consistent
sampling period just after annulus formation.

For older, slow-growing age-classes of long-lived species (e.g., lake trout), most
of the annual growth is elaborated as seasonal gain and loss of gonadal tissue
rather than somatic growth and will not be adequately reflected by annual growth
increments. Therefore, the change in gonadal weight may provide a reasonable
minimum estimate of both seasonal and annual growth. The Wisconsin bioener-
getics model allows the user to specify the date and amount of gonadal loss for
mature fishes. The question then becomes whether adults spawn every year and
whether the sex ratio of spawners is highly skewed toward one gender or the
other. Accurate measurement of growth becomes progressively harder with the
older age-classes of long-lived or slow-growing species. Therefore, consider whether
these older cohorts still represent an ecologically significant component of the
predator population, based on their relative abundance, diet composition, and
consumption rate. If the older cohorts impose minimal predation compared with
more abundant younger cohorts, then the older cohorts may not require the ad-
ditional effort needed to address minor sources of uncertainty or error.

Tracking weight change from tagged individuals can provide direct estimates
of growth over a variety of time intervals; however, recapture and accurate mea-
surement of the tagged fish in sufficient numbers at strategic times may be too
limited to provide reliable estimates of growth. Tagged fish might also grow slower
than untagged fish, thus potentially underestimating growth. Nonetheless, mark–
recapture studies are commonly employed for population abundance estimates,
and these studies can serve as the primary source of growth estimation or as supple-
mentary information to help interpret age and growth patterns inferred from
other methods.

When consumption is fitted to annual growth increments in bioenergetics
models, changes in daily consumption estimates will be driven primarily by the
temperature regime used in the model and, secondarily, by any large seasonal
changes in energy density for a large fraction of the diet. Consequently, if the true
seasonal growth pattern differs significantly from the temperature-driven growth
trajectory produced by the model, short-term consumption estimates (e.g., acute
predation periods) will be biased in the same direction that the simulated growth
deviates from the true seasonal growth trajectories.

Seasonal Growth. More accurate estimates of consumption are generated when
bioenergetics models are fit to multiple growth intervals per year instead of an-
nual growth increments (Rice and Cochran 1984; Beauchamp et al. 1989; Wahl
and Stein 1991). Aquatic organisms rarely grow at a constant rate throughout the
year because temporal changes in food supply, temperature, and other environ-
mental conditions operate independently or in concert to produce seasonal growth
patterns. Because the Wisconsin bioenergetics model estimates consumption to
satisfy observed growth over specified time intervals, it is important to allocate
growth rates as accurately as possible to the ecologically significant periods of the
year. For example, predation may be concentrated over a short period (e.g., a
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week or month) when the predators’ growth is either much higher or lower than
the average annual growth rate. Consequently, errors in estimated predation would
depend on how much the actual seasonal growth of the predators deviated from
the average growth rate over the year (Figure 16.7).

Figure 16.7 Comparison of monthly growth and consumption from bioenergetic simulations
based on a single annual growth cohort versus four seasonal growth cohorts when both
simulations grow from 300 g to 500 g in 365 d. Mean body weight was consistently higher each
month in the seasonal-cohort simulation. The different growth trajectories resulted in different
monthly consumption rates. Total consumption was estimated as 2,273 g/year for the annual-
cohort and 2,677 g/year for the seasonal-cohort simulation; consumption of benthos was 20%
higher per year from the seasonal-cohort estimate and fish consumption 11% higher in the
seasonal-cohort simulation.
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Ideally, the mean body weight of each age-class would be sampled at the begin-
ning and end of ecologically significant periods of the year by tracking changes in
mean weight for each age-class or by tracking length–frequency modes and con-
verting to body weights. Unless age-classes can be unambiguously separated into
distinct size modes, age analysis will be needed to reconcile length modes into
age-specific growth. Sample size requirements and logistical or political constraints
often preclude the sampling intensity needed to measure growth directly over
each of the periods of interest.

Alternative methods can be employed for allocating growth among periods
of the year. Short-term growth can be back-calculated from circuli spacing in
scales, otoliths, or other hard parts. Seasonal changes in relative weight or con-
dition factor for groups of age-classes (e.g., ages grouped as juveniles, subadults,
and adults) may improve temporal accuracy in growth with considerably less
data than would be required to estimate seasonal growth of each age-class di-
rectly. Physiological measures of short-term growth may provide additional reso-
lution in some instances (e.g., RNA:DNA ratios or insulin-like growth factors
like IGF-1 [Beckman et al. 1998]), but these methods have shown mixed results
among species or are still experimental. In general, consider whether seasonal
growth will vary significantly for reasons other than temperature. If so, then it
will be important to allocate weight changes for each age-class of the predator
into multiple growth stanzas (termed “cohorts” in the Wisconsin bioenergetics
model) within year-classes to estimate appropriate consumption rates during
ecologically significant periods.

16.6.2.2 Diet Inputs

For many species, diet composition changes seasonally and with increasing body
size, and this variability must be captured in order to model predation rates ap-
propriately. Consumers should be segregated into different feeding guilds, based
upon differences in diet composition and trophic position. Predators can be
grouped into size categories based on the statistical and graphical approaches
described in Chapter 11 and section 16.4.2. Diet information for any size-class of
consumer is entered as an input file into the Wisconsin bioenergetics model as
the proportional contribution of each prey category in the diet by wet weight (or
volume) for different dates through the period of interest. A diet input file can be
constructed to contain both periods of constant diet proportions and times of
rapid dietary change. This is particularly useful for limiting certain diet patterns
to discrete periods (e.g., heavy predation over 1–2 months) rather than allowing
certain prey items to remain in the diet inappropriately over longer intervals.
When diet compositions differ between sampling dates, the Wisconsin bioener-
getics model will automatically interpolate the diet proportions for every day
between the dates actually entered into the diet input file. To keep diet propor-
tions constant through a time interval, enter the same diet proportions on the
first and last day of that interval (Box 16.8).



Predator–Prey Interactions 807

Box 16.8 Diet Data for the Wisconsin Bioenergetics Model

An example of a diet input file used in the Wisconsin bioenergetics model is given here. Diet data
were entered for every sampling date (or the median date of a sampling period can be used). When
diet proportions change between sampling dates (among days 1, 91, 181, and between days 271
and 365), the model linearly interpolates a daily change in proportions of each prey type as
indicated in the graph. The diet proportions remain constant over periods when the same propor-
tions are entered at the start and end of that period, as between days 181 and 271. A combination
of constant and interpolated diet proportions can be used to minimize error associated with
applying diet proportions over too long a period in model simulations.

Table Hypothetical diet input file for Wisconsin Bioenergetic model.

Day Zooplankton Benthos Fish

1 0.05 0.60 0.35
91 0.20 0.30 0.50
181 0.05 0.30 0.65
271 0.05 0.30 0.65
365 0.00 0.60 0.40

Figure Resulting model simulation of the daily change in diet from hypothetical data set (zoopl.
represents zooplankton).
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16.6.2.3 Thermal Experience

The thermal experience of consumers can be determined several ways based on
field data or knowledge of their behavior and distribution patterns. In waters that
do not thermally stratify, average daily temperature recordings from temperature
loggers may be sufficient for estimating thermal experience unless organisms con-
centrate in thermal microhabitats (e.g., salmons and trouts congregating in ground-
water intrusions). Warmwater species can often be assumed to occupy the warm-
est temperatures available during thermal stratification (e.g., littoral or epilimnetic
regions of lakes during summer and the deepest water available during winter)
and would be confined to the ambient temperature during isothermal conditions.

For pelagic and demersal species, or species with variable movement and distri-
bution patterns, reconstructing thermal experience is more involved because the
combination of vertical distribution and movement patterns with concurrent ver-
tical temperature profiles determine the average daily thermal experience of these
organisms. If vertical distribution information is available (e.g., diel hydroacoustic
data for depth-specific densities of planktivores or depth-specific C/f data from
gill nets), a weighted mean thermal experience for different species or size-classes
can be computed for each sampling date by first multiplying the proportion of
the total catch (for that species or size-class) in each depth interval by the mean
temperature within that depth interval and then summing these products over all
depth intervals. This sum represents the weighted average thermal exposure for
the average individual of that species or size-class in the population (Box 16.9).
When temporal depth distribution data or temperature profiles are unavailable, a
common approach has been to assume “behavioral thermoregulation,” which
means that fish will seek out temperatures closest to their physiological optimum
temperature for growth. This may ignore other important behavioral or physi-
ological constraints like foraging opportunities, predator avoidance, or tolerance
for hypoxia or other suboptimal environmental conditions.

16.6.2.4 Energy Density of Predators and Prey

The energy density (in terms of calories or joules per gram body weight [cal/g or J/
g]) of prey will determine how much prey biomass must be consumed for a preda-
tor to obtain any given amount of energy. For example, a fish would need to con-
sume at least 1.5 times more biomass of invertebrates with energy densities of 3,000
J/g than of fish prey with 4,500 J/g to acquire the same amount of energy. More-
over, invertebrates generally contain a relatively large fraction of indigestible mate-
rial in their exoskeleton (averaging 10–17% of their body weight across many taxa
and 25% for crayfishes compared with an average of 3% indigestible material in
fishes. Of the energy ingested, waste losses are subtracted and metabolic costs (stan-
dard and active metabolism plus SDA) are paid before any energy is allocated for
growth. The remaining energy is divided by the energy density of the consumer to
convert energy into new consumer biomass. So if a predator’s energy density was
6,000 J/g, and 4,000 J of energy remained after all waste and metabolic costs were
accounted for and removed by the model, that remaining energy would be con-
verted into 4,000 J/(6,000 J/g) = 0.67 g of new growth for the predator.
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Box 16.9 Computation of Average Thermal Experience

Given here are two examples of computation of average thermal experience for cohorts, with and
without vertical migration, occupying a range of depths under thermally stratified conditions.

Table Average thermal experience in the absence of diel vertical migration.

Temperature Fish density Proportion of Proportion allocation
Depth (m) (°C)  or C/f total fish × temperature

0 20 0 0.00 0.0
2 20 3 0.06 1.2
4 20 9 0.18 3.6
6 20 12 0.24 4.8
8 18 10 0.20 3.6
10 16 6 0.12 1.9
12 14 4 0.08 1.1
14 12 3 0.06 0.7
16 10 1 0.02 0.2
18 9 0 0.00 0.0
20 9 1 0.02 0.2
22 9 0 0.00 0.0
24 9 1 0.02 0.2

Total 50  1.00 17.5

The weighted average thermal experience on this sampling date in the absence of vertical
migration was 17.5°C.

Table Average thermal experience when population undergoes diel vertical migration during
periods of thermal stratification.

Day (14 h) Night (10 h)

Temper- Fish Propor- Proportion Fish Propor- Proportion
Depth ature density tion of allocation density tion of allocation
(m) (°C) (C/f ) total fish × temperature (C/f ) total fish × temperature

0 20 0 0.00 0.0 5 0.07 1.3
2 20 0 0.00 0.0 12 0.16 3.2
4 20 0 0.00 0.0 25 0.33 6.7
6 20 0 0.00 0.0 17 0.23 4.5
8 18 0 0.00 0.0 12 0.16 2.9
10 16 0 0.00 0.0 4 0.05 0.9
12 14 3 0.06 0.8 0 0.00 0.0
14 12 0 0.00 0.0 0 0.00 0.0
16 10 1 0.02 0.2 0 0.00 0.0
18 9 5 0.10 0.9 0 0.00 0.0
20 9 18 0.36 3.2 0 0.00 0.0
22 9 16 0.32 2.9 0 0.00 0.0
24 9 6 0.12 1.1 0 0.00 0.0
26 9 1 0.02 0.2 0 0.00 0.0

Totals 50 1.00 9.3 75 1.00 19.5

(Box continues)
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Energy density varies considerably among organisms and can change season-
ally or with increasing body size. In the Wisconsin bioenergetics model, energy
densities are provided as default values in the parameter set for each of the 40
species or life stages provided in the existing model (Hanson et al. 1997). The
consumer’s energy is often held constant in the model for most species; however,
for members of the Family Salmonidae, energy density increases linearly with in-
creases in body mass up to a threshold weight, then remains relatively constant or
increases more gradually thereafter. Although strongly recommended, energy
densities of predators and prey have rarely been measured in conjunction with a
bioenergetic analysis of trophic interactions (but see Luecke and Brandt 1993;
Rand et al. 1994; Hartman and Brandt 1995; Bryan et al. 1996). Energy densities
of prey are generally taken from the literature (e.g., Cummins and Wuycheck
1971; Hanson et al. 1997).

16.6.2.5 Bioenergetic Simulations of Predation

The Wisconsin bioenergetics model can estimate the biomass of each prey type
consumed daily by individuals from each cohort of predators. The Wisconsin bioen-
ergetics model reports individual or population level consumption as either a
daily rate (g/d) or as cumulative consumption to date (g/period) from the start
of the simulation period. Total consumption over a set period can be estimated by
summing daily consumption rates within that time interval. Individual consump-
tion from each age-class or size-class can be expanded to population level con-
sumption over any ecologically relevant time steps of daily or greater time inter-
vals by including the initial abundance and mortality of each cohort as inputs to
the model (Figure 16.8). In an alternative approach, individual consumption rates
are estimated from the model, then model output for individuals is transferred to
a spreadsheet, and individual consumption is multiplied at each time step by the
corresponding abundance of predator cohort(s). Predator abundance would oc-
cupy a column in the spreadsheet alongside columns for the individual consump-
tion estimates at each time step. Each cell in the column would contain the stan-
dard formula for computing predator abundance at time t (Nt):

To determine the weighted average thermal experience with vertical migration, the mean day
thermal experience is multiplied by the hours of daylight and added to the mean night thermal
experience multiplied by hours of night. The sum is devided by 24 h:

[(9.3°C × 14 h) + (19.5°C × 10 h)]/24 h = 13.5°C.

The same computations would be repeated for other sampling dates. These values would be
entered into the temperature input file, and the model would interpolate daily temperatures
between the dates when thermal experience data were entered.

Box 16.9 (continued)
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Nt = N0 · e –Zt, (16.10)

where t would relate to the different days in the simulation whereas the initial
predator abundance, N0, and instantaneous mortality, Z, would each refer to a
fixed cell or cells where new values could be entered. Predator abundance and
population level consumption would then change at every time step throughout
the simulation period. The advantage of this approach is that we can rapidly ex-
plore the effects of different population dynamics scenarios for predators (e.g.,

Figure 16.8 Seasonal consumption of major prey species by the average individual (upper
panel) and population (lower panel) of each size-class of lake trout in Flathead Lake, Montana.
Even though the largest lake trout eat more kokanee on an individual basis, the intermediate
and smaller size-classes are much more important predators at the population level. Predation
on kokanee varies considerably among seasons. Kokanee outgrew the smaller predators during
spring or summer, but predation by the larger predators persisted through autumn and winter.
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changes in abundance or mortality rates) on predation rates of prey without re-
running the Wisconsin bioenergetics model for every scenario. Additional com-
plexity could be added by incorporating stage-specific instantaneous mortality
rates Z = (M + F ) to account for differences in natural mortality, M, or fishing
mortality, F, among life stages. These additions would enable simulation of differ-
ent management scenarios to evaluate the effects of various size and harvest lim-
its (Luecke et al. 1994), stocking rates (Stewart et al. 1981; Jones et al. 1993), or
interannual variability in survival and recruitment of predators.

The biomass of prey eaten can be converted to a numerical estimate of preda-
tion by dividing the biomass of each prey category consumed by the mean weight
of an individual prey item. If prey size varies through time or varies among size-
classes of predators, then the conversions from biomass to numbers of prey con-
sumed should be computed separately for each combination of time and preda-
tor size-class. Large estimation errors can arise during conversions from prey
biomass to numerical estimates of prey consumption, particularly if predation
persists for more than a month when the prey (e.g., juvenile prey fishes) are
growing rapidly, because the body mass of young fish can increase many-fold over
relatively short periods (e.g., Cyterski et al. 2003). For example, lake trout in Flat-
head Lake, Montana, consumed kokanee averaging 145 mm in total length (TL)
(25 g) in June and 215 mm in TL (93 g) in August, representing a 48% increase in
prey length but a nearly fourfold increase in body mass over just a 2-month inter-
val. Under these circumstances, numerical predation estimates could err consid-
erably by careless averaging of consumption rates or prey sizes through time or
across predator size-classes.

Although predation mortality is generally assumed to decline with increasing
prey size, the magnitude of that decline has rarely been quantified in natural
systems. Since per capita predation rates can be quantified for every size of preda-
tor, and predator–prey size relationships can be developed either experimentally
(see Box 16.6, Figure 16.5) or empirically (Figure 16.9), the relationship between
prey size and potential predation pressure can be formalized by including the
abundance and size structure of both predators and prey. For instance, lake trout
consume prey fish up to 50% of their own body length (Figure 16.9). Therefore,
the number of lake trout, Npred, capable of eating prey of any given length, Lprey, is
the sum of all predators of length, L, equal to or greater than twice Lprey in the
total population of predators, N:

Npred = N ·     �   
L = 2Lprey

K

,nL /�   
L = Lmin

K

nL( ( (16.11)

where nL is the count of lake trout in length bin L of a length–frequency histo-
gram from a representative sample of lake trout; K is the maximum length of lake
trout in the population; and Lmin is the length of the smallest lake trout included
in the population estimate N (e.g., N = abundance of lake trout � Lmin, where Lmin

= 200 mm in TL). By quantifying how the maximum or optimum size of consum-
able prey increases with predator size, and using the abundance and size distribu-
tion of predators, we can examine how incremental changes in prey size affect
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predation potential in terms of (1) Npred, the abundance of predators capable of
eating a particular size of prey (Figure 16.10, upper panel); (2) the biomass and
corresponding number of prey that could be consumed per unit time (e.g., kg/
month or prey/month) by all predators greater than or equal to the smallest
predator capable of eating a specified size of prey (Figure 16.10, lower panel);
and (3) given the growth rate of prey , the period over which prey are vulnerable
to predation (Figure 16.11). Larger predators can consume more biomass and
larger-bodied prey, but predator abundance declines with increasing size and age
due to the cumulative effects of natural and fishing mortality. These analyses can
be used to evaluate trade-offs in stocking size versus changes in abundance, size

Figure 16.9 Relationship of lengths of piscivorous lake trout to the lengths of prey fishes by
species in Flathead Lake, Montana. The predator–prey length relationship showed a classic
wedge-shaped distribution for all fish prey collectively, but the pattern varied among prey
species. Multiple age-classes of whitefishes were available year-round over a broad range of
sizes, whereas most kokanee were available for only a few months after stocking and thus
offered a relatively narrow size range to lake trout. This type of graph displays the size range
and relative frequency of different fishes eaten by different sizes of predators. We can identify
the size at which specific prey entered the diet, and size relationships can be quantified (e.g.,
mean, median, and lower and upper bounds; see Box 11.3).
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structure, or survival of predators to regulate target prey populations (e.g., Box
16.10), or the feasibility of a population restoration program (Box 16.11).

16.6.2.6 Size-Structured Relative Predation Rates

When abundance estimates for the predator populations are lacking, a useful
way to present model simulations is to report consumption demand in terms of

Figure 16.10 Relationships are graphed for lake trout in Flathead Lake, Montana, to demon-
strate how predation declines as kokanee grow or as size at release increases. Predation rates
declined as prey grew because fewer predators were large enough to capture them successfully.
This reduces the total biomass of prey consumed. Also, as prey body mass increased, fewer prey
were needed to satisfy the consumption demand of predators. In lower panel, the arbitrary size
vulnerability threshold represents an 80% reduction in the number of kokanee lost to predation
by lake trout.
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Figure 16.11 Temporal change in length frequency for kokanee stocked during May in
Flathead Lake. The dashed vertical line is an arbitrary size vulnerability threshold that repre-
sented a 50% reduction in the number of lake trout still large enough to eat kokanee that size
and a sixfold reduction in numerical losses due to predation. The size vulnerability threshold
was based on a regression (TLprey = –100 + 0.65 · TLlake trout, where TL is total length; r2 = 0.925; P <
0.0001) of predator size versus maximum (95th percentile) of prey size in stomachs (see Chapter
11). All kokanee were vulnerable in May, but only 5% of the survivors remained below the
vulnerability threshold by October.
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Box 16.10 Case Study of Biomanipulation in Lake Mendota

Lake Mendota is a 4,000-ha eutrophic lake in south-central Wisconsin. The lake hosts a diverse
assemblage of cool- and warmwater fishes. Expanding agricultural activities and urban develop-
ment of the watershed increased external nutrient loading to the lake, contributing to nuisance
algal blooms. Because nutrient inputs were mainly from nonpoint sources, and therefore difficult to
control,  limnologists and fishery scientists tried an innovative experiment to evaluate the potential
for manipulating predation (biomanipulation) as a water quality management tool in a large, urban
lake (Kitchell 1992). This “top down” experiment involved stocking nearly three million fingerling
walleye and northern pike during 1987–1989 and protecting them with restrictive harvest
regulations in an attempt to shift the balance among predators and their prey (mainly
planktivorous fishes such as yellow perch and cisco). A major thrust of the study was predicting and
quantifying the predatory impact by the stocked piscivores.

To forecast and then evaluate predator consumption rates, bioenergetics models (Chapter 12) were
used to estimate the biomass of prey consumed by predator populations under various assump-
tions about predator stocking and mortality rates (Johnson et al. 1992a, 1992b). Applying the
models to study predator–prey interactions required detailed field estimates made with a variety of
analytical approaches covered in this book.

Analytical Methods
As can be seen below, estimating population-level effects of predators requires considerable field
data and an involved set of numerical analyses (see figure below). However, these kinds of ecologi-
cal questions are central to effective fisheries management, with implications that extend to the
ecosystem scale (Kitchell et al. 1994).

1. Size-specific mark–recapture estimates (Chapter 8) of predator abundance were obtained using
a suite of sampling gears aimed at minimizing sampling bias.

2. The abundance of size-classes of predators was converted to abundance by age using age–
length keys (DeVries and Frie 1996) derived from scale sample analysis (Chapter 5). Scale
samples also provided mean length at age of each predator, and these lengths were converted
to weights at age using species- and sex-specific length–weight regressions (Chapter 10).

3. Fishing mortality rate (F ) was computed from creel survey estimates of harvest by age and the
mark–recapture abundance estimates (Johnson et al. 1992a; Chapter 6). Total mortality rate (Z )
could not be estimated from a catch-curve analysis because of highly variable recruitment; thus
the natural mortality rate (M) could not be estimated by difference (M = Z – F ). Instead, natural
mortality rates from the literature were used.

4. Diet (Chapter 11) was determined from a sampling program, stratified by predator size and
season (Chapter 3). Energy density of predator and prey was also required for bioenergetics
modeling (Chapter 12).

5. Spatial distribution and thermal history was determined from seasonally and depth- stratified
gill-net surveys and radio telemetry (Chapter 14).

Each of the demographic, diet, and distribution inputs to a population-level analysis of consump-
tion demand are associated with some degree of uncertainty. A formal treatment of this issue could
involve a Monte Carlo simulation of key sources of error in input data. The parameters of the
bioenergetics model itself are not known precisely either, but this uncertainty has been addressed
(e.g., Bartell et al. 1986).  In many cases uncertainty in field data probably exceeds that of the model.

Fisheries scientists should consider the degree of precision required for the questions at hand and
allocate field sampling effort accordingly. For instance, fish abundance is likely to be much more
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Figure Schematic of analytical methods used to generate data input to bioenergetics model,
which, in turn, were used to estimate the biomass of prey consumed by predator populations
under various assumptions about predator stocking and mortality rates.

(Box continues)
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difficult to estimate precisely than is growth rate, especially in large systems. The level of effort
devoted to estimating predator diet composition should also be suited to the question of interest.
In some studies it may be sufficient to determine the fraction of fish versus invertebrates in the
diet, which could be known with much less sampling effort than if species level diet composition
were required.

Major Findings
The diets of piscivores varied seasonally and with the size of the predator. Age-0 sunfishes were the
dominant prey for both piscivores in the fall (Johnson et al. 1992b). Yellow perch were important to
the diet of northern pike and walleye greater than 304 mm in total length (TL), and the relative
contribution of yellow perch to their diets depended on year-class strength of yellow perch.
Ciscoes were not found in predator diets after the large summer kill in 1987 (Rudstam et al. 1993).
However, given the extremely large size structure of the cisco population in the late 1980s, few
ciscoes would have been within the gape limits of the piscivores, and distribution studies showed
low spatial overlap among the pelagic cisco and the more littoral and benthic walleye and
northern pike. Although stocked walleyes were relatively rare in walleye and northern pike guts,
projections of total biomass of walleye consumed suggested that piscivory (Polis et al. 1989) was a
significant source of mortality for walleye fingerlings. Simulations with an individual-based model
of growth of age-0 walleye (Madenjian et al. 1991) predicted that if walleye fingerlings were
stocked slightly earlier in the season or 20% larger (60 versus 50 mm TL) at the traditional time, then
the proportion of fish in the walleye’s diet, and their first year growth, would be enhanced greatly,
with an expected increase in first-year survival of the cohort.

Biomass of both piscivore species increased rapidly from less than 1 kg/ha to 4–6 kg/ha throughout
the 12-year evaluation period (Lathrop et al. 2002). Annual consumption by walleye and northern
pike increased from about 5 kg/ha in 1987 to 10–29 kg/ha (mean 17 kg/ha) during 1989–1998.
Premanipulation projections of piscivore biomass and consumption were higher; the shortfall was
largely due to predation effects on both small and large piscivores. Low survival rates of stocked
walleyes were attributed partly to the piscivory described above, with previously stocked piscivores
preying on subsequent cohorts (Johnson et al. 1996). Dramatic increases in predation on larger
piscivores by humans and the concomitant increases in fishing mortality during the experiment
(Lathrop et al. 2002; Johnson and Carpenter 1994) also limited the effectiveness of the stocking
program.

Total planktivore standing stock dropped from 140 kg/ha in 1986 to 50 kg/ha in 1987, primarily due
to a large die-off of cisco. Planktivore biomass remained very low (20–40 kg/ha) during 1988–1998.
Thus, piscivore consumption represented about half of the planktivore standing stock during the
experiment, suggesting that piscivory may have suppressed planktivore populations. However, a
large year-class of yellow perch was produced in 1997, indicating that under favorable conditions
(abundant zooplankton food resources and weather conditions conducive to spawning) piscivores
were not able to control planktivore recruitment.

Dramatically lower planktivory by fishes during the 1990s resulted in a trophic cascade (Carpenter
et al. 1985) with higher densities of large cladoceran grazers (mainly Daphnia pulicaria), lower algal
densities, and improved water clarity (Lathrop et al. 2002).  Regardless of the efficacy of the
biomanipulation effort to improve water quality, the Lake Mendota experiment stands as a clear
example of the importance of a quantitative understanding of fish predator–prey interactions at
multiple trophic levels.

Box 16.10 (continued)
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Box 16.11 Case Study of Predation Losses Imposed by  Lake Trout on Stocked
Kokanee  in Flathead Lake

Flathead Lake, Montana, historically supported one of the largest kokanee fisheries in North
America. The kokanee population crashed in the mid-1980s, coincident with the establishment of
high densities of the opossum shrimp, which had invaded from a lake higher in the watershed
where they had previously been introduced (Beattie and Clancey 1991). Also coincident with the
opossum shrimp increase was a marked increase in lake trout catch and reciprocal declines in
native bull trout and westslope cutthroat trout. Federal, state, and tribal managers attempted to re-
establish the kokanee population by stocking up to 1 million yearling kokanee each spring, but
they needed to know whether any of the proposed stocking strategies would result in reasonable
adult returns to the fishery and spawning traps. Of primary concern was whether predation by lake
trout would prevent sufficient kokanee recruitment to satisfy a viable fishery and egg-taking
operation.

The objective of this study (Beauchamp 1996) was to estimate the predation losses imposed by lake
trout on 800,000 yearling kokanee stocked in June. The diet, distribution, size structure, and growth
of lake trout and kokanee were obtained by sampling randomly selected locations in five regions of
the lake and four depth intervals per location by means of overnight sets with sinking experimen-
tal variable-mesh gill nets. Sampling was conducted monthly during May–August, then once per
season during fall, winter, and early spring. This provided diet and distribution patterns for lake
trout before and after the kokanee release. The proportional weight contribution of each prey type
in the diet of lake trout was estimated by season and size-class. The size structure of the lake trout
population was corrected for size-selective bias for the array of mesh sizes used (Rudstam et al.
1984; Hansen et al. 1997). Length at age for lake trout was determined by measuring annual growth
increments on otoliths, and lengths were converted to weights using a length–weight regression
from this population. Abundance of lake trout was estimated in a separate study (Deleray et al.
1999) by use of several methods, including mark–recapture, hydroacoustics, and depletion
estimators. Bioenergetics models were used to estimate monthly and seasonal consumption rates
for individual lake trout from each age-class by fitting annual size and growth,  using the monthly
and seasonal change in proportional diet composition for each size-class (Boxes 16.3 and 16.8), and
computing the thermal experience from seasonal vertical distribution patterns and temperature
profiles (as in Box 16.9). Individual consumption was multiplied by the abundance of lake trout
from each age-class (from abundance estimates and size structure data) to expand to seasonal
population level predation estimates on kokanee and other key prey (Figure 16.8).

Bioenergetic model simulations suggested that lake trout predation imposed serious losses on the
kokanee population in Flathead Lake, accounting for 87% of the total number stocked within the
first year of their release. The heaviest predation in 1994 occurred during the first month after
stocking 800,000 kokanee (120 mm in fork length [FL]) in June (351,000 kokanee eaten). Kokanee
losses during this acute predation period exceeded total predation losses accrued during July–
September (263,000 eaten). Lake trout in the 626–750 mm and 501–625 mm (TLs) size-classes were
responsible for more than 64% of the estimated predation, and 376–500 mm lake trout consumed
another 21% (Figure 16.8). Kokanee disappeared from the diets of progressively larger predators
over time, suggesting that the kokanee could rapidly outgrow the smaller, more abundant
predators (Figures 16.8, 16.9). The potential change in predation losses was computed as a function
of increasing prey size, either through growth or by stocking kokanee at a larger size. The change in
predation losse was based on the size-structured abundance of predatory lake trout Npred , the size-
specific bioenergetic consumption demand of lake trout, and the predator–prey size relationship,

(Box continues)
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which indicated that lake trout could consume salmonid-shaped prey up to 50% their own body
length (Figure 16.9). In Flathead Lake, the estimated predator population of nearly 900,000 lake
trout of 200 mm or greater (TL) was capable of eating 100-mm (FL) kokanee, but the number of
potential predators declined sharply as prey size increased (Figure 16.10, upper panel). Under the
observed seasonal and size-specific diet composition and consumption rate patterns, lake trout
could consume an estimated 3,500 kg or 450,000 100-mm kokanee per month (Figure 16.10, lower
panel). As prey size increases, the number of kokanee that could potentially be lost to lake trout
predation declines dramatically for two reasons: first, because of the sharp decline in Npred (Figure
16.10, upper panel); second, because prey body mass increases rapidly with increasing length, thus
fewer prey are required to satisfy predator demand (Figure 16.10, lower panel). In this case, when
the mean size at release was increased from 120 mm (FL) in 1994 to 150 mm in 1995, the initial
predation losses should have declined from 351,000 kokanee eaten per month to about 120,000
eaten per month for a nearly threefold reduction in predation rate (Figure 16.10, lower panel).
Predation losses would then decline in subsequent months as kokanee grew. If fisheries scientists
wished to limit the initial loss rate to only 20,000 kokanee per month, they would have to release
kokanee at a length of nearly 240 mm (FL) (the arbitrary vulnerability size threshold in Figures
16.10, 16.11). The monthly change in length frequencies for stocked kokanee in 1995 indicated that
all the kokanee stocked in May were below this vulnerability threshold; despite an apparent growth
rate of 15 mm/month, 78% were still below the threshold in August, but only 5% were below the
threshold in October (Figure 16.11).

Different predation scenarios were modeled to examine the effects of different dietary responses
by lake trout, different assumptions about the abundance and size structure of lake trout, and
different stocking rates for kokanee. For example, a worst-case scenario could be constructed by
assuming the predators fed exclusively on kokanee and achieved their physiological maximum
consumption rate (i.e., p-value = 1.0 in the Wisconsin bioenergetics model; see Chapter 12) to
determine an upper limit to predation losses. When modeling the effects of either an acute
predation response (the diet of lake trout was composed of 100% kokanee) or a higher chronic
predation response (i.e., the observed initial proportion of kokanee in the diet for each size-class of
lake trout was sustained throughout the year), kokanee survival over the first year in the lake
declined from 13.2% in the nominal run to 4.6% in the chronic predation scenario, whereas no
kokanee survived past midsummer in the acute predation scenario. Lake trout abundance might
have been underestimated in model simulations because size and abundance were based on a
hydroacoustic survey in August 1995. Because standard hydroacoustic methods cannot detect fish
1 m or less from the bottom, some fraction (e.g., 10–50%) of the predator population might not
have been detected. When simulations increased the lake trout population by 10%, survival for a
release of 800,000 kokanee dropped from 13.2% to 4.2%; no survival was predicted if the lake trout
population was 50% larger than the acoustic-based estimate. Model simulations suggested that the
kokanee mitigation program could not meet its harvest or egg-taking goals under the current
stocking regime of releasing 800,000–1,000,000 yearling kokanee in late spring.

Predation losses alone accounted for nearly all of the kokanee stocked (87%), but other sources of
mortality (other predators or disease) could also reduce adult returns. The prohibitive cost and
insufficient hatchery capacity prevented the production of more or larger kokanee to reduce
predator demand enough to achieve acceptable and sustainable egg-taking and harvest goals.
Based on this analysis, the kokanee mitigation program was terminated because of the
unsustainably high predation losses.

Box 16.11 (continued)
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consumption per standard unit of a size-structured predator population. For in-
stance, we could create a standard population of 1,000 predators, varying from
the youngest to the oldest age-classes that ate the prey species of interest. These
1,000 predators could be allocated into size-classes in proportion to the size struc-
ture observed in the population. Consumption by individuals in each age-class
would be multiplied by the corresponding number of predators allocated to each
age-class from the pool of 1,000 predators to estimate total predation by the size-
structured population of 1,000 predators and the relative magnitude of predation
exerted by each age- or size-class (Beauchamp et al. 1995; Beauchamp and Van
Tassell 2001). Predation losses could then be reported in terms of numbers or
biomass of prey consumed per 1,000 predators per year (or over other time scales).
Although predator abundance estimates might be lacking, fisheries scientists of-
ten have some sense of their abundance, at least within an order of magnitude.
Given this information, fisheries scientists can decide whether predation rates are
severe enough to warrant further attention. If so, they will either have sufficient
information to proceed with management actions or the rationale for justifying
further examination into the abundance or dynamics of the predator population.

16.6.2.7 Predation versus Prey Supply

Population level predation rates can be compared with the abundance, biomass, or
production of prey populations to determine whether predation represents a sig-
nificant source of mortality for prey (Kitchell and Crowder 1986; Stewart and Ibarra
1991), the prey represent a sustainable source of food for the predator (Ney 1990;
Cyterski et al. 2003), or potential bottlenecks in prey supply might develop during
particular periods or locations (Johannsson et al 1994; Rand et al. 1995; Beauchamp
et al. 2004). If growth or reproduction significantly alters the abundance or biomass
of prey during the period of interest, then it may be more relevant to compare
predation to prey production rather than to prey biomass (Figure 16.12). Compar-
ing predation losses to the biomass of available and vulnerable prey represents a
more severe estimate of predation mortality and thus provides a more conservative
basis for managing the impacts of predation on sensitive prey species than if prey
production were included in the analysis (Figure 16.12).

16.6.3 Prey Encounter Rate Models

These models combine the search volume of a predator with the densities of prey
that overlap in time and space to estimate the encounter rate for the fraction of
prey that are actually available (Box 16.2) during foraging periods (Gerritsen and
Strickler 1977). Encounter rates can be calculated separately for different tempo-
ral–spatial cells to account for variability in factors that influence prey detection
limits or localized differences in prey density. Encounter rate models are concep-
tually attractive because they link localized environmental conditions and prey
densities to foraging success at temporal and spatial scales that are relevant to
predators and consistent with primary sensory mechanisms involved in prey de-
tection (e.g., visual, tactile, chemical, pressure, electrical, and sound).
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Encounter rates can be equated to consumption in some cases; however, a
probability of consumption would generally be applied to encounters. These prob-
abilities could either be fixed proportions or functions of other factors that medi-
ate capture success following detection. Encounter rates are essential elements of
optimal foraging models and, though generally ignored, should also be incorpo-
rated into estimates of prey selectivity and functional responses (Koski and Johnson
2002) in environments where overlap between predators and prey vary through
time and space. This approach is particularly valuable when applied to systems in
which prey densities and detection capabilities vary through time or space. En-
counter rate and bioenergetics models have been combined to estimate the prof-
itability of various feeding positions in streams by drift-feeding fishes (Hughes
and Dill 1990; Hill and Grossman 1993), growth potential of piscivores in lakes or
estuaries (Brandt et al. 1992; Goyke and Brandt 1993), growth or survival in indi-
vidual-based models (Breck 1993; DeAngelis et al. 1993), and variation in prey

Figure 16.12 Standing stock (metric tons [MT], gray bars) and production (white bars) of
rainbow smelt and walleye consumption (vertical lines) of rainbow smelt in Horsetooth Reser-
voir, Colorado. Uncertainty in walleye consumption is shown as heavy vertical lines representing
the range of consumption under two hypothesized thermal regimes (temperatures measured
at 2 m and 30 m) and thin vertical lines representing the 95% confidence interval around
walleye abundance (adapted from Johnson and Goettl 1999).
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encounter rates by pelagic planktivores (Mason and Patrick 1993) or piscivores
with time and depth in lakes and reservoirs (Beauchamp et al. 1999; Mazur and
Beauchamp 2006; Box 16.12).

16.6.4 Community and Ecosystem Level Models

Because many fish species and humans are such potent predators, predation (or
harvest) is a central process in the structure and function of aquatic ecosystems.
Most fishes, and indeed all harvested species, are both predators and prey. Hu-
man interference with natural predator–prey systems may have sweeping and of-
ten unexpected effects on food webs and ecosystems. Overharvest of apical preda-
tors can allow less desirable competing species to expand (e.g., Fogarty and
Murawski 1998) or in some cases may lead to a shift in community structure
(Scheffer et al. 2001). Release of prey species from predation as top predators are
overexploited can promote depensatory recruitment in the predator as expand-
ing prey species compete with or prey upon juvenile predators (Walters and Kitchell
2001; Post et al. 2002). On the other hand, overprotection of predators in recre-
ational fisheries may contribute to unsustainable management strategies when
predation rates exceed prey populations’ replacement rates (Johnson and Martinez
2000). And finally, overharvest of prey species may have unintended consequences
for higher trophic levels (Cury et al. 2000).

Clearly a more inclusive and holistic view is needed to understand and manage
fisheries better, but with holism can come greater complexity. Analytical and sta-
tistical tools developed for single species or simple predator–prey systems may not
be adequate when expanding the fisheries scientist’s purview to the ecosystem
scale. A modeling package developed by University of British Columbia’s Fishery
Centre, Ecopath with Ecosim (Christensen 2001), is an exciting and widely used
(Christensen and Pauly 1993) framework to cope with complexity of fished eco-
systems. Basic analytical features of the package are shown in Box 16.13.

■ 16.7 SUMMARY

Predator–prey interactions can be studied at the level of individual predators and
prey up through ecosystem level effects. Investigations are often most effective
when integrating field sampling, natural or laboratory experiments, and model-
ing in an interactive or complementary fashion. The question and temporal or
spatial scale of interest will determine the most appropriate mix of these meth-
ods. Body size relationships, variability of processes at different temporal and spa-
tial scales, and effects of habitat and environmental conditions consistently emerge
as important factors affecting predator–prey interactions and should be consid-
ered as a conceptual framework for addressing any question of interest. Interpo-
lation or extrapolation errors can be minimized by analyzing interactions at ap-
propriate scales and by stratifying along important dimensions of variability for
the process of interest.
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Box 16.12 Visual Encounter Rate Model

Pelagic piscivores (e.g., salmons, trouts, walleye, and striped bass) feed visually in lakes and
reservoirs where visual foraging conditions can be very dynamic. Visual search volumes change as
photic conditions vary by depth and time of day. Prey densities also change dramatically by depth
and time as prey fishes undergo diel vertical migrations. Under these conditions, visual encounter
rates need to be calculated separately for different time and depth intervals.

Beauchamp et al. (1999) modeled prey encounter rates, ERz,t (prey/h), for each depth z and diel
period t as the product of depth and temporally explicit search volumes, SVz,t , and the vertical
density distribution of prey fishes, PDz,t , which was obtained for each 5-m depth interval from
hydroacoustic surveys during each diel period t (daylight, dusk, and night).

ERz,t = SVz,t · PDz,t .

Within each depth and time cell, search volume was modeled as a cylinder with length equal to the
average swimming speed, SSt (m/·s), of predators (from telemetry and laboratory studies in the
literature) during each diel period multiplied by the duration of each period:

SVz,t = SSt · � · RDz,t
2.

The circular cross section of the cylinder has a radius equal to the reaction distance, RDz,t (m), to
prey. Reaction distance changes as a function of light intensity, and light changes with depth and
diel period; RD is further reduced by turbidity, which can change seasonally and among locations.
For an ambient light intensity,  Iz,t , of 17.8 lx or less,

RD = 0.120 · Iz,t
0.4747 · NTU–0.624.

For an Iz,t  greater than 17.8 lx,

RD = RDmax = 0.478 · NTU–0.624.

“Clear water” has a minimum turbidity of 0.3 nephelometric turbidity unit (NTU). Ambient light
intensity  declines exponentially with depth z and time t :

Iz,t = I0,t · e z · –k,

where I0,t is surface light intensity (lux) at time t, and k is the light extinction coefficient (m–1).
Surface light intensity can be measured directly or approximated using a computer program by
Janiczcek and deYoung (1987).

The visual encounter rate model described above was applied to the diel distribution patterns of
prey in Alturas Lake, Idaho (Figure 16.1), using data inputs for the model summarized in the Table
below. We assumed that turbidity (0.34 NTU) remained constant throughout the water column. The
light extinction coefficient k = –0.1535 was applied to the average surface light intensity during
daylight, mid-dusk, and night periods to estimate light intensity within each depth × time cell.
Swimming speeds (m/h) for piscivores were computed for each diel period from telemetry and
laboratory results reported in the literature (Henderson and Northcote 1985; Beauchamp et al.
1999; Baldwin et al. 2002).
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Table Inputs for the visual encounter rate model applied to Alturas Lake, Idaho. Given are surface
light intensity, I0; light extinction coefficient, k ; nephelometric turbidity unit, NTU; hours in each
light period; and the swimming speed, SS, of piscivorous trouts.

 Parameter Daylight Dusk Night

I0(lx) 35,842.29 11.326 0.014
k (m–1) –0.1535 –0.1535 –0.1535
NTU 0.34 0.34 0.34
h/period 14 3 7
SS (m/h) 1,062 846 144

Based on the conditions summarized in the table above, light levels were computed for the midpoint
of each 5-m depth interval. Reaction distances were computed for the light level at each depth
interval with turbidity of 0.34 NTU. Search volumes (m3/h) were applied to depth-specific densities of
the smaller two size-classes of kokanee (3–18 cm TL; Figure 16.1) obtained by hydroacoustic and
midwater trawl surveys (Beauchamp et al. 1997). For each diel period, prey encounter rates were
estimated by multiplying search volume and the associated prey density for each depth cell. The
results of these calculations are presented below in separate tables for each diel period.

Table Estimates of prey encounter rates for each diel period by 5-m depth intervals.

Depth Mid- Reaction Search Prey Encounter
interval interval distance, volume, density, PD rate, ER
(m) depth (m) Light (lx) RD (m) SV (m3/h) (prey/1,000m3) (prey/h)

Daylight
0–5 2.5 24,419.071 0.94 2,929.8 0.000  0.000
5–10 7.5 11,334.329 0.94 2,929.8 0.537 1.573

10–15 12.5 5,260.929 0.94 2,929.8 0.179 0.524
15–20   17.5 2,441.907 0.94 2,929.8     0.716 2.097
20–25 22.5 1133.433 0.94 2929.8      0.358     1.048
25–30 27.5 526.093 0.94 2929.8 0.358 1.048
30–35 32.5 244.191 0.94 2929.8 0.358 1.048
35–40 37.5 113.343 0.94 2929.8 0.358 1.048
40–45 42.5 52.609 0.94 2929.8 1.224 3.586
45–50 47.5 24.419 0.94 2929.8 1.224 3.586
50–60 55.0 7.722 0.62 1285.8 0.000 0.000

Dusk
0–5 2.5 7.716 0.62 1023.6 0.000 0.000
5–10 7.5 3.582 0.43 493.9 0.918 0.454

10–15 12.5 1.662 0.30 238.3 0.566 0.135
15–20 17.5 0.772 0.21 115.0 1.997 0.230
20–25 22.5 0.358 0.14 55.5 2.468 0.137
25–30 27.5 0.166 0.10 26.8 1.146 0.031
30–35 32.5 0.077 0.07 12.9 0.544 0.007
35–40 37.5 0.036 0.05 6.2 0.544 0.003

(Box continues)
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Box 16.12 (continued)

40–45 42.5 0.017 0.03 3.0 0.224 0.001
45–50 47.5 0.008 0.02 1.5 0.224 0.000
50–60 55.0 0.002 0.01 0.5 0.000 0.000

Night
0–5 2.5 0.010 0.03 0.3 0.000 0.000
5–10 7.5 0.005 0.02 0.1 0.544 0.000

10–15 12.5 0.002 0.01 0.1 0.492 0.000
15–20 17.5 0.001 0.01 0.0 2.542 0.000
20–25 22.5 0.000 0.01 0.0 5.843 0.000
25–30 27.5 0.000 0.00 0.0 4.339 0.000
30–35 32.5 0.000 0.00 0.0 2.069 0.000
35–40 37.5 0.000 0.00 0.0 2.069 0.000
40–45 42.5 0.000 0.00 0.0 0.892 0.000
45–50 47.5 0.000 0.00 0.0 0.892 0.000
50–60 55.0 0.000 0.00 0.0 0.000 0.000

Interpretation
High water transparency and associated low light extinction maintained maximum reaction
distances (0.94 m) and search volumes (2,929.8 m3/h) down to 50 m during daylight. Corresponding
kokanee densities in the upper water column were low during daylight compared with dusk and
night periods, and the highest daylight density occurred below 40 m (Figure 16.1, table above).
Kokanee avoided the upper water column during daylight where predator densities were at least
four times higher (particularly densities of rainbow trout and northern pikeminnow), and the visual
search volumes of the piscivores were maximized. During daylight, the prey encounter rates for
pelagic piscivores varied from 0.5 to 2.1 kokanee/h at depths above 40 m but increased to 3.6
kokanee/h below 40 m. Prey encounter rates during dusk and night periods were considerably
lower (0.00–0.45 kokanee/h) than during daylight despite markedly higher prey fish densities in the
water column. At dusk, the highest encounter rates occurred at 5-10 m, whereas the highest prey
density was at 15–25 m. The model predicted no prey encounters at night at any depth.

These analyses demonstrated that kokanee reduced predation risk by undergoing diel vertical
migrations. The fraction of prey fish actually available to piscivores was considerably lower than the
abundance measured by standard assessment methods, and prey availability changed with time and
depth. An important insight from this analysis was that prey encounters were relatively rare events.
The visual encounter rate model enabled a quantitative evaluation of predation risk by prey fish and
foraging opportunities by the piscivores. This approach can compare the potential impact of
piscivores in waters of different transparency, productivity, and predator–prey assemblages
(Beauchamp et al. 1999; Mazur and Beauchamp 2006). This could be a useful tool for evaluating the
feasibility of introducing or enhancing predator or prey species in candidate waters. Further refine-
ments of this approach could incorporate species-specific differences in reaction distance, swimming
speed, and capture success after encounter, potentially as functions of light, turbidity, temperature, or
other factors (Sweka and Hartman 2001; DeRobertis et al. 2003; Mazur and Beauchamp 2003, 2006).

Table (continued)

Depth Mid- Reaction Search Prey Encounter
interval interval distance, volume, density, PD rate, ER
(m) depth (m) Light (lx) RD (m) SV (m3/h) (prey/1,000m3) (prey/h)

Dusk (continued)
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Box 16.13 Framework of Ecopath with Ecosim Model for Fished Ecosystems

Ecopath Master Equation I

Bi · (P/B)i · EEi = Yi + �Bj · (Q/B)j · DCij ,

where for each functional group i,
Bi = biomass of i;
Bj = biomass of j consumers of i;
(P/B)i = production to biomass ratio;
EEi = fraction of production consumed or

harvested (ecotrophic efficiency);
Yi = biomass harvested (or otherwise lost

from system);
(Q/B)j = food consumed per unit biomass of j ;
and
DCij = contribution of i to diet of j.

Ecopath Master Equation II

Q = P + U + R,

where
Q = consumption;
P = production;
U = unassimilated food; and
R = respiration.

Figure Model of a trophic system. Pies
represent biomasses of two fish species, one a
piscivore and the other a planktivore, and
arrows represent the flows of biomass in the
system.

Ecopath (Polovina 1984; Christensen and Pauly 1992; Christensen 2001) organizes biomasses and
flows into a static (i.e., baseline or historical average) picture of the ecosystem based on principles
of mass-balance and thermodynamics as constraints. The model is solved as a system of simulta-
neous linear equations. A simple model of a trophic system is represented in the figure above; the
pies represent biomasses of two fish species, one a piscivore and the other a planktivore, and
arrows represent the flows of biomass in the system. The configuration of the food web and
parameterization of flows can be facilitated by stable isotope analysis (e.g., Saito et al. 2001; see also
Chapter 11). Both fish are harvested and both are prey for other species. Other components of the
food web are simplified for clarity. By converting to differential equations and making the model
dynamic, Ecosim (Walters et al. 1997; Pauly et al. 2000) allows the user to examine the trophic
implications of a variety of fisheries policy options. Recent improvements to the model (Walters et
al. 2000) incorporate compensatory responses in fish populations arising from changes in prey
supply that may be direct or indirect effects of harvest. Ecosim can be a useful tool for fisheries
scientists concerned about multi-species implications of a fishery management policy and for
fisheries scientists who want to design adaptive management experiments at the ecosystem scale.

Ecosim

dBi   
d t

= gi · � Qi j  – � Qj i  + Ii  – (Mi  + Fi  + Ei) · Bi ,

where,
dB/dt = rate of change in biomass;
Bi = biomass of i ;
g = growth efficiency;
F = fishing mortality rate;
M = natural mortality rate (excluding

predation);
E = emigration rate;
I = immigration rate; and
Qij(Qji) = consumption rate of type i

(or j ) biomass by type j (or i )
organisms.
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■ 17.1 INTRODUCTION

The demand for clean freshwater resources continues to grow with increasing
needs for instream (hydropower) and offstream (agricultural, municipal, and in-
dustrial) uses of water. These activities influence water quality and habitat avail-
ability in river and lake habitats as well as the hydrologic processes that support
them. Financial, cultural, and biological stakes can be high in water use and allo-
cation decisions, so it is important to be able to quantify fish habitat made avail-
able by the presence of water as well as the quality of the habitat provided by that
water. Even in water-rich places where allocation is not an issue, many human uses
on the landscape can result in reductions in water quality or degradation of physi-
cal habitat.

Fish habitat is composed of physical and biological components required to
support fish growth, survival, and reproduction. Habitat components can include
specific attributes of a location occupied by a fish or the suite of areas required to
complete life histories and sustain a population. More specific terms for fish habi-
tat include essential fish habitat, critical habitat, and preferred habitat. Essential
fish habitat is defined by the 1996 Magnuson–Stevens Fishery Conservation and
Management Act as “those waters and substrate necessary to fish for spawning,
breeding, feeding or growth to maturity” (16 U.S.C. §§ 1801 to 1882). Critical
habitat is a term associated with the Endangered Species Act of 1973 (16 U.S.C.
§§ 1531 to 1543)  and represents the area required to conserve an endangered
species. In a broader context, critical habitat areas provide habitat for sensitive
life stages such as spawning or early life history (Pitlo 1989). Finally, preferred
habitat is defined as those areas that organisms select with greater frequency than
those areas occur in the environment (Johnson 1980).

Defining and evaluating fish habitat requires determination of ranges for
specific habitat parameters that delineate suitable habitat conditions for a fish
species or assemblage of fishes. Fish habitat is assessed to measure baseline con-
ditions, monitor habitat availability, prioritize habitat for protection or enhance-
ment, and establish instream flows for conservation of aquatic biota. Further-
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more, fish habitat assessment provides the basis for manipulating aquatic habi-
tats when the desired outcomes include increasing fish abundance or ensuring
their sustainability (Orth and White 1993). Results from habitat assessment can
lead to actions such as improving water quality, providing a limiting habitat fea-
ture such as spawning gravel or cover, or improving conditions for the produc-
tion of forage.

Procedures used for analyzing fish habitat data should be determined a priori
based on the goals and objectives of the habitat assessment and, thus, reasons for
data collection. Ideally, careful project scoping and design dictate which habitat
parameters are measured. For example, an assessment of baseline conditions is
usually desired prior to implementing habitat management prescriptions, and
thus before and after analyses are critical for measuring the effect of aquatic habi-
tat improvement (Kondolf and Micheli 1995). Therefore, habitat variables mea-
sured should be those that would exhibit a response either physically or biologi-
cally to the habitat manipulation. Monitoring can be used to track changes over
time, as in the case of monitoring for habitat degradation or documenting a long-
term response of the biota to restoration activities.

Whereas tools to assess water quality, water quantity, and biological integrity
are readily available and established, measures of habitat quality and approaches
to assessment and evaluation are still developing (Maddock 1999). Some of the
most basic relationships such as habitat availability and fish standing stock are still
not well defined for most species or fish communities. Furthermore, only recently
have fisheries scientists begun to understand the importance of temporal stream
channel dynamics and flow variability on habitat and fish populations (Poff and
Ward 1989; Palmer and Poff 1997).

Often the first step in a habitat evaluation project is to classify stream channels,
habitat units within the stream, or lake types (Bisson et al. 1981; Hawkins et al.
1993; Rosgen 1994; Montgomery and Buffington 1997). Classification is used to
group streams, lakes, or reaches that may be responding to similar physical pro-
cesses and is a good starting point for formulating conceptual models regarding
fish habitat or population response to habitat. However, taxonomic approaches
usually do not identify limiting habitat factors, and a higher resolution is required
for recommending management actions. The objective of this chapter is to present
approaches used to analyze and interpret data collected for fish habitat assess-
ment in both lotic and lentic systems.

■ 17.2 MEASUREMENT OF HABITAT PARAMETERS

Time, money, and personnel resources limit the amount and type of data that are
collected. Therefore, the number of habitat parameters and quantity of data col-
lected should be carefully specified as needed to meet study objectives. Greater
statistical power is achieved when collecting a larger number of samples with a few
well-defined parameters versus collecting few samples and a larger number of
parameters that may or may not provide meaningful information.
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17.2.1 Qualitative versus Quantitative Data

Habitat data can be measured through qualitative or quantitative approaches.
Qualitative data are often recorded using categorical procedures and can be de-
scriptive, ordinal (categorical), and nominal (yes–no or presence–absence) data
(Zar 1996; Table 17.1). Common variables measured qualitatively include sub-
strate composition, substrate embeddedness, cover types, streambank condition,
or habitat units (e.g., riffle, pool, cove, and island complex), and each parameter
varies in measurement subjectivity. For example, when categorizing stream bot-
tom embeddedness as high, medium, or low, the differences between high and
low may be obvious, but medium to low and medium to high are subject to inter-
pretation. Inherently, qualitative data are less sensitive than are quantitative data
in capturing changes or trends in habitat over time. Categorical data can be as-
signed ranks, which allows for greater statistical analyses (Table 17.2).

Continuous data, which may be measured on ratio and interval scales (Zar
1996), are measured along a continuum and include variables such as velocity,
depth, dissolved oxygen (DO), and substratum particle size (Table 17.1). Ratio
data have a true zero and meaningful relationships between two values. For ex-
ample, 4 cubic feet per second (cfs) is twice as much water flowing as 2 cfs. Inter-
val data do not have a true zero nor the meaningful relationship between values;

Table 17.1 Common parameters measured in lotic and lentic habitats. Parameters are noted
(superscripts) as to whether they are most commonly measured as ratio (r) or ordinal (o) types
of data, with some listed as more than one type depending on study requirements.

Lotic habitats Lentic habitats

Riparian data Depthr

Canopyro Physical structureo

Shadingro Vegetationro

Bank sloper Turbidityr

Erosiono Substrateo

Dissolved oxygenr

Channel data Temperaturea

Discharger Bank sloper

Stream surface gradientr Shoreline lengthr

Depthr Secchi disk depth r

Velocityr Nutrients (e.g., P and N)r

Substratero Total dissolved solids r

Bank-full widthr

Streambed elevationr

Bed load movementr

Temperaturea

Fish covero

Large woody debriso

a Temperature as measured in °C or °F is interval scale data without a true zero. When temperature is converted to
Kelvin, the data has a true zero and can be considered as ratio data. This distinction is important for assumptions
inherent in many statistical computations.
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examples include compass points, time, and temperature data. Temperature data
(°C or °F) can be considered ratio data only when converted to Kelvin (1°C =
274.15 K; 1°F = 255.93 K). Although the data are more costly to acquire, quantita-
tive or semi-quantitative approaches are more cost effective in the quality of the
information that is collected (Milner et al. 1985). Furthermore, quantitative data
are more useful in developing strong quantitative relationships between fish abun-
dance or community composition and habitat.

17.2.2 Spatial and Temporal Considerations

Spatial scale considerations are important for answering questions regarding cause
and effect, and multiple scales of observation may be required to gain a full un-
derstanding of fish–habitat relationships. Habitat scales include microhabitat (e.g.,
depth, cover, substrate, and velocity at a specific fish location), mesohabitat or
channel unit (e.g., coves, island complexes, littoral zone, pool, riffle, run, or glide),
and macrohabitat (variables that range longitudinally over a larger area in streams
or stratify vertically in reservoirs and lakes, such as DO, pH, and temperature).
Measures of microhabitat parameters may be used to evaluate preference or prob-
ability of fish distribution within a reach (Rabeni and Sowa 1996), whereas quali-
ties of mesohabitat throughout a stream system can dictate population dynamics
such as spawning, mortality, and growth. Additionally, although the interest for
analyzing habitat may be at the site level, such as for restoration projects, longitu-
dinal stream level effects may be important when considering relationships among

Table 17.2 Example of qualitative categorization (rating) of stream substrate embeddedness
and streambank condition estimated by semi-quantitative description (based on Pfankuch
1975; Platts et al. 1983).

Embeddedness

Proportion of gravel, rubble, and
Categorical rating boulder particles covered by fine sediment

1 >75%
2 50–75%
3 25–50%
4 5–25%
5 <5%

Streambank Condition

Score Estimated bank slope Rating

2 <30% Excellent
4 30–40% Good
6 40–60% Fair
8 >60% Poor
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many sites and fish population characteristics (Dunham and Vinyard 1997). Wa-
tershed scale considerations are discussed in Chapter 18, and thus this chapter
focuses on micro and mesohabitat analyses.

Temporal scale is important when evaluating changes in habitat use by fishes
during important life history phases and for assessing physical processes that dic-
tate channel condition and development of habitat areas. For example, assess-
ment of spawning habitat and shifts in habitat use due to ontogenetic changes
would require additional habitat parameters in early life history or a more fre-
quent assessment of use due to rapid changes. Because these early life history
shifts are vulnerable stages, they can be an important focus for assessing habitat
availability and potential changes in habitat over a limited temporal scale. From a
geomorphic perspective, temporal scales play an important role in modifying or
creating habitat features by the frequency of hydrological events such as floods
and effective stream discharge for forming channel shape. Finally, lentic systems
change vertically in habitat availability through seasons because of changes in
depth, temperature, and DO. Thus when conducting a habitat investigation and
analysis, it is important to address the temporal and spatial scale issues in the
study design and in the interpretation of the results

17.2.3 Unbiased Sampling Approaches

Unbiased approaches to sampling and measuring habitat attributes  and repeat-
ability in the protocol and measures are necessary when comparing results from
year to year or stream to stream. Many habitat parameters are often estimated
rather than measured. Further, even though some parameters are measured,
biases may be inherent in the instrumentation or procedural approach. Habitat
features that can be measured with good precision and repeatability include
streambank measures (e.g., vegetative stability and undercut bank), stream width
and depth, riparian measures (e.g., streamside cover and habitat type), and
substrate embeddedness (Platts 1981). Habitat measures with low precision and
low repeatability include bank-full width, bank–bank width, and proportions of
sediment type (Platts 1981). Training observers prior to conducting assessments
can increase precision and repeatability, preventing serious errors in interpreta-
tions that result from biased data (Hannaford et al. 1997). Those interpreting
habitat analyses should consider the possible sources of bias or error based on
the protocols for measuring parameters. Correction factors based on the associ-
ated error determined between actual measures and estimated values for a
subsample of observations can be applied to reduce investigator bias (Dolloff et
al. 1993) (Box 17.1).

■ 17.3 LOTIC VERSUS LENTIC HABITAT ANALYSES

Contemporary paradigms in fish ecology assume that fundamental differences
exist between the underlying mechanisms that limit fish communities and influ-
ence population dynamics in lakes and streams. Lentic environments tend to be
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Box 17.1 Corrections to Visual Estimations of Habitat Data

A measure of habitat characteristics is desired for the River Raisin. To increase efficiency and reduce
time, the manager desires to estimate area associated with instream mesohabitat channel types,
which were determined to be riffle, shallow pool, and deep pool. The sampling team is instructed to
determine area for each mesohabitat unit by estimating each unit’s average depth and width. To
validate the team’s estimates, 20% of each mesohabitat channel unit type (or a minimum of 10)
shall be measured for average channel width and depth to calculate mesohabitat area.

Once the data were collected, the measured (mi ) and estimated (xi ) data for each mesohabitat type
were plotted to check for data errors and to confirm that there was a high correlation between the
measured and observed areas. Only the riffle habitat is shown below.

Figure Correlation of area data between the measured and observed riffle mesohabitats.
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In this example, the correlation is high and the y-intercept is very near 0. The next step is then to
determine the calibration ratio (C

^
) for riffles. The C

^
 is calculated by summing mi for all units and

dividing by the sum of xi for those same units. In this example, C
^

 = 232.4/229 = 1.015.
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Table Measured (mi ) and estimated (xi ) data for riffle mesohabitat. The calibrated area is given by
C
^

xi , where C
^

 = 1.015. The sum of (mi – C
^

xi ) is used to calculate the variance of the estimated area.

Riffle number and sum xi mi C
^

xi (mi – C
^

xi )2

1 22 19.5 22.3 8.0
2 33 33.5
3 21 19.6 21.3 3.0
4 18 18.3
5 14 14.2
6 20 18.6 20.3 2.9
7 21 21.3
8 23 23.3
9 42 44.6 42.6 3.8
10 24 24.4
11 26 27.2 26.4 0.7
12 14 14.2
13 13 13.2
14 12 13.5 12.2 1.7
15 22 22.3
16 33 31.6 33.5 3.6
17 21 21.3
18 18 19.6 18.3 1.8
19 21 21.9 21.3 0.3
20 23 23.3
21 26 26.4
22 14 16.3 14.2 4.4

Sum 481 232.4 30.2

The C
^

 is multiplied by the estimated area to determine the calibrated area (C
^

xi ). The total area of
riffles in River Raisin can then be determined by summing xi and multiplying by C

^
. Thus the

amount of riffle area (A
^

riffles ) in River Raisin is estimated to be 488.2 m2. A variance can be calculated
on this estimate by

� (mi  – Cxi)
2,

i = 1

n

V ( Ariffles) = 
^ ^ N(N – n)

n(n – 1)
^

where N is the sample size for xi and n is the sample size for mi.

V ( Ariffles) = 
^ ^ 22(22 –10)

10(10 – 1)
30.2 = 88.6.

And finally, a 95% confidence interval on this value can be calculated by

Ariffles  � t(0.05 n  –  1)
^

V ( Ariffles) , 
^ ^

which equals 488.2 m2 ± (2.262)(9.4) for a confidence interval of 466.9 – 509.5 m2.
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relatively stable, and thus community composition and abundance results from
lake productivity, competition, and predation. Conversely, in lotic environments,
stream flow dictates the availability of habitat area. Therefore, a combination of
habitat persistence and variability is believed to be the dominant force shaping
stream fish communities. Habitat quality and availability in streams varies longitu-
dinally whereas in lakes, water column stratification of temperature and DO de-
fine available habitat. Because of these differences, stream fisheries scientists and
lake fisheries scientists often diverge in their approaches to habitat assessment
and analysis.

With the exception of water quality parameters (e.g., nitrogen, phosphorous,
and turbidity), evidence for relationships between physical lake habitat and fish
communities is sparse. Because the lentic fish community structure tends to be
influenced by predator–prey interactions, bioenergetics approaches are tradition-
ally more useful for evaluating stock abundance and limitations to growth. How-
ever, as development continues along shorelines, physical habitat in lentic envi-
ronments is becoming more prominent in management approaches. For example,
spawning habitat along shorelines can be severely reduced by the construction of
barrier walls that may act to increase the energy of wave action along nearshore
nursery or incubation areas. Spawning reefs also may be a definitive habitat fea-
ture that dictates recruitment of juveniles to a population.

■ 17.4 WATER QUALITY AS A HABITAT PARAMETER

Dissolved oxygen (DO) and water temperature are two commonly measured
macrohabitat water quality variables. In lakes, DO and temperature stratify verti-
cally. In reservoirs, as summer progresses, available habitat for cold- or coolwater
species will horizontally compress toward the dam in deeper water, resulting in a
habitat “squeeze” (Coutant 1985). Temperature and DO measurements can be
collected from throughout a reservoir or lake to develop an isopleth and make
conclusions about available habitat during potentially stressful periods such as
hot summers or ice cover in winter. Data analysis can be conducted as a time
series (documenting increases or decreases in habitat area over time). In rivers,
DO and temperature vary longitudinally; however, in some cases where ground-
water input is sufficient and mixing is negligible, pools can stratify, providing pock-
ets of thermal refuge (Nielsen et al. 1994).

17.4.1 Analysis of Temperature and Dissolved Oxygen Data

Recent advances in technology have made it easy and relatively inexpensive to
monitor temperature and DO on a continuous basis. Empirical data collected at
point locations provide station-specific habitat conditions, but the amount of data
produced by a large number of data loggers in a study area can be overwhelming.
For example, 7 months of water temperature collected at 10-min intervals in a
single location results in more than 31,000 observations. While the objectives for
the sampling should dictate the time step (interval) of measures, generally, hourly
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measurements provide a satisfactory trade-off between effort to analyze the data,
desired download intervals, and the amount of information acquired. Objectives
for collecting temperature data should be clearly defined, and those objectives
will also dictate the placement of the loggers. Programs such as SAS (2004) or
macros in Microsoft Excel can be used to minimize the time required to reduce
data to an appropriate format for further analysis.

Data collected at point locations can be analyzed to determine biologically rel-
evant statistics such as daily mean, daily flux, or daily maximum or minimum tem-
peratures. The coefficient of variation can be calculated to obtain a measure of
variability for a given time-step (e.g., one day), but the data must first be trans-
formed to ratio data by converting it to Kelvin. To investigate the biological rel-
evance of thermal information, Pearson’s correlation coefficient, simple linear
regression, and multiple regression can be used to relate habitat conditions with
measures of fish growth, abundance, or productivity. Temperature can also be
related to an index of interest such as an environmental severity index (Seelbach
1993), degree-day accumulation (Bovee et al. 1994), or duration of time above a
threshold (Lohr et al. 1996). Data on maximum temperatures can be compared
with biologically relevant values such as upper incipient lethal levels or critical
thermal maxima for a species. In most applications, temperature data are used to
provide descriptive statistics of the thermal habitat that fish occupy. For example,
Wehrly et al. (2003) used thermal characteristics throughout Lower Michigan to
examine fish abundance and fish community patterns across the landscape and
determine a baseline characterization for comparison with future changes that
may occur with the thermal habitat.

17.4.2 Modeling Approaches to Quantifying Habitat Defined by Water Quality Parameters

Empirical measurements of temperature and DO as outlined in the previous
section provide measures of conditions at specific locations, but use of those
data to model conditions throughout a study area can provide a quantitative
assessment of DO, water quality, or thermal habitat properties. By combining
the quality of macrohabitat with species-specific requirements, the quantity of
macrohabitat can also be determined. In addition, the effects of population-
altering phenomena such as the presence of thermal barriers that limit fish
movement and the suitability of temperature ranges and fluctuations for fish
survival, egg incubation, growth, feeding, and spawning can be estimated. Fur-
thermore, modeling stream temperatures under current or future altered con-
ditions can be used to assist in defining instream flows, managing a coldwater
fishery, regulating dam releases, or assessing the anticipated thermal effects prior
to logging, urbanization, changes in hydropower operations, or future condi-
tions related to global warming (Stefan et al. 2001).

Methods used to evaluate thermal patterns in streams include two basic ap-
proaches that differ in levels of complexity and predictability. The two general
categories of stream temperature models are empirical, or statistical, models
and stochastic models (Bartholow 1989). Empirical models are developed using
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measured observations, such as water temperature, air temperature, and discharge,
and applying regression or harmonic analyses to develop a predictive model.
Empirical models are very useful for filling in missing data or estimating historical
temperatures when no water temperature data existed. Although straightforward,
empirical models generally do not consider the physical relationships associated
with heat flux or heat transport. Thus, empirical models are limited in their abili-
ties to predict changes in thermal patterns that result from changes in the physi-
cal stream properties or surrounding landscape, such as channel width or ripar-
ian conditions.

Stochastic models incorporate physical process relationships in an energy bud-
get to predict instream temperatures. By incorporating an energy budget, sto-
chastic models predict water temperature on the basis of gains and losses in ther-
mal energy from processes such as radiation, convection, conduction, and
evaporation. Relevant physical parameters (e.g., stream gradient, discharge, hu-
midity, and shading) are incorporated into stochastic models to address the en-
ergy flux processes. Because of their predictive abilities in response to a change in
the ecosystem, these models are very powerful for fisheries scientists having to
make difficult decisions regarding instream flow habitat management. The trade-
off, however, is that stochastic models are usually much more difficult to develop
and require more data than do statistical models (Bartholow 1989). Many of the
data requirements are now easier to meet, however, in the form of online data-
bases, through geographical information system (GIS) analysis of aerial photos,
and through the use of advanced technology, such as Doppler or hydroacoustic
equipment, to collect the information.

The stream reach model (SSTEMP) and the stream network model (SNTEMP)
(Theurer et al. 1984; Bartholow 1989), the enhanced stream water quality model
(QUAL2E; USEPA 1995), and the Tennessee Valley Authority (TVA) river model-
ing system (ADYN and RQUAL; Hauser and Walters 1995) are examples of readily
available stochastic stream temperature models (Table 17.3). The SNTEMP and
SSTEMP models are similar in their algorithms and prediction of water tempera-
tures based on an energy budget. The SSTEMP model is used to evaluate short
stream reaches over a limited number of time periods. This straightforward, inter-
active model presents a simplified modeling approach and is useful in sensitivity
analyses for specific parameters. The SSTEMP model can be very useful in pre-
dicting temperatures over a limited reach for definition of thermal habitat char-
acteristics.

The SNTEMP model requires the development of a conceptual stream net-
work model and establishment of multiple input data files. The network model is
very powerful when considering several channel reaches with tributary inputs over
a lengthy time period. The network model software also provides postsimulation
statistical evaluations that are useful for evaluating model sensitivity and predic-
tive ability. Common applications of the SNTEMP model include assessment of
the effects of altered thermal regimes as a result of changes in hydrology or hy-
dropower management (Theurer et al. 1984; Bartholow 1991; Zedonis 1997; Krause
et al. 2004).
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The QUAL2E model does not incorporate the influence of shade on water
temperature, whereas SNTEMP and RQUAL do. Thus, QUAL2E may be better
applied for modeling large and wide rivers, which have less shade influence than
do smaller streams (USEPA 1995). The SNTEMP, SSTEMP, and QUAL2E models
are steady-state models and assume that flow is constant over a 24-h period and
input parameters are daily average values. However, because of these assump-
tions, the models cannot consider daily variation, which can either help or hinder
the model from providing accurate daily mean predictions depending on meteo-
rological conditions. If daily variations are dramatic enough to be considered im-
portant to fish survival, a model capable of predicting temperature multiple times
per day should be used. For most management situations daily averages are suit-
able. The QUAL2E model can also function in a quasi-dynamic mode, which still
assumes steady flow but accounts for the influence of diel climate fluctuation
through input of meteorological parameters at 3-h time steps (USEPA 1995).

The TVA river modeling system consists of the ADYN hydrologic flow model
and the RQUAL water quality model. The ADYN + RQUAL model is one of a few
available dynamic models and is capable of modeling flows fluctuating within a
24-h period. The model requires frequent input parameters (e.g., hourly), and
thus the data requirements are greatly increased over a steady-state model (Hauser
and Walters 1995). The model is useful for analyzing trade-offs with hydropower
operations that fluctuate flows within a 24-h period (Krause et al. 2005).

The QUAL2E and RQUAL models can also predict water quality parameters
including DO, nitrogen (organic, ammonia, nitrite, and nitrate) and phospho-
rous (organic and dissolved) concentrations, algae as chlorophyll a, an arbitrary,
nonconservative carbonaceous biochemical demand (CBOD), up to three con-
servative minerals, and coliform bacteria (Brown and Barnwell 1987; Hauser and
Walters 1995; USEPA 1995).

Models SNTEMP and QUAL2E are well documented and easily obtained (avail-
able at http://smig.usgs.gov/cgi-bin/SMIC/browse_models), training is available,

Table 17.3 Comparison of stream temperature and water quality models that are readily
available to analyze stream temperature and analyze the potential impacts of management
scenarios or alterations in hydrology or the riparian area. Models are identified as follows:
SSTEMP = stream reach model (Theurer et al. 1984; Bartholow 1989); SNTEMP = stream network
model (Theurer et al. 1984; Bartholow 1989); QUAL2E = enhanced stream water quality model
(USEPA 1995); and RQUAL (RQUAL + ADYN) = Tennessee Valley Authority (TVA) river modeling
system (Hauser and Walters 1995).

Models

Model capabilities SSTEMP SNTEMP QUAL2E RQUAL

Time step for prediction Daily Daily Daily Hourly
Reach versus basin network Reach Basin Basin Basin
Predict multiple water quality parameters No No Yes Yes
Analyze alternative shade scenarios Yes Yes No No
Predicts maximum water temperature Yes Yes No Yes
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and their use is prevalent in the literature (Theurer et al. 1984; Lifton et al. 1985;
Brown and Barnwell 1987; Wilson et al. 1987; Bartholow 1989, 1991; Waddle 1989;
Sullivan et al. 1990; USEPA 1995; Zedonis 1997).

■ 17.5 HABITAT–FISH POPULATION INDICES

Identifying a predictable relationship between fish populations and habitat is highly
desired for addressing the potential for a fishery and expectations of production,
identifying degraded habitat conditions, or assessing implications for human de-
velopment or, conversely, habitat restoration efforts. When the desire is to de-
velop a foundation for making management decisions over a large spatial scale,
an empirical model can be developed using a variety of approaches and statistical
analyses. However, in the regulatory process for setting stream flows or reservoir
levels or allocating water withdrawal, the analytical approaches must be quantita-
tive in nature. These approaches must also have the capability to evaluate poten-
tial trade-offs in alternate management scenarios. Thus standardized approaches
such as the instream flow incremental methodology or the habitat evaluation pro-
cedures (HEP) are often used.

Empirical relationships of fish populations and habitat characteristics can be
derived from biological and physical habitat data collected over the geographic
range of interest. The most common form of habitat models are those for which
the investigator measures multiple habitat variables, sometimes over multiple scales
(e.g., basin variables, channel variables, and microhabitat variables), for a large
number of streams or lakes and measures fish abundance simultaneously. Simple,
multiple, and logistic regression are often used as well as other multivariate ap-
proaches such as principal components analysis, linear discriminant analysis, or
correspondence analysis (Fraley and Graham 1981; Parsons et al. 1981; Anderson
and Nehring 1985; Watson and Hillman 1997; Claramunt and Wahl 2000). Using
these approaches, the investigator attempts to develop a predictive relationship
between abiotic variables and fish abundance or attributes of a fish population
such as growth. Fish–habitat index models are used to predict potential fish stand-
ing crop for inventory or planning, to increase the understanding between func-
tional processes and standing crop, to diagnose stream health, and to predict
responses to proposed management actions (Binns and Eiserman 1979; Milner et
al. 1985; McClendon and Rabeni 1987; Fausch et al. 1988; Modde et al. 1991).

When developing fish abundance indices, the target organisms and species
must be defined as well as the area of interest for the model application. Using
knowledge of the biological requirements of the organisms, the investigator iden-
tifies key habitat parameters that are relevant mechanistically to fish abundance
(e.g., spawning gravel, sedimentation levels, and cover). The developed models
are usually limited in that they are region specific, but they can be used to deter-
mine important physical habitat variables and identify limiting habitat features.

If a fish–habitat index is desired for a large region, a hierarchical approach can
be used to classify subwatersheds on the basis of land types or regions and to
group together streams or lakes that would be expected to be similar on the basis
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of climate, soil, and topography. At the stream mesohabitat level, instream habi-
tats or larger channel units such as pool, riffle, run, and glide (e.g., Bisson et al.
1981; Hawkins et al. 1993) are measured against elements of fish growth or stand-
ing stock. Channel units may be divided further into specific types; for example,
pools can be further categorized as plunge pool, scour pool, deep pool, or shallow
pool depending on their perceived function for acting as fish habitat. Habitat
variables such as water quality measurements (e.g., pH, alkalinity, phosphate, and
nitrate), presence of cover, substrate, turbidity, and bank condition can be mea-
sured within the specific habitat types for characterizing those features. A two-
factor analysis of covariance can be used to test for differences in fish abundance
or biomass with land type or ecoregion and channel unit (Modde et al. 1991).
Perhaps the most common approach, however, is to use a linear model (either
multivariate or univariate) to relate aspects of fish abundance to stream habitat.
The linear aspect between the predictor and response variables of these models
in some cases may be a detriment to understanding fully the interactions between
habitat quality and fish populations, in which case a regression tree analysis may
be used (Stoneman and Jones 1996).

Logistic regression is a flexible statistical method that is often used in habitat
evaluation. It is a useful technique to identify threshold relationships and to se-
lect key habitat variables that relate strongly to presence and absence of a target
organism. The key advantage of this technique is that the dependent variable has
only two classes (presence = 1 or absence = 0). Presence and absence are easier to
measure than is fish abundance or other metrics of population status.

The generalized form is

P  = ,
(1 – e a + b1x1 + b2x2 + . . . bnxn)

e a + b1x1 + b2x2 + . . . bnxn

 (17.1)

where P is the probability of presence; a, b1, b2, . . . , bn are parameters; and x1, x2,
. . . , xn are independent variables. In order for this procedure to be applied suc-
cessfully, the investigator must systematically sample the target organisms over a
wide range of habitat conditions including habitats where the organism is absent.
Ideally, both used and unused habitats are sampled equally to provide unbiased
estimates of parameters. The logistic regression may include multiple variables,
interaction terms, and polynomial terms (Box 17.2).

Key metrics used to evaluate a fitted logistic regression model include (1) pro-
portion of observations correctly classified, (2) sensitivity, or the proportion of
presences correctly classified, (3) specificity, or the proportion of absences cor-
rectly classified, (4) false positives, or the proportion of presences incorrectly clas-
sified, and (5) false negatives, or the proportion of absences incorrectly classified.
The best model for habitat evaluation procedures should have a high sensitivity
and a low false positive rate.

Common issues associated with these types of models include a lack of statisti-
cal rigor in assessing colinearity or analysis of residuals, small sample size (n > 20



856 Chapter 17

recommended), too few sample locations in comparison with the number of vari-
ables measured, and error in measuring habitat variables (Fausch et al. 1988).
The most serious drawback to the empirical fish–habitat index approach is the
need for recognition that for the predictive model developed, the underlying
assumption is that habitat predominately dictates population size or species pres-
ence in a stream or lake. This assumption should be seriously considered when
choosing sampling units to include in the development of the model, and it is
important to validate and test the model by applying it to a stream or lake unit not
used in the development of the model. Also, at times, population size may not
adequately reflect habitat quality, thus measures of survival, growth, or reproduc-
tion may be more suitable (VanHorne 1983).

Box 17.2 A Habitat Evaluation Model Based on Logistic Regression

Smith (1999) used a team of snorkelers to identify locations where male darters showed both
behavioral and morphological indicators of spawning. Fifteen habitat variables were measured at
all spawning locations (n = 87) and a systematic sample of available microhabitat (n = 146). All
fifteen variables showed different distributions based on two-sample Kolmogorov–Smirnov tests
(P < 0.05). This test, while demonstrating differences, does not identify which variable is most useful
to identify essential habitats. This can be done with PROC LOGIST in SAS (2004).

Results of initial model performance with three variables were evaluated with the chi-square test
statistic for each model coefficient estimated by maximum likelihood technique. Two of the three
habitat variables for prediction of egg-clusterer spawning habitat in the upper Roanoke River basin
were significant.

Table Logistic regression of three habitat variables as predictors of spawning habitat for darters.

Probability
Parameter of greater

Variable Mean estimate SE chi-square

Intercept –3.457 1.092 0.0015
Diameter of spawning rock (mm) 52 0.044 0.007 0.0001
Percent embeddedness 11 –0.465 0.080 0.0001
Percent silt 23 0.011 0.193 0.9539

Proportion
Correctly Classified

Sensitivity 0.93
Specificity 0.96
False positive 0.09
False negative 0.03
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Figure The fitted relation between probability of spawner presence and particle size (mm) of the
spawning rock for egg-clustering darters in the upper Roanoke River basin (Smith 1999).

The results (Table and Figure) support the hypothesis that large cobbles are important compo-
nents of spawning habitat for these darters. Furthermore, the logistic model provides quantifica-
tion of the gradual threshold effect by use of a continuous variable, diameter of the spawning rock.
The values of high sensitivity and low false positives suggest that this model should perform well in
similar situations. In this test, the empirical model development and transferability testing ap-
proach with logistic regression provides a much more reliable habitat evaluation tool than would
any qualitative descriptor.
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■ 17.6 ASSESSMENT OF FISH HABITAT USE AND HABITAT QUALITY

Understanding how fishes use their habitat is a key element to meaningfully
describing and quantifying habitat used by a single species, life stage, fish com-
munity, or guild. Habitat analyses are also used to determine features of critical
habitat where population bottlenecks may occur, such as when spawning habitat
may be limiting the production of age-0 fish. Results of fish habitat use studies
are used to make qualitative statements about the suitability of a particular habi-
tat, and these evaluations can be applied to quantify and characterize available
habitat in a stream, lake, or even estuary (Rubec et al. 1998). Identifying fish
use of habitat is key for many approaches to habitat assessment and for making
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assumptions about habitat gains and losses at the population level. The analyses
used to make conclusions about fish habitat use vary with the intended purpose of
the information.

17.6.1 Habitat Suitability Criteria for a Single Species

The most basic habitat use question asks what type of habitat a species uses or
apparently prefers. Habitat suitability criteria (HSC) are developed to character-
ize fish use of habitat and can be applied to a study area, either in an informal
grid–transect approach in a stream or in a more formal habitat evaluation proce-
dure (HEP) or physical habitat simulation analysis, to determine quality and quan-
tity of habitat. In some cases, HSC are presented in a “blue-book” format that
represents a synthesis of pooled data from a variety of different sources (Terrell
and Carpenter 1997). One drawback to using pooled data is that the HSC may be
so broadly defined from many different systems that when applied to a particular
stream or lake, they are insensitive to describing high-quality habitat in that stream
or lake. Furthermore, it is likely invalid to assume that all criteria are readily trans-
ferable from one water body to another without some form of validation or test-
ing of the HSC (section 17.6.4). In some cases, observational data used to develop
HSC reflect what was available for use by fish within the study area rather than
reflecting preferred or optimal habitat. Thus, HSC developed from observations
and measures in a degraded stream channel may reflect what fish use under those
conditions rather than what they would use in a system that was not degraded. A
comparison of the geomorphic properties between the study stream and a refer-
ence stream with high-quality habitat could be done to address this concern.

There are three types of criteria than can be developed and analyzed (Bovee
1986). Type I criteria are based on expert opinion or professional judgment. One
structured and scientific approach that uses professional judgment is called the
Delphi technique (Zuboy 1981). In this approach, study participants remain anony-
mous to one another, and all participants are asked to produce HSC on the basis
of their professional experience and observations. Mail surveys achieve anonym-
ity, and once initial HSC are collected, the information is developed into a group-
defined set of HSC, and these are then sent back to all participants for concur-
rence. Several iterations may need to occur before all participants agree that the
resulting criteria are a reasonable representation of habitat used and required by
a species. At least eight panelists are recommended as a minimum number of
participants (Hodgetts 1977). The Delphi approach can provide very good HSC
for an interim period or when HSC information is needed quickly, but a subse-
quent field validation study (section 17.6.4) of the HSC should occur in the field
to verify the resulting criteria (Crance 1987).

Type II criteria are developed by observations of individual fish and the local
characteristics of the habitat in the area occupied by the fish and hence are called
utilization criteria. An unobtrusive method is used to observe fish (e.g., snorkel-
ing, observation tower and polarized binoculars, or throwable anode with small
shocking area), and at each fish location, microhabitat parameters are measured
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(depth, substrate, velocity, and cover are characteristics typically measured). The
observations are then presented as a distribution of fish use of a single habitat
variable. Theoretically, the habitat conditions where the most fish are observed
should represent the optimum habitat. Assumptions of this method require that a
range of all habitat types in the study stream are sampled and that the fish popu-
lation is near carrying capacity.

When a fish species uses a particular microhabitat feature more than it is avail-
able in the study stream it can indicate a preference for that habitat type (Johnson
1980; Manly et al. 2002), and thus type III criteria are those that are adjusted for
availability of habitat types and are called preference criteria. Preference criteria
can be created by adjusting habitat use information with measures of habitat avail-
ability by use of an electivity preference function. Electivity functions have been
found to result in criteria that are biased toward the least available type of habitat
and thus could result in an underestimate of suitable habitat. Habitat suitability
criteria that are adjusted for habitat availability can be very different from those
based on use (Baldridge and Amos 1981). Bovee et al. (1998) suggest using a
stratified (by habitat type) equal effort approach to fish observations, thereby
accounting for habitat availability within the sampling approach. For example, if
four habitat types are found in a stream (e.g., deep pool, shallow pool, run, and
riffle) all are sampled with an equal amount of effort (e.g., same area is sampled
for each habitat type) to gather fish observations with an equal chance of observa-
tions in all habitat types.

There are several approaches to developing HSC from observation data, and
selection of the analytical approach requires careful thought and application.
Because HSC are the biological underpinning in conclusions reached from habi-
tat analyses, shifts in the values of what is determined to be high-quality habitat
can result in significant effects in the determination of the habitat area that is
modeled, thus resulting in wide differences between recommended lake or reser-
voir levels or instream flows (Cheslak and Garcia 1988). The first step in analyzing
data that has been collected for the development of HSC is through histogram
analysis to achieve an understanding of the underlying data distribution. Types of
responses that can be observed by plotting frequency of use data are monotonic
(increasing or decreasing over the range of observations), unimodal (one curve),
bimodal (two curves), or polymodal (more than two curves). In the creation of
frequency histograms, the width of the bins, or intervals, of the habitat variable
should be small enough to present the information meaningfully, but the width is
obviously limited by the level of precision in the measurements (e.g., velocity
measured only to the nearest 1 cm/s or 0.1 cm/s). One of the biggest problems
with using the frequency analysis approach is the subjectivity in the method, be-
ginning with the decision on the size of the bin or interval widths for a frequency
histogram. One objective approach to determining bin widths is to use the Sturges
(1926) equation:

C  = ,
(1 + 3.222 · log10N)

R
(17.2)
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where, C is the optimal interval size, R is the range of the observed habitat vari-
able (e.g., velocitymax – velocitymin), and N is the number of observations (Cheslak
and Garcia 1988). Once an initial histogram is developed, it can be smoothed by
adding together bins (incrementally, two or three at a time), summing their fre-
quency, and plotting the bar over the mean of the two variable measures (Slauson
1988). Once an endpoint is reached with an adequately smoothed histogram, the
frequencies on the y-axis can be normalized to 1.0, and lines can be drawn from
the midpoints of  the histogram bars (i.e., averaged frequencies) to develop a
curve with associated habitat suitability scores along that continuous curve. Cheslak
and Garcia (1988) found that the use of a running 3-point mean was an effective
approach after appropriate bin sizes were determined. Smoothness in this case is
obtained to the detriment of accuracy as it may inadequately reflect the source
data. Furthermore, there is no approach to determining a measure of error by
means of the residuals with this approach (Slauson 1988) (Box 17.3).

A second approach to developing HSC retains the original frequency data in
the form of a scatterplot, and a curve is fit using nonlinear regression analysis.
Quadratic, cubic, or higher-order polynomials can be fit to the data. This ap-
proach provides statistical measures of reliability such as an R 2 value to determine
goodness of fit. The intercept can be forced through 0 when, in the case of depth,
a 0 value for water depth indicates that fish will not be present. A forward selec-
tion model can be used to help determine the appropriate order of the polyno-
mial model to fit the data. Furthermore, an F-test or t-test can be used to deter-
mine if the polynomial model significantly fits the data, and polynomials are added
until it is appropriate to fail to reject the null hypothesis (Zar 1996). If there is a
large discrepancy in the numbers of observations for each interval (e.g., 100 ver-
sus 6), it is appropriate to use log-transformed data for analyses, and 1 can be
added to all observations to avoid taking the log of 0 (Zar 1996).

Alternatively, nonparametric tolerance limits (NPTLs) offer a nearly distribu-
tion-free approach to defining habitat use. Note that in this case, the term toler-
ance does not imply biological tolerance, but rather it is a statistical term similar
to a confidence interval. However, whereas a confidence interval defines a range
within which an unknown population parameter lies, a tolerance interval is the
range in which a certain proportion of the population lies (Slauson 1988). Non-
parametric tolerance limits are based on population theory and assume that for
any given number of observations, there is, with certainty, a proportion (P ) of the
population that will lie within given percentiles (50%, 75%, and 95%) when the
data are ordered from lowest to highest. Suitability is assigned on the basis of

SI = 2(1 – P ) , (17.3)

where P values of 0.50, 0.75, and 0.95 correspond to suitability index (SI) values of
1.0, 0.5, and 0.1 (Bovee 1986). Somerville (1958) provides the tolerance limit
values for large sample sizes (Table 17.4) and Slauson (1988) provides values for
small sample sizes (Table 17.5). Both can be used to determine the number of
observations that are outside the 50, 75, or 95% range of the population for a
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Box 17.3 Development of Habitat Suitability Criteria by Use of Frequency Analysis

A stratified, random, equal-effort approach was used to sample all habitat types and observe
subadult smallmouth bass (150–200 mm, total length) in a river. Depth (m) and mean column
velocities (m/s) were recorded for each observation. Over 300 observations were measured
(N = 340).

Table Abridged depth and velocity data for 340 observations of habitat in a river.

Depth (m) Mean column velocity (m/s)

0.09 0.00
0.58 0.07
2.13 0.03
. .
. .
. .
2.20 1.00

First, an initial frequency histogram is developed using the Sturges equation:

C  = .
(1 + 3.222 · log10N )

R

Then the observations are ordered from least to greatest and the value of the range (R) is calculated
by subtracting the least from the greatest.

C depth = , and C velocity =  
[1 + 3.222 · log10(340)]

(2.20 – 0.09)

[1 + 3.222 · log10(340)]

(1.00 – 0) .

Calculated bin widths are 0.23 m for depth and 0.11 m/s for velocity. The following histograms
result.

Figure Frequency histograms with bin widths of 0.23 m for depth and 0.11 m/s for velocity.
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(Box continues)
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The next step (if desired at this point) is to smooth the histogram distribution by using a 3-point
mean. The mean of three observations is calculated and a new distribution is determined. The
investigator must decide how to handle the tails of the distribution. No more than three passes are
recommended to smooth the histogram to reduce the error associated with this process (Cheslak
and Garcia 1988).

Box 17.3 (continued)

Figure Smoothed histogram obtained by using a 3-point mean. The mean of three observations
is calculated and a new distribution is determined.
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given confidence interval. Unlike curve fitting, this approach can be used with
small data sets and  can be replicated by different HSC developers given the
same set of data. An assumption is, however, that the habitat observations de-
fined by the central 50, 75, or 95% are biologically relevant (Bovee et al. 1994;
Newcomb et al. 1995). Additionally, the investigator must know the distribution
of the data to determine if a one-sided approach of the NPTLs is applicable. For
example, when organisms require low to 0 stream velocities, the distribution of
observations will be heavily skewed toward 0, thus indicating that 0 is a desirable
condition, and therefore the limits should be applied to the faster velocities.
Criteria can also be categorized within optimal (�0.5 or �0.75), suitable (�0.75
or �0.1), or unsuitable (�0.1) ranges and used as nominal data for further
analyses (Box 17.4).

All HSC are only as good as the data used to develop them, and several issues
have arisen regarding the scale of data collection for fish habitat use relative to
the scale at which habitat is modeled (Williams 1996). Use of binary criteria (such
as those developed with NPTLs) may address scale issues and associated error in
habitat measurements by more broadly defining optimal or useable habitat rather
than by a narrow optimum point on an HSC curve. The quality of the resulting
criteria depends on several factors including the number of observations (>150
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Once the histograms are smoothed, they can be normalized to 1.0 by dividing the y-value for each
observation by the maximum y-value in the chart. A curve can be drawn by creating an x–y plot
with the histogram data. At this time, it is also important to understand the original frequency
distribution to determine whether or not the curve could have an optimum value at 0.

Figure Normalized histogram obtained by dividing the y-value for each observation by the
maximum y-value in the data.
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for developing a smooth curve), state of the stream habitat (degraded or not)
from which the fish is able to choose, and the sampling design (stratified random
sampling or adjusted for availability). It is also important to note that curve devel-
opment should be used only for continuous and not categorical data.

Categorical data are used also to establish a suitability index value. For instance,
ratings of excellent, good, average, and below average could also correspond to
rating values of 4, 3, 2, and 1. To this, a habitat suitability index (HSI) value of 1.0
(excellent, 4), 0.75 (good, 3), 0.50 (average, 2), and 0.25 (below average, 1) could
be applied (USFWS 1981). Categorical assignments are often used to describe
sediment (e.g., modified Wentworth scale) or instream cover.

17.6.2 Guild- or Community-Based Approaches

The use of single-species information to optimize instream habitat may result in
habitat limitations for biologically or recreationally important species. Addition-
ally, the assessment of HSC for multiple species and life stages can lead to a dizzy-
ing array of curves to reconcile. An alternative approach to habitat assessment is
to use a group of fishes with similar habitat requirements. Root (1967) defines a
guild as a group of species that utilize similar resources in similar ways. Habitat
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use data can be measured as outlined above for several species, and guilds can be
defined using cluster analysis or other multivariate approaches. Examples of groups
include riffle, run, pool, and stream margin guilds (Leonard and Orth 1988).
Habitat suitability criteria can be developed from measurements on species within
each of the identified guilds. When using guild- or community-based approaches
to determining instream flow needs, a representation of different guild types should
be evaluated as the use of only pool or only riffle species can result in flow recom-
mendations that are erroneously high or low depending on the guild used
(Leonard and Orth 1988).

In more productive, often warmwater, habitats, there are many fish species,
and habitat evaluation must be either extremely general (e.g., rapid bioassessment
procedures habitat quality index; Barbour et al. 1999) or focused on one or a few
target organisms. Either approach is flawed. If all fish species are grouped into
some guild typology, numerous species can be simultaneously evaluated with guild-
specific criteria (Box 17.5).

17.6.3 Sample Sizes Required for Developing Habitat Suitability Criteria

The number of observations required to develop an accurate representation of
fish use of their habitat is an important consideration. Collecting habitat use in-
formation can involve a significant amount of financial and personnel resources.
Bovee (1986) generally recommended sample sizes of around 150 to gain a good
perspective of the distribution of the fish use of habitat. However, in reality, the
greater the variability in habitat use, the larger the sample size required to cap-
ture this information, and conversely, fish species with very specific habitat prefer-
ences may require fewer observations. One valuable approach that may be useful
for project scoping is based on a standard normal distribution (Ott 1993). Sample
size can be determined according to the following:

n  = ,(z�/2)
2 �2

E 2  (17.4)

Table 17.5 Nonparametric tolerance limit values for 50 habitat use observations or less. Given
is the proportion (P) of the population (that is, number of observations) that will lie within the
tails of the distribution for given percentiles (0.50–0.95) and different confidence levels. Toler-
ance values are derived from Murphy (1948) as presented in Slauson (1988).

Confidence level 0.90 Confidence level 0.95

n 0.50 0.75 0.90 0.95   0.50 0.75 0.90 0.95

15 6 2 5 2
20 8 3 1 7 2
25 10 4 1 9 3
30 12 5 1 11 4 1
35 14 6 2 14 5 1
40 16 7 2 1 15 6 2
45 18 8 3 1 17 7 2
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Box 17.4 Use of Nonparametric Tolerance Limits to Develop Habitat Suitability
Criteria

Data are first ordered from lowest to highest for the parameter of interest. Here we will use depth
and velocity data from Box 17.3. It is useful to develop a histogram to determine the distribution of
data and determine if a one-tailed or two-tailed application of the tolerance limits is required.

Once the data are ordered, refer to Tables 17.4 or 17.5 to determine the interval ranges. Using a
confidence level of 0.95, we find that we need to interpolate between the values of 300 and 400 to
find the correct values. Simple linear regression can be used to interpolate between the two points
in the chart.

Figure Linear interpolation of nonparametric tolerance limits for intermediate sample sizes (see
Table 17.4).
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From this, we find that our population proportion (P) values for a sample size of 340 and a confi-
dence level of 0.95 to be 45 observations for the central 0.90, 75 for the central 0.75, and 160 for the
central 0.50 of the population.

From the original histograms plotted according to the Sturges equation (see Box 17.3), we see that
both distributions are two tailed, although the velocity distribution is skewed toward 0. Histogram
analysis shows that using a running mean, the velocity distribution could be interpreted as being a
one-tailed distribution. For the purposes of illustration, we will assume that depth is a two-tailed
distribution and velocity is a one-tailed distribution. We then take the ordered data and determine
the values that are within the desired 0.50, 0.75, and 0.90 ranges by subtracting the designated
number of observations from the tails.
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Figure Application of nonparametric tolerance limits to depth and velocity data. Depth is
assumed to be a two-tailed distribution and velocity a one-tailed distribution. Using the ordered
data, determine the values that are within the desired 0.50, 0.75, and 0.90 ranges by subtracting
the designated number of observations from the tails.

From this, we determine the suitability index, SI = 2(P – 1). Our habitat suitability criteria for depth
and mean column velocity for subadult smallmouth bass based on nonparametric tolerance limits
are given in the table below.

Table Habitat suitability criteria for depth and mean column velocity for subadult smallmouth
bass. The suitability index, SI, is given by 2(P – 1).

Depth (m) Mean Column Velocity (m/s)

SI Range SI Range

1.0 0.43–0.85 1.0 0.0–0.09
0.5 0.34–0.42 and 0.86–1.16 0.5 0.10–0.17
0.2 0.27-0.33 and 1.17–1.28 0.2 0.18–0.24
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For graphical display, tolerance limits are best presented with a histogram or a modified stem plot.
A curve indicates interpolation between two points, and this is not appropriate for these tolerance
limits.

Figure Graphical display of habitat suitability criteria for smallmouth bass.
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Box 17.5 Use of Guilds in Developing Habitat Suitability Criteria

In this example, four habitat use guilds (Vadas and Orth 2000) were used to describe the habitat use
for 37 species of fish in a warmwater stream. Discriminant analysis of habitat use data reported by
Persinger (2003) illustrates the significant differences in habitat variables among the four habitat
use guilds. The majority of habitat use measurements at fish locations were correctly assigned to
guilds based on linear discriminant functions. The table below shows the number of observations
and percent classified into each habitat use guild (Persinger 2003). Only the pool–run guild (a
transition group) had the majority of observations misclassified.

Table Number of observations (habitat use measurements at fish locations) and percent classified
(in parentheses) assigned to each predetermined habitat use guild (Persinger 2003). Pool–cover is a
combination habitat type that is a mixture of open pool and pool habitat with a significant amount
of cover.

Fish observations
by assigned
habitat guild type Riffle Fast generalist Pool–run Pool–cover Total

Riffle 217 90 11 19 337
(64.4) (26.7) (3.3) (5.6) (100)

Fast  generalist 120 157 22 69 368
(32.6) (42.7) (6.0) (18.8) (100)

Pool–run 59 82 21 73 235
(25.1) (34.9) (8.9) (31.1) (100)

Pool–cover 47 83 21 216 367
(12.8) (22.6) (5.7) (58.9) (100)

The derived habitat–stream discharge relation for the riffle guild of fishes was very similar to the
relations for two different species within this guild (see Figure below).

Habitat type

Figure Physical habitat modeling results for mottled sculpin, longnose dace, and the riffle guild at
a study site on the North Fork Shenandoah River based on only the depth and velocity criteria
(from Vadas and Orth 2000). Shown is the weighted usable area (WUA) versus discharge.
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where n = recommended sample size, z = the critical value derived from the stan-
dard normal distribution, �2 = assumed population variance, and E = the desired
precision in terms of a plus-or-minus bound on the true mean. A pilot sample is
required to gather information on a selected number of individuals to generate the
standard deviation. Alternatively, the information could be obtained from a previ-
ous study of similar parameters. However, once again this effort is aimed at deriving
information about the mean rather than about the range of habitat usage.

17.6.4 Verification and Transferability of Habitat Suitability Criteria

Collecting site-specific criteria can be expensive and time consuming, so often a
measure of transferability is desired to evaluate the potential for HSC developed
in one stream to describe fish habitat use in other streams. The testing for trans-
ferability is a question of goodness of fit of the distribution of the data. The devel-
oped criteria should adequately describe not only the “best” habitat for the spe-
cies or community but also the appropriate range of habitat values. Thus we are
interested in both population metrics for the purposes of quantifying habitat.
Data collected from an aquatic system that has the functional hydrologic and
instream habitat characteristics of a high-quality system can be used as a standard
for comparison. Subjective approaches to assessing the transferability of HSC from
one location include visual inspection of one set of frequency diagrams with an-
other. Other statistical approaches include tests of point estimates and frequency
distributions (analysis of variance or Kruskal–Wallis and Kolmogorov–Smirnov or
chi-square). The abbreviated convergence approach (Bovee 1986) is a visual
method that involves collecting a subsample of fish habitat use information and
overlaying the frequency histograms on the developed criteria. If the tails and
center of the distribution correspond, one could conclude that the HSC are ap-
propriate for use in the new stream. On the other hand, if they don’t overlap, it
doesn’t necessarily mean that the HSC are invalid for use, but negative results
could be a product of a small sample size. Statistically, a Kolmogorov–Smirnov test
can be used to test for differences in habitat variables with continuous distribu-
tions such as depth and velocity (Box 17.6) and a chi-square or G-test can be used
to test for differences in categorical variables (Sokal and Rohlf 1995).

One transferability test that is relatively straightforward uses a one-sided chi-
square to test for random or nonrandom selection of habitat locations by fish
(Thomas and Bovee 1993). In this case, sample locations in the stream or lake are
assigned a categorical rating (e.g., optimum or usable or suitable or unsuitable)
based on single parameters or an index (section 17.6.5). Sample locations can be
determined randomly or with a grid sampling design. Locations are noted as oc-
cupied or not occupied by fish and recorded accordingly. Those locations that are
rated higher should be occupied at a higher frequency than those locations that
are not; if the null hypothesis is rejected  the criteria are determined acceptable
for describing habitat quality in a particular stream. To avoid unacceptable error
rates with this approach, sample sizes should be at least 55 occupied locations and
200 unoccupied locations. Thus this approach has been criticized because of its
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dependence on the large number of “no fish” observations required. However, in
any approach to measurement of habitat availability, a large number of observa-
tions is required to describe the habitat adequately, and thus while the method
quantifies the number of observations, the amount isn’t unusual in determining
general habitat availability (Box 17.7).

17.6.5 Habitat Suitability Index Models

Habitat suitability index (HSI) models were developed to represent the total habitat
quality of a site for a species of interest compared with the optimum conditions
for that species; HSI values vary from 0 to 1 (USFWS 1981). An HSI model is a
composite of all the HSC that are important life requisites for a species. For ex-
ample, juvenile channel catfish may have food, cover, and water quality life requi-
sites. Once life stages and life requisites are determined, specific, measurable at-
tributes of the habitat for each life requisite are identified. Next, a suitability index

Box 17.6 Comparison of Two Distributions by Means of Kolmogorov–Smirnov Analysis

Velocity observations were collected from river 1 for development of habitat suitability criteria.
Later, it was desired to use the criteria from river 1 to describe habitat use in river 2. A small sample
of observations was collected from river 2 and compared with river 1 by means of a Kolmogorov–
Smirnov analysis. The hypothesis is that the two samples are distributed identically.

Figure Frequency distribution of number of observations at each depth for two rivers.
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Program
The SAS program for a Kolmogorov–Smirnov test follows.

PROC IMPORT OUT= WORK.TROUT

DATAFILE= “D:\K-Sdata.txt”

DBMS=TAB REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

PROC NPAR1WAY DATA=WORK.TROUT;

CLASS RIVER;

VAR DEPTH;

RUN;

QUIT;

Results

The results of the Kolmogorov–Smirnov (KS) two-sample test (asymptotic; KSa) were as follows.

KS 0.135017 D-statistic 0.306473
KSa 2.247135 P > KSa <0.0001

The Kolmogorov–Smirnov (KS) statistic represents the maximum deviation from the empirical
distribution function. The KSa is the asymptotic KS statistic, which corrects for sample size and
equals the square root of the sample size multiplied by the KS statistic. The KSa value is used when
the product of the sample sizes is less than 10,000. The two-sample  Kolmogorov–Smirnov test
statistic is given by D, and the P-value is given for KSa. In this example, the two distributions were
found to be significantly different, and thus river 1 data may not adequately describe the habitat
use in river 2.

(SI) curve (also known as HSC) or relationship is developed for each habitat
attribute representing the suitability of the habitat on a 0–1 scale for the species at
different values of the habitat variable (section 17.6.1). Therefore, if water quality
is a life requisite for channel catfish juveniles, then total dissolved solids might be
a suitable variable to measure to represent water quality suitability. The number
of total variables in an HSI model varies but should adequately reflect how the
animal responds to its habitat.

To apply an HSI model, the investigator must sample all the habitat attributes
of the model within the river reach or lake area to be evaluated. The suitability of
the site based on each individual habitat variable is then determined from the SI
relationship. These values then must be combined to reflect the overall HSI of
the site. Usually, the life requisite suitability values (LRSI) are calculated, and the
HSI value is determined from the LRSIs. Suitability index values determined from
the HSC may be combined in several ways to generate the LRSIs. These approaches
include the following.
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1. Arithmetic mean (�SIi /n). This approach is the best when variables combine
to provide a single resource, but all are not required to have suitable habitat.
The only way that habitat suitability can be 0 is if all the variables in the equa-
tion are 0.

2. Geometric mean ([SI1 · SI2 · SIn]1/n). This approach is best used when a 0 suit-
ability for any variable will result in an overall value of 0.0. However, for the
same set of habitat values, the geometric mean will be less than or equal to the
arithmetic mean.

3. Minimum function. For i = 1 to n, the smallest value is used (e.g., the lowest SI
value of variable 1 to 3, SIV1, SIV2, or SIV3). This approach is applied when the
concept of limiting factors is believed to apply (USFWS 1980).

Box 17.7 Transferability Testing of Habitat Suitability Criteria by Means of a
One-Sided Chi-Square Analysis

Habitat suitability criteria were developed for smallmouth bass in Cedar Creek using nonparamet-
ric tolerance limits (Thomas and Bovee 1993). A flow alteration is proposed for Town Creek, a
warmwater stream of reasonable comparison with Cedar Creek in size, hydrology, and species
community. There is interest in using Cedar Creek criteria for quantifying habitat in Town Creek, but
first a test of transferability must be done. Optimum habitat is defined by that with a suitability
value of 1, usable habitat is that rated as 0.5 or greater, suitable habitat is rated by any values
greater than or equal to 0.1, and unsuitable habitat is that with values that fall outside the 0.1 rating
(as in the last figure in Box 17.4).

A 300-m section of stream was sampled using a homogenous cell grid of 1 m2, resulting in 1,500
observations. The stream reach was snorkeled, and smallmouth bass were located in 180 locations.
Depth and velocity were recorded in all cells and at the fish locations. Depth and velocity were
multiplied together to formulate a composite cell value. Only cells with both optimum depth and
velocity were categorized as optimum cells. If either value was unacceptable, the cell was rated as
unacceptable. Any other combinations were rated as useable.

Verifying transferability of the criteria requires hypotheses tests that first identify the use of suitable
(optimum + useable) versus unsuitable and then optimum versus useable. Thus, this test looks at the full
range of habitat use as well as the central location as identified by the optimum habitat classification.

The following data resulted.

Table Smallmouth bass presence (occupied) versus absence (unoccupied) in suitable and
unsuitable habitat.

Suitable Unsuitable Total

Occupied cells 92 (cell a) 88 (cell b) 180
Unoccupied cells 733 (cell c) 587 (cell d) 1,320
Total 825 675 1,500
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To test the null hypothesis, Ho, that suitable cells are occupied in equal proportion to unsuitable
cells, versus the alternative hypothesis, Ha , that suitable cells are occupied in greater proportion, the
following computation is made:

T = [N0.5(ad – bc)]/[(a + b)(c + d)(a + c)(b + d)]0.5 .

T = [1,5000.5(92 · 587 - 88 · 733)]/[(180)(1,320)(825)(675)]0.5 = –1.1.

The significance level of T is determined from the standard normal distribution table. In this
example, there is a 27% probability of a greater value of T, and the null hypothesis fails to be
rejected.

If the suitable versus unsuitable test was significant, then a second test of optimal habitat versus
useable habitat is required. To test the Ho that optimal cells are occupied in equal proportion as
useable cells versus the Ha, that optimal cells are occupied in greater proportion, the following
table is constructed and a T-value can be computed as above.

Table Smallmouth bass presence (occupied) versus absence (unoccupied) in optimal versus
useable habitat.

Optimal Useable Total

Occupied cells 30 (a) 62 (b) 92
Unoccupied cells 173 (c) 560 (d) 733
Total 203 622 825

4. Additive function (�SIVi). This approach is the best when two or more variables
are supplemental (e.g., different food resources summed together to define to-
tal food). If the final value is greater than 1, it should be scaled back to 1.

■ 17.7 QUANTIFICATION OF FISH HABITAT

The approaches outlined in section 17.6 illustrate how to define and qualify fish
habitat, but a further step is required to quantify habitat areas. Combinations of
habitat suitability criteria and indices are used in different modeling applications
to predict the amount of area that can be defined as quality habitat in a lake,
reservoir, or river.
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17.7.1 Transect- and Grid-Based Approaches

Often when studying fish populations, investigators desire to compare sites, reaches,
streams, or lakes that they have sampled for aquatic biota to compare for relative
differences in aquatic habitat. A simple, straightforward approach is to use a
transect-based method that defines sampling locations in a systematic fashion.
For example, in sampling a small pond, six transects could be located, and mea-
surements of DO, temperature, vegetation, and pond depth could be recorded
every 2 m laterally across the stream and then at specified depths at each lateral
location. Transect spacing is important and should be considered in light of the
habitat available (see Chapter 3 for systematic sampling). If the habitat is very
diverse, then a greater number of transects and point location measurements
should be recorded. In general, the measurements taken at one location should
characterize the area bounded by the cell, which is bounded by locations halfway
between transect locations and each lateral measurement. Analyses of the data
can include parametric analyses for continuous data for comparison between lo-
cations and chi-square analysis for categorical data. When significant differences
are found in a chi-square analysis, it is often desirable to use a decomposition of
the chi-square to determine the location of the differences between the catego-
ries. Transect approaches provide the basis for data collection in the following
habitat evaluation procedure and in habitat-based hydrologic modeling for streams.

17.7.2 Habitat Evaluation Procedure

The habitat evaluation procedure (HEP) was developed to document the quality
and quantity of habitat for a species (USFWS 1980). The HEP approach is in-
tended for use in evaluating baseline habitat conditions with HSI models and in
assessing the impacts of various actions that may occur, such as development of a
dam or habitat management activities. The HSI values for a selected species are
determined empirically and then modeled for various scenarios based on expected
changes in habitat conditions. The analysis unit used in HEP is the habitat unit
(HU), which is determined as the product of the HSI of the site multiplied by the
area (HSI × area = HU). Thus, 1 HU represents one spatial unit (e.g., acre or
hectare) of the optimal habitat for the species. Habitat units are determined for
the baseline conditions and for future conditions under various scenarios and
provide information concerning expected impacts on habitat potential. The HEP
process also can be used to evaluate potential mitigation and compensation sce-
narios to alleviate habitat impacts (Box 17.8).

17.7.3 One- and Two-Dimensional Hydrologic Models

Water allocation and hydropower management are two resource uses for which it
is advantageous to evaluate incrementally the trade-offs of numerous flow regimes.
Water for irrigation, municipal use, and generation of electricity has tremendous
socioeconomic value, and although justification and legal precedence for instream
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Box 17.8 Application of a Habitat Suitability Index (HSI) Model and the Habitat
Evaluation Procedure (HEP)

To illustrate the application of HSI models in a HEP context, we will use a portion of a bluegill model
(Stuber et al. 1982). This model is somewhat complex, with five life requisites modeled for the
riverine version of the model, and four life requisites represented by the lacustrine model. However,
it is not unreasonable to apply a life requisite submodel when that particular life requisite is
considered to be the most limiting aspect of habitat quality for a species. Accordingly, here we will
use the life requisite of cover in the lacustrine model to represent overall bluegill habitat quality.
This implies that cover is most limiting to the species in this particular instance.

Lacustrine Bluegill Cover Life Requisite
The three variables that constitute the cover life requisite for lacustrine bluegill habitat are percent
cover of logs and other objects (V1), percent cover of aquatic vegetation (V2), and percent littoral
area (V3). For clarity, variables have been renumbered from the original model.

Suitability index (SI) curves are developed for each variable based on the available data.

Figure Suitability indices for cover life requisite for lacustrine bluegill habitat: (A) percent cover
(e.g., logs, brush, and debris) within pools or littoral areas during summer (V1); (B) percent cover
(aquatic vegetation—submersed, dense stands, and finely divided leaves) (V2); and (C) percent
littoral area during summer stratification (V3).
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The life requisite suitability index (LRSI) is found as a weighted geometric mean of the suitability of
these three variables:

LRSI cover = (SI1 · SI2 · SI3
2)0.25 .

Note that the developers of the model assumed that the percent littoral area is more important
than the other two variables in determining overall cover quality, and this V3 was weighted
accordingly. This LRSIcover value can be taken to be the HSI value if cover is assumed to be limiting.

Application of the Model to Data
Now, assume that we were interested in the value of bluegill habitat in a 50-ha impoundment. The
first step would be to sample and estimate values of the three variables for the site appropriately.
Once this was done, it is necessary to determine the SI associated with each habitat value from the
above curves. For example, assume we collected the following data.

Table Data necessary to determine LRSI for bluegill in a 50-ha impoundment.

Field value Associated
Variable (%) SI value

V1 Percent cover (e.g., logs, brush, and debris) within
pools or littoral areas during summer 10 0.40

V2 Percent cover (aquatic vegetation—submersed, dense
stands, and finely divided leaves) 50 0.71

V3 Percent littoral area during summer stratification 30 1.0

Our LRSI based on cover is then calculated as

(0.4 · 0.71 · 12)0.25 = 0.73.

Box 17.8 (continued)

uses of water is increasing, detailed models assist in evaluating costs and benefits
associated with different flow regimes.

Hydrologic models use engineering principles of flow to model lotic habitat at
different flows. Within the one-dimensional (1-D) instream flow incremental
methodology (IFIM), the physical habitat simulation system (PHABSIM) offers
three different hydrologic models (HEC-2, IFG-4, and WSP) to predict depths
and velocities in defined habitat cells within a study area (Bovee 1986). The hy-
drologic model is paired with biological information (HSC; section 17.4) to pro-
duce weighted usable area (WUA) or, if binary criteria are used, useable area
(UA). For comparisons between sites of unequal area and for describing habitat
availability, percent useable area (PUA) can be defined by 100 · (WUA/area)
(LeClerc et al. 1995). Other hydrologic models also use criteria to quantify habi-
tat under altered flow scenarios (Heggenes et al. 1996).
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Thus, we can say that the LRSI for the impoundment for bluegill is 0.73 on a 0.0 to 1.0 scale.
Within the HEP, the common unit of currency and comparison is the habitat unit (HU), which is
found as

HU = HSI · area.

Thus, 1 HU represents one unit (e.g., acre or hectare) of area of optimal (HSI = 1.0) habitat. In our
bluegill example, the number of bluegill habitat units for the impoundment would be: 50 · 0.73 =
36.5 HU. This represents a baseline measurement that can be used for comparison among areas or
to compare with projected future conditions.

Use of HEP to Assess Effects of Habitat Change
We now know the baseline conditions for the impoundment under consideration (36.5 HU). We can
assess potential effects of habitat changes by projecting expected habitat conditions in the future,
determining the habitat suitability based on those conditions, and then comparing habitat units
between baseline conditions and the expected conditions.

For example, assume that the impoundment was expected to undergo a drawdown in water level.
Say that this change resulted in a reduction in area from 50 ha to 40 ha. We might predict that as a
result V1 and V2 will not change much, so their SI values remain at 0.4 and 0.71, respectively.
However, there may be a change in the percent littoral area from 30 to 15%. The associated SI value
is 0.75. The calculated LRSI then becomes

(0.4 · 0.71 · 0.752)0.25 = 0.63.

The HU associated with the new conditions is 40 · 0.63 = 25.2 HU. Thus, the net impact of the
drawdown can be estimated as a loss of 36.5 – 25.2 = 11.3 HU.

Recent applications of engineering principles to habitat models include two-
dimensional (2-D) models. The approach uses finite elements to define instream
habitat. The 2-D models are advantageous in that the spatial resolution of the
model can be adapted to the scale of fish habitats, islands can be readily incorpo-
rated into the modeling assessment, and there is additional availability of flow
resistance correction functions (LeClerc et al. 1995; Ghanem et al. 1996). The
approach also allows for analysis of other features such as distance to cover, rest-
ing habitats, or feeding habitats. Similar to the stochastic temperature modeling,
this approach requires a large amount of data collection and data reduction, which
are easier to accomplish as the technology and software advance.

Based on the output from either a 1-D or 2-D hydrologic model, a discharge–
WUA relationship can be created. Often this is where the process of analysis ends,
and judgments are made about the flow that provides the greatest WUA for the
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target species. However, stopping at this point diminishes the value of the incre-
mental models and their output. Further analyses can be conducted to determine
actual habitat availability based on historical hydrographs and the habitat models
to create a time series of habitat available for additional analyses (Milhous et al.
1990). Additionally, a subsampling routine (i.e., bootstrap) has been used to es-
tablish confidence intervals on the WUA output (Williams 1996). For measures of
duration or magnitude of available habitat or periods of limited habitat, habitat
duration curves (Sale et al. 1981; Milhous et al. 1990) or a continuous-under-
threshold habitat-duration curve (Capra et al. 1995) can be developed to analyze
temporal features of habitat availability.

17.7.3.1 Habitat Duration Curves and Exceedance Thresholds

Habitat duration curves are similar to flow frequency duration curves. Using the
WUA function, a historical flow record can be converted to daily values of WUA,
depicting available habitat over time. From this record, the daily habitat values
are ranked by sorting from largest to smallest. Then, the following formula is used
on each value:

f(h) = ,100 ·
r(h)
n – 1  (17.5)

where f(h) represents the frequency at which that ranked habitat value is met or
exceeded, r(h) is the rank of habitat value h, and n is the number of events in the
period of record. Sale et al. (1981) proposed a nomograph approach to setting
flow standards under the duration curve analysis. The y-axis contains the WUA
values, the lower x-axis contains the discharge, and a WUA curve is plotted. The
upper x-axis is labeled with the probability of exceedance, and the WUA exceedance
curve is plotted. A threshold for exceedance of habitat can be established by the
stakeholders. The value on the WUA flow curve that corresponds to the exceedance
value can then be used to establish the minimum desired flow conditions. This
approach can be used with either a single species or guild WUA relationship, but
multiple nomographs may need to be considered for setting a final flow.

17.7.3.2 Continuous-under-Threshold Habitat-Duration Curve

The approach for developing the continuous-under-threshold habitat-duration
curve, or CUT curve, is outlined in Capra et al. (1995). Briefly, a threshold value
for WUA is determined (this step establishes the magnitude of the habitat limita-
tion). For some period of time (e.g., an annual increment may be most appropri-
ate for evaluating limitations on a species’ life history), a time series is evaluated
for periods when the WUA is less than the threshold (e.g., 1, 2, or 4 d to establish
the duration). Then, the threshold periods are sorted in descending order from
the longest to the shortest durations. These values are plotted on the y-axis while
the cumulative percentage (Cpi) of the number of threshold days (di) on the total
number of days (D) is plotted on the x-axis (Cpi = di /D + Cpi  – 1, where do = 0). For



Habitat Evaluation 879

comparison, several curves can be drawn on the same figure. This approach still
needs to be verified with species other than trout, and some approach for deter-
mining thresholds should be evaluated. However, it is a promising approach that
moves away from the static approaches to determining flow requirements in
streams. But still, the approach must be considered as a bottleneck analysis rather
than a unilateral standing stock prediction.

17.7.4 Approaches Based Only on Stream Flow Data

Office approaches are often used when little information is available on stream
habitat in a channel or when a quick answer is required. Drawbacks to these meth-
ods, however, are that they are not well justified biologically outside the areas or
species for which they were developed, nor do they allow for the evaluation of
trade-offs when flows must be specified.

17.7.4.1 The Tennant Method

One straightforward office approach valued for its simplicity is the Montana method
or Tennant method (Tennant 1975; Table 17.6). In his work, Tennant outlined
proportions of a stream’s mean annual flow that provided habitat from poor to
outstanding ratings; these ratings, however, were based entirely on subjective in-
terpretation of photographs. Although this is a convenient desktop approach to
determining flows, assumptions about the conditions provided by each of the
proportional categories should be investigated in the field. At best, the Montana
method provides a guideline for further investigations.

17.7.4.2 New England Base Flow Method

This approach uses the median monthly flow for the low-flow month of the river,
which is typically August in North America. The approach assumes that median
historical flows during the low-flow month will sustain indigenous aquatic organ-
isms throughout the year. The drawbacks to this approach are field testing in

Table 17.6 Instream flows for fish, wildlife, recreation, and related environmental resources
(adapted from Tennant 1975).

Recommended base flows

Description of flow October–March April–September

Flushing or maximum 200% of the average flow
Optimum range 60–100% of the average flow
Outstanding 40% 60%
Excellent 30% 50%
Good 20% 40%
Fair or degrading 10% 30%
Poor or minimum 10% 10%
Severe degradation  10% of average flow to 0 flow
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different regions is lacking, the nonincremental approach leaves no room for
negotiating, and long-term flow data are required.

17.7.4.3 Index of Hydraulic Alteration

The index of hydraulic alteration allows for calculation of the expected variability
in flow regimes based on past hydrological patterns (Richter et al. 1997). This
approach assumes that natural flow variability is inherent to the health of river
ecosystems and channel morphology. The use of this method allows for a recogni-
tion of changes in flow patterns as well as providing a target for flow restoration.
Sixty-seven index values are identified in this approach.

17.7.4.4 Approximation of Optimum Habitat Based on Weighted Useable Area

Weighted useable area (WUA) is the product of habitat modeling based on a
hydraulic habitat model meshed with species models of habitat use (section
17.7.2). The output value is a function of discharge and is used to negotiate for
instream flows that approach a species or life stage optimum. Both the hydro-
logic model and the species models can be complex and expensive to develop.
Recent work conducted on salmonid species in the Pacific Northwest has found
that mean annual discharge (MAD) is a good approximate of the optimum WUA
values (Hatfield and Bruce 2000). Further, the authors provide regression equa-
tions for species and life stages, but they caution against using them outside the
region. This approach could be used for project scoping or initial evaluation of
flow alternatives.

■ 17.8 FUTURE DIRECTIONS FOR HABITAT DATA ANALYSIS

Technology is providing the capability to collect large amounts of information
and analyze physical processes in ways that we haven’t been able to in the past.
The use of hydroacoustics to sample stream and lake depths, bottom type, and
vegetation types provides GIS-linked spatial coverage at a large scale with greater
precision (<m2 in some cases) than that with traditional physical measurements
(e.g., Fisher and Rahel 2004). Additionally, Doppler technology allows the mea-
surement of velocity profiles in flowing water. This creates the ability not only to
measure discharge in a quick fashion but also to provide greater detail in describ-
ing microhabitat environments. Continuous measurement water temperature and
water quality devices provide managers with the ability to analyze real-time fish
macrohabitat for incorporation into long-term monitoring efforts as well as mod-
eling. All of these improvements in technology are heading toward new pathways
for analysis of ecosystem processes in both lake and stream environments.

Future development and standardization of approaches to habitat evaluation
will result from technological advances in the gathering of field measurements
and the standardization of large data sets. These advancements will hopefully
lead to a better understanding of the linkages between habitat and sustainable
fish communities.
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■ 18.1 INTRODUCTION

Assessing fish habitat requirements is a major focus of fisheries management and
aquatic conservation efforts. Historically, we have tended to think of fish habitat
in terms of local conditions such as water depth, current velocity, and cover. How-
ever, fish habitat can be viewed at a variety of spatial scales varying from micro-
habitat conditions to stream channel units or lake zones up to watershed level
characteristics (Fausch et al. 2002). Furthermore, these scales form a hierarchy
such that local habitat conditions often are the result of processes that operate at
much larger spatial scales. For example, regional geology and glacial history can
influence the productivity and morphology of lakes (Riera et al. 2000). In streams,
basin shape and geology interact with riparian vegetation to determine the types
of habitats present (Frissell et al. 1986; Modde et al. 1991). In describing how
stream features are controlled by characteristics of the drainage basin, Hynes (1975)
noted, “in every respect, the valley rules the stream.” This chapter describes ap-
proaches used to relate both large-scale habitat features and habitat patchiness to
fish abundance patterns in lakes and streams.

18.1.1 The Watershed

A watershed is an area drained by surface and groundwater flow. A drainage basin
is a watershed that collects and discharges its surface streamflow through one
outlet or mouth. The term catchment refers to a subdrainage or the land area
draining toward a specified point of interest within the drainage basin. Water-
sheds of large rivers are commonly called basins, such as the Missouri River basin
or the Ohio River basin. Watersheds exist within a hierarchical framework, such
that catchments exist within watersheds that, in turn, are part of basins.

Many state and federal management agencies within the USA use a hierarchi-
cal system of hydrologic units developed by the U.S. Geological Survey (Seaber et
al. 1987). These units are identified by unique hydrologic unit boundary (HUB)
codes that are based on dividing the USA and the Caribbean into 21 major re-
gions, 222 subregions, and 2,149 cataloging units. At the regional level, the HUBs

18



888 Chapter 18

define zoogeographic provinces that share a similar geologic and evolutionary
history and thus similar species pools. However, HUBs are not true topographic
watersheds in that many are downstream segments of larger watersheds or collec-
tions of several adjacent small watersheds. They are useful to management agen-
cies because it is impossible to divide the country into a finite number of true
watersheds at any hierarchical level and because HUB units at any given level are
similar in size, which is not true of topographic watersheds. However, because
HUBs are not topographically based, they do not always integrate natural and
anthropogenic influences acting upstream. As noted by Griffith et al. (1999), studies
relating biotic conditions to large-scale habitat features should also consider
ecoregion effects. Ecoregions are areas of relative homogeneity of ecological sys-
tems caused by similarity in soils, vegetation, climate, geology, physiography, and
biogeographic history (Abell et al. 2000). Ecoregion boundaries do not necessar-
ily coincide with watershed boundaries and thus can contribute to within water-
shed variability in ecological communities.

18.1.2 Importance of Watershed Scale Analyses in Fisheries Management

Many of the most pressing environmental problems involve habitat alterations at
large spatial scales. These include regional phenomena such as climate change or
acid precipitation as well as diffuse impacts across watersheds due to livestock
grazing, timber harvest, road building, and water development. Dealing with these
issues requires a large-scale perspective, and thus resource management agencies
are increasingly embracing an ecosystem approach to habitat management
(Schramm and Hubert 1999). The goal of ecosystem management is to preserve
ecosystem integrity while maintaining sustainable benefits for human populations.
Achieving this goal requires an understanding of physical and biological interac-
tions occurring over spatial scales from microhabitat to the watershed level. Wa-
tersheds provide a natural framework for implementing ecosystem management
because habitat conditions at any point on a stream or lake reflect the integration
of characteristics in the watershed above that point (Montgomery et al. 1995;
Allan 2004). Thus watersheds, rather than political or administrative units, be-
come the fundamental unit for studying large-scale geomorphological and eco-
logical processes.

Another reason for the interest in watershed analysis is an increased awareness
that large-scale geomorphological or geological features often determine local
habitat characteristics in aquatic systems. For example, basin geology has a large
influence on water chemistry and thus on characteristics such as pH that deter-
mine the types of fish species that can live in a lake (Rahel and Magnuson 1983).
Even within a watershed, a lake’s position relative to hydrologic flow patterns can
determine whether it receives most of its water via precipitation or groundwater.
Groundwater-dominated lakes tend to have higher cation concentrations than do
precipitation-dominated lakes and therefore have higher productivity and are more
likely to contain calcium-limited species such as crayfish and snails (Riera et al.
2000). Streams also reflect the geomorphology and geologic conditions of their
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watershed. In the North Fork Humboldt River drainage of Nevada, for example,
trout were absent from drainages dominated by volcanic or detrital geologic de-
posits but were abundant in nearby drainages dominated by sedimentary deposits
(Nelson et al. 1992). This pattern reflected the fact that volcanic and detrital
rocks produced fine particles upon weathering that resulted in highly embedded
stream substrates. Trout require clean gravel for spawning and therefore could
not reproduce in such streams. Sedimentary rocks weathered to produce large
particles that resulted in low embeddedness of stream substrates and thus pro-
vided a suitable habitat for trout reproduction. The distribution of brown trout in
the Black Hills National Forest also was strongly influenced by watershed charac-
teristics, especially the land type association. Brown trout were most abundant in
limestone canyon streams, apparently because this land type produced the great-
est amount of pool habitat favored by this species (Modde et al. 1991).

Another consideration in the move toward watershed analysis is the realization
that large-scale anthropogenic perturbations often are a dominant influence on
fish abundance and community composition at the site level (Allan 2004; Marchetti
et al. 2004). For example, Allan et al. (1997) calculated the extent of agricultural
land use upstream of sampling sites at four spatial scales varying from local (a 30-
m buffer zone extending 150 m upstream of the sample site) to regional (entire
area of agricultural land upstream of the sample site). The health of fish assem-
blages (measured by an index of biotic integrity) was most strongly correlated
with the amount of agricultural land at the largest spatial scale, suggesting that
regional rather than local land use was the primary factor influencing fish assem-
blages. Other large-scale perturbations that can have negative effects on fish popu-
lations are livestock grazing and timber harvest. Both activities can expedite run-
off and negatively affect stream base flows by compacting soil layers and decreasing
filtration (Isaak and Hubert 2001a). Finally, considering habitat at the watershed
scale is important because many fish species require different habitats for spawn-
ing, rearing, summer feeding, and winter refuge. Often, these habitats are widely
dispersed across the watershed and, therefore, migration among habitats is neces-
sary to meet all life history needs (Schlosser and Angermeier 1995; Schrank and
Rahel 2004). Dams, road crossings, and irrigation canals that prevent fish from
accessing critical habitats such as spawning grounds can disrupt migrations. Such
fragmentation of drainage networks also can prevent fish from recolonizing areas
where populations have been extirpated by harsh conditions (Scheurer et al. 2003).

18.1.3 Watershed Features Related to Fish Abundance

A large number of watershed features have been related to the distribution and
abundance of fish populations. These can be grouped into six general categories
that reflect geological–hydrological processes, topographic attributes, climate fac-
tors, vegetative or land use categories, disturbance features, and habitat patch char-
acteristics (Table 18.1). Overviews of important watershed features and how they
are measured can be found in Maxwell et al. (1995), Johnson and Gage (1997),
Wesche and Isaak (1999), and Allan (2004) as well as in the studies discussed in
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Table 18.1 Examples of watershed characteristics related to the distribution and abundance
of fish populations.

Category Examples

Geology–hydrology
Surficial or bedrock geology Nelson et al. 1992; Wiley et al. 1997
Groundwater discharge patterns Baxter et al. 1999; Riera et al. 2000

Topographic attributes
Basin area Gresswell et al. 1997; Porter et al. 2000
Basin relief Lanka et al. 1987
Mean basin elevation Gresswell et al. 1997
Drainage density Lanka et al. 1987
Watershed area or lake volume Prepas et al. 2001

Climate factors
Thermal zones Rahel et al. 1996; Rahel and Nibbelink

1999;  Torgersen et al. 1999
Precipitation zones or water yield Gresswell et al. 1997

Vegetative or land use categories
Proportion of watershed in various vegetation categories Isaak and Hubert 2001a; Wall et al. 2004
Proportion of watershed in various land use categories Wang et al. 1997; Marchetti et al. 2004

Disturbances
Road density Moyle and Randall 1998; Baxter et al.

1999; Dunham and Rieman 1999
Livestock grazing intensity Isaak and Hubert 2001a, b
Degree of urbanization (e.g., population density Jessup 1998; Wang et al. 2003; Scheuerell

  or percent impervious land cover) and Schindler 2004
Extent of water development (e.g., number of dams, Moyle and Randall 1998; Schrank et al.

diversions, or reservoirs) 2001; Marchetti et al. 2004

Habitat patchiness and juxtaposition
Size of suitable habitat patches Rieman and McIntyre 1995; Eros and

Grossman 2005
 Connectedness to other habitat patches Kruse et al.1997; Dunham and Rieman

1999; Riera et al. 2000; Olden et al. 2001
Juxtaposition relative to other aquatic habitats Osborne and Wiley 1992; Cumming 2004

(e.g., downstream link number)

the remainder of this chapter. The development of geographic information sys-
tem (GIS) technology has resulted in numerous digital databases that greatly fa-
cilitate the measurement of watershed features (Fisher and Rahel 2004).

18.1.4 Issues of Spatial Scale in Watershed Level Analyses

The influence of watershed characteristics on aquatic biota can be evaluated at
multiple spatial scales. For streams, the largest spatial scales typically involve the
entire watershed or the subbasin that lies upstream of the area of interest and the
smallest scales involve localized conditions of the streambank (Allan 2004). Inter-
mediate scales can be defined based on buffer zones that extend both laterally
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into the riparian zone and longitudinally upstream for various distances. Identify-
ing an appropriate spatial scale for analysis can be problematic because there can
be conflicting results regarding the relative importance of whole watershed ver-
sus riparian land cover in determining stream properties (Allan 2004). Whole
watershed influences are likely to be greatest for properties such as flow variability
or nutrient concentrations, which are largely determined by processes operating
across the entire landscape. By contrast, riparian influences are likely to be great-
est for properties such as woody debris inputs or stream temperatures, which are
mainly determined by processes operating close to the stream (Barton et al. 1985).
For variables in the latter category, buffer widths of 100–200 m along each bank
are most commonly used, but Frimpong et al. (2005) cautioned against arbitrary
designation of a buffer zone. They provided a procedure for identifying the opti-
mal buffer in both the lateral and longitudinal dimension to maximize the ex-
planatory power of stream biota–land cover association models.

For lakes, the largest scale typically involves geologic or land use features mea-
sured for the entire watershed, and the smallest scale is typically the immediate
shoreline surrounding the lake (Jennings et al. 2003). In contrast to streams, stud-
ies of lake–terrestrial linkages have generally not examined intermediate scales that
involve measuring land cover or land use features at increasing distances inland
from the shoreline. However, the issue of buffer zones can be important when con-
sidering the impacts of logging on water quality in lakes (Steedman 2000).

■ 18.2 QUANTIFICATION OF SPECIES OCCURRENCE ACROSS THE WATERSHED

18.2.1 Detection of Species Presence versus Absence at the Watershed Scale

Sometimes it is important to be able to detect the presence of a species in a water-
shed without having to quantify its abundance. Furthermore, one might want to
have a high probability of detecting the species even though it is not possible to
sample all the habitats within the watershed. Examples include surveys to deter-
mine if a species is extinct (Reed 1996) or cases in which habitat models predict-
ing species presence versus absence are being developed (Dunham and Rieman
1999). Rieman and McIntyre (1995) provided an example involving the occur-
rence of bull trout in naturally fragmented habitat patches of varied size. Habitat
patches were defined as contiguous stream areas believed suitable for spawning
and rearing of bull trout based on having suitable summer water temperatures.
Because of cost considerations, only 450 m of stream (partitioned among several
sites) could be sampled in each patch. The authors were interested in determin-
ing the probability that their sampling protocol would detect bull trout in a patch.
They assumed a minimum detection probability of 0.25 for each site based on the
efficiency of electrofishing or snorkeling in detecting fish. The authors also as-
sumed a Poisson sampling distribution and a minimum population of 15 fish per
1,000 m. The expected minimum number of fish detected by their sampling was
calculated as � = 1.69 = ([15 fish/1,000 m] × 450 m sampled × 0.25). The prob-
ability of detecting no fish was P(0) = e –� = 0.18; thus the probability of detecting
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one or more fish was P(1 or more) = 1 – P(0) = 0.82. The authors believe the
probability of 0.82 for detecting the presence of bull trout in a patch was likely on
the low side because they purposely chose conservative estimates for the mini-
mum detection probability and minimum fish population likely to be present.
Thus, the authors believed their sampling protocol was sufficient for determining
the presence of bull trout in habitat patches of varied size.

Being able to determine the probability of detecting a species is especially rel-
evant when surveying for endangered species. Failure to find the species could
result in habitat conversion that would doom any remaining individuals. Reed
(1996) discussed statistical approaches for increasing the confidence that a spe-
cies is absent from a site. MacKenzie et al. (2002) presented a method to estimate
the proportion of sites occupied by a species when the probability of detection is
less than one, a common situation when sampling fishes. If one is interested in
determining the proportion of sites occupied by a species but can sample only a
portion of the sites, then a probability-based sampling protocol is recommended
for choosing which sites to sample (Olsen et al. 1999). Ellison and Agrawal (2005)
summarized a suite of papers that provide additional guidelines regarding statisti-
cal issues in detecting rare species.

18.2.2 Quantification of Fish Abundance at the Watershed Scale

Sometimes it is important to estimate the total fish population present in a water-
shed rather than just presence or absence of species. For example, one might
wish to assess the impact of basinwide land use practices on fish populations or to
estimate the population size for conservation purposes (Hankin and Reeves 1988;
Kruse et al. 2001). Three approaches have been suggested to quantify fish habitat
conditions or fish population abundance at the watershed scale: a comprehensive
census; the representative reach extrapolation technique; and the basinwide vi-
sual estimation technique (Dolloff et al. 1997). As the name implies, a compre-
hensive census involves visiting and measuring all habitats and counting every fish
in the watershed. Although highly accurate, this approach is impractical for all
but very small watersheds. The other two techniques are based on a two-phase
sampling design whereby a stream is subsampled in the first phase and habitat or
fish abundance estimates are extrapolated to the entire stream in the second
phase. Methods of estimating fish populations at a whole-lake scale are discussed
elsewhere in this text (Chapters 7 and 8).

The representative reach extrapolation technique involves measuring habitat
and fish abundance in reaches (typically 30–300 m long) of a stream and then
extrapolating the estimates to the entire watershed. The key feature is that reaches
selected as representative must be “typical” for the stream. However, this selection
relies heavily on the professional experience and intuition of fisheries scientists and
is difficult to implement because one or a few reaches may not capture the true range
of habitat conditions or fish abundance present in the drainage (Dolloff et al. 1993).

Hankin and Reeves (1988) proposed an alternative two-phase sampling ap-
proach termed the basinwide visual estimation technique. They noted that the
variance associated with extrapolating fish abundance or habitat estimates to
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unsampled areas (phase two) is much greater than the variance from estimating
abundances at sampling locations (phase one). The solution to this problem was
to sample more of the stream in the first phase but in a manner that was more
cost-effective than a comprehensive inventory. They proposed that rather than
estimating fish or habitat conditions for an arbitrary distance, sections sampled in
the first phase should be equivalent to natural habitat units (e.g., pools or riffles)
and should be independent samples drawn from within strata constructed based
on stream geomorphology and location in the watershed. To make the method
more cost-effective than a comprehensive survey, habitat is assessed by walking
the entire stream and visually estimating the area of each habitat unit along with
other features of interest such as pool depth or woody debris occurrence. At
systematic intervals, such as every tenth habitat unit, quantitative habitat mea-
surements are made of the same habitat features. This allows one to develop
calibration ratios to correct for observer biases and to allow estimation of sam-
pling variances. Fish population estimates are made by snorkeling a portion of
the habitat units. These observations also are calibrated against a more accurate
method, such as multiple-pass depletion by electrofishing at a predetermined
fraction of the units sampled by snorkeling. In the second step, estimates are
determined for each stratum using the calibration ratios and then combined to
provide a basinwide estimate of habitat abundance or fish population size. An
example of using the basinwide visual inventory technique to estimate fish abun-
dance is given in Box 18.1.

Dolloff et al. (1997) found that the basinwide visual inventory technique was
superior to the representative reach extrapolation technique for assessing habitat
conditions in three watersheds in the Appalachian Mountains, USA. This was be-
cause the basinwide approach produced a complete census of the areas of various
habitat types, whereas the values generated by the representative reach technique
often were over- or underestimates of these parameters. This lack of accuracy was
due to representative reaches seldom containing habitat types in the same pro-
portion as streams across the watershed. Hankin and Reeves (1988) reported that
for the same cost, the basinwide visual inventory technique produced fish popula-
tion estimates with a lower variance than did the representative reach extrapola-
tion technique. The average time to estimate the fish population in a habitat unit
was only 0.5 staff-hours using visual methods compared with 10 staff-hours using
depletion removal electrofishing. This meant that fish population estimates could
be done in many more habitat units by means of the visual approach than by
electrofishing. Consequently, the variance of the estimate of fish abundance for
the entire stream was based on a larger proportion of habitat units than if habitat
units had to be sampled by electrofishing. Toepfer et al. (2000) extended the
Hankin and Reeves two-phase approach to situations where visual assessment of
habitat or fish abundance is difficult (e.g., large streams with limited public ac-
cess) or where there are longitudinal gradients in fish abundance within habitat
types. They also used a GIS to aid in basinwide calculations of fish abundance. A
two-phase approach was used by Young and Guenther-Gloss (2004) to determine
population size of greenback cutthroat trout in streams and relate population
characteristics to recovery criteria for this federally threatened species.
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■ 18.3 RELATIONSHIPS BETWEEN FISH OCCURRENCE
AND WATERSHED FEATURES

There are many techniques available for relating the occurrence or abundance of
species to large-scale habitat features. Which technique is most appropriate
depends upon the nature of the response (dependent) and predictor (indepen-
dent) variables. Sometimes we have a single response variable that is categorical,
that is, units can be assigned to only one of a finite number of mutually exclusive

Box 18.1 Basinwide Estimation of a Fish Population

The premise of the basinwide visual estimation technique is that there is a consistent relationship
between relatively accurate estimates of fish abundance as determined by labor-intensive
depletion electrofishing and less accurate estimates as determined by less-intensive visual
methods such as snorkeling. If this is true, then we can calculate a calibration ratio and correct for
bias associated with visual observations. This would allow a large number of habitat units to be
surveyed by the less-intensive visual method and then have these observations converted into
population abundance estimates. This process is illustrated by the following hypothetical example
from Dolloff et al. (1993). The object is to estimate how many coho salmon are present in a stream
that contains 1,000 habitat units, 500 of which are pools. The example focuses on estimating the
number of coho salmon in pools. Similar analyses would be done for other habitat types and
summed to give a total population estimate. Counts of coho salmon were made in 20% of the pools
(n = 100) by snorkeling every fifth pool in an upstream direction. The average coho salmon
abundance in the 100 pools was 34.43 fish. Afterward, 10% of the snorkeled pools were sampled by
multiple-pass depletion electrofishing, and a population estimate was calculated for each pool (see
table). A plot of electrofishing estimates versus diver counts indicates a strong correlation, but diver
counts appear to overestimate the actual abundance of coho salmon in a pool, perhaps because
some fish are counted twice (see figure).

Table Coho salmon counts determined by snorkeling during the first phase (xi ) and population
estimates determined by electrofishing during the second phase (yi ).

Coho salmon count

Pool number xi yi

10 20 26
20   2   2
30 14 13
40 32 22
50 27 21
60 27 25
70   5   3
80 59 69
90 17 12
100 20 17

Total number of fish            223            210
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categories. Examples include species occurrence coded as present (1) or absent
(0); relative abundance categories (e.g., low, moderate, or high abundance); or
assemblage types (e.g., minnow versus sunfish assemblages). Techniques that can
be used to compare habitat features among categories or develop a model that
will predict category membership based on habitat features include logistic
regression, classification and regression trees, and artificial neural networks.

In other cases, the response variable may be continuous, such as fish abundance
in kilograms per hectare or number of fish species present at a site. Techniques that

Adjusting the snorkeling numbers to account for this overestimate will provide a better estimate of
the number of coho salmon in pools in the drainage. The first step is to calculate the calibration
ratio (R) by dividing the total number of fish estimated by multiple-pass removal electrofishing by
the total number of fish counted during snorkeling:

R = �yi /�xi = 210/223 = 0.94.

The estimated mean number of fish per habitat unit is the product of the calibration ratio from the
second-phase sample multiplied by the mean snorkel count from the first phase with the sub-
scripts d and r indicating the double sampling and ratio estimation:

yd,r = (R)(x– ) = (0.94)(34.43) = 32.36.

The total number of habitat units (N ) multiplied by the estimated mean number of fish per habitat
unit provides an estimate of the total number of fish (Y ) in that habitat type:

Y = (N )(yd,r ) = (500)(32.36) = 16,180 coho salmon in pools within the drainage.

Methods for calculating confidence limits for the population estimate are given in Dolloff et al.
(1993) and Hankin and Reeves (1988).

Figure Electrofishing estimates versus snorkel counts for a hypothetical population of coho
salmon in pools.
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can be used to relate a single continuous response variable to habitat features
include multiple regression, path analysis, classification and regression trees, and
artificial neural networks. Finally, there are situations in which we may be inter-
ested in relating multiple response variables to multiple habitat features. For ex-
ample, we may have data on fish species abundances and habitat characteristics
for a set of sites. We may wish to identify gradients of fish assemblage change
across the sites and relate these to habitat gradients. Ordination methods and
canonical correspondence analysis are appropriate techniques for such analyses.
In the following sections, these techniques are discussed with a focus on how they
can be used to identify large-scale habitat features important to fishes.

It is important to examine the underlying relationships among variables. In
many cases, simple bivariate plots will provide insight into the association between
the dependent variables, for example, species occurrence or abundance and the
independent (predictor) variables such as habitat conditions. Such plots may also
indicate whether variable transformations are needed to meet the underlying as-
sumptions of the statistical methods being used. Many of the methods discussed
in this chapter require that relationships between variables be linear, variance be
homogeneous along the range of the relationship, residuals follow a normal dis-
tribution, and observations be independent of one another. Meeting such assump-
tions is essential when hypotheses are being tested statistically. Failure to meet the
assumptions means that probability values and interpretations about whether or
not the association differs from random may not be accurate. It is not necessary to
meet these assumptions when the purpose is purely exploratory (i.e., no formal
testing is employed), but most of these methods provide more reliable estimates
when the assumptions are met. Therefore, we strongly recommend that research-
ers carefully evaluate their data using graphical displays and diagnostic tests to
ensure that assumptions (e.g., homogeneity of variance or normality) of the sta-
tistical methods have been met.

18.3.1 Logistic Regression

Logistic regression is used to model a categorical dependent variable as a func-
tion of one or more predictor variables. A common situation involves relating the
presence or absence of a species to basin scale habitat features. In this situation,
the dependent variable can have two values: 0 if the species is absent and 1 if the
species is present. Logistic regression is used to estimate the probability of a spe-
cies being present as a function of the predictor (habitat) variables. This typically
results in a sigmoidal (S-shaped) curve for which the probability of species occur-
rence gradually approaches 0 and 1 at the ends of the predictor variable range
(Box 18.2). Although discriminant analysis also can assign membership in catego-
ries based on predictor variables, logistic regression is preferred when the predic-
tor variables are not multivariate normal. In addition, logistic regression provides
a probabilistic prediction of occurrence that often reflects a species’ association
with environmental gradients (Rieman and McIntyre 1995). Hosmer and
Lemeshow (2000) give details on logistic regression and the diagnostic statistics
used to evaluate model fit.
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Box 18.2 Logistic Regression

Logistic regression predicts the probability of a species being present on a 0 to 1 scale using the
model

Probability of occurrence = e�/(1 + e�),

where e is the base of natural logarithm. The linear model, �, is given by

� = b0 + b1(x1) + b2(x2) + . . . + bm(xm) ,

where b0 is the regression constant, bm are the regression coefficients, and xm are the independent
or predictor variables.

As an example, Rieman and McIntyre (1995) used logistic regression to model the probability of
bull trout occurrence as a function of habitat patch size in the Boise River basin, Idaho. Habitat
patches were defined as high-elevation watersheds (above 1,600 m elevation) that had thermally
suitable conditions for bull trout in summer. Such watersheds varied in area and were isolated from
other suitable watersheds by intervening valleys where streams became too warm for bull trout.
The probability of bull trout being present was predicted from the natural logarithm of patch area
(x) by the equation

Probability (occurrence) = e–13.293 + 1.689x
.

1 + e–13.293 + 1.689x

As shown in the figure below, the logistic regression model (solid line) and the empirical data (open
bars) indicated that the probability of observing bull trout exceeded 0.80 for patches over 8,000 ha,
but was less than 0.10 for patches less than 1,000 ha.

Figure Probability of observing bull trout versus patch size (logehectares).
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Logistic regression has become one of the most widely used methods of relat-
ing fish occurrence to habitat features measured at a variety of spatial scales. Rieman
and McIntyre (1995) found that local-scale variables such as reach width or gradi-
ent were not useful in predicting the occurrence of bull trout, but patch size
(measured as the area of contiguous stream above 1,600 m elevation) was a good
predictor (see Box 18.2). Schrank et al. (2001) found that both local features
(e.g., pool length) and landscape features (e.g., number of impoundments per
hectare in the watershed) were useful for predicting the probability that the en-
dangered Topeka shiner had been extirpated from sites in Kansas. Other studies
that incorporated large-scale habitat features in logistic regression models to pre-
dict fish presence versus absence include Kruse et al. (1997), Dunham and Rieman
(1999), Porter et al. (2000), and Wall et al. (2004).

Logistic regression can be adapted to cases in which the dependent variable
exists as more than two categories. As an example, Harig and Fausch (2002) used
habitat features to predict the likelihood that a translocated population of cut-
throat trout would fall into one of three categories: the population likely would be
extirpated, the population would survive at low abundance, or the population
would thrive and attain high abundance.

18.3.2 Classification and Regression Trees

Classification and regression trees (CART) are nonparametric approaches to
describing variation of a single response variable in terms of one or more ex-
planatory variables. The response variable can be categorical (classification trees)
or continuous (regression trees), and the explanatory variables can be categori-
cal or continuous. For example, we might wish to explain the presence versus
absence of a particular fish species (a categorical variable) among a set of lakes
in relation to habitat features such as lake size and isolation, in which case a
classification tree would be appropriate. Conversely, we might wish to explain
patterns in fish species richness (a continuous variable) among the lakes in rela-
tion to the same habitat features, in which case a regression tree would be ap-
propriate. In either case, the tree is started by splitting the data into two mutu-
ally exclusive groups based on one of the explanatory variables. The goal is to
make each group as homogeneous as possible for the response variable. When
the response variable is categorical, the homogeneity of the groups is related to
how well sites are assigned to their correct category. For example, a group for
which 95% of the sites belong to the same category, such as all have the species
present, is more homogeneous than a group for which only 75% of the sites
have the species. When the response variable is continuous, the homogeneity of
groups can be measured by the sums of squares about the group mean. The
splitting procedure is applied to each of the two groups separately using an-
other of the explanatory variables to again produce groups that are as homoge-
neous as possible.

The data set continues to be divided through recursive binary partitioning until
there is no more than a single site in a group or until there is no variation among
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the sites within a group. The tree is then pruned back to a size that captures most
of the important relationships between the response variable and the explanatory
variables. Trees are represented graphically, with the root node, which represents
the undivided data, at the top, and the branches and leaves beneath. Each leaf
represents one of the final groups. An example of using classification and regres-
sion trees to determine the influence of habitat variables on fish species richness
and fish assemblage types in small lakes is shown in Box 18.3.

Classification and regression trees have advantages over parametric statistical
techniques such as multiple regression, analysis of variance, and linear discrimi-
nant analysis because the method is applicable to unbalanced data structures as
well as situations in which the relationships between variables are strongly nonlin-
ear or involve high-order interactions. Unlike linear or logistic regression, regres-
sion trees automatically identify interactions and display them in an easily inter-
preted visual format. In addition, tree-based models are insensitive to monotonic
transformations of the predictor variables because they rely solely on the rank
ordering of variables.

Classification and regression trees have only recently been applied to fisher-
ies research (Magnuson et al. 1998; Rathert et al. 1999; Kolar and Lodge 2002).
Rieman et al. (1997) used classification trees to examine the status of bull trout
in relation to 28 landscape features across 4,462 watersheds in the Columbia
River basin, Oregon. They found bull trout were more likely to occur in colder,
higher-elevation, low- to mid-order watersheds with low road densities. In an

Box 18.3 Classification and Regression Trees

Magnuson et al. (1998) used classification and regression trees to examine relations between ten
habitat variables and fish assemblages in small Wisconsin lakes. Figure (A) shows a classification
tree relating the type of fish assemblage to habitat features. There were five assemblage categories
based on which taxa were dominant. Figure (B) shows a regression tree relating fish species
richness to habitat features. Each sorting node contains a variable and its sorting criterion. Lakes
with values equal to or less than the sorting criterion go to the left;  those with greater values than
the sorting criterion go to the right. The number of lakes at each node is given above the node. In
Figure (A), each terminal node has an assigned assemblage type; the same assemblage type may
be reached by multiple routes. The percentages of lakes correctly classified in each terminal node
are given below the node. Overall, 74% of the lakes were correctly classified to assemblage type.
Note that lakes with a northern pike assemblage tend to have high pH and be large. Different
habitat variables are important in determining different fish assemblage types.  For example, note
that distance to a road plays a role in determining if a lake is likely to have largemouth bass but is
not important in determining if the lake will have northern pike. In Figure (B), the mean richness for
the lakes of each terminal node is given within the node. The psuedo-R2 value that measures the
amount of variation explained by the model was 0.90. Lakes with the lowest richness (average of 1.3
species) have conductivity of 25 µS or less, are small, have a low stream gradient connecting them
to the next lake downstream, and are far from roads.

(Box continues)
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Figure (A) A classification tree relating the type of fish assemblage to habitat features. Each
terminal node has an assigned assemblage type named after the characteristic fish species (bass
for largemouth bass, minnow for several species of minnows, mudminnow for central mudminnow,
perch for yellow perch, and pike for northern pike).  The percentages of lakes correctly classified in
each terminal node are given below the node.  (B) A regression tree relating fish species richness to
habitat features. Each sorting node contains a variable and its sorting criterion. The mean richness
for the lakes of each terminal node is given within the node.
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analysis based on regression trees, Greenfield et al. (2001) determined that
mercury concentrations in yellow perch in Wisconsin lakes were related more
closely to within-lake chemistry conditions than to watershed features such as
the amount of wetlands in the drainage basin. Further information on CARTs,
including pruning methods and software packages, is available in Breiman et al.
(1984) and De’ath and Fabricius (2000).

18.3.3 Artificial Neural Networks

Artificial neural networks (ANNs) are a class of methods that mimic the ability of
the human brain to recognize patterns. Researchers developed models that repre-
sented the linkages between brain neurons such that errors encountered in a model
would provide feedback, alter the strength of the association between neurons, and
lead to a refinement of the model that minimized the errors. The idea is that by
using a training data set, the model could “learn” through modifying the weighting
of the different variables and their interactions to enhance the predictive capabili-
ties of the final model. There are different forms of ANNs and we present the one-
hidden-layer, feed-forward model that is one of the approaches best suited for fish-
eries applications. (For details of the computations, we refer readers to Lek and
Guégan [1999] or Olden and Jackson [2001]). Figure 18.1 shows a representation
of the one-hidden-layer, feed-forward model consisting of an input layer (a set of p
neurons each representing one of the predictor variables used in the analysis), an
output layer (response variable), and a hidden layer (a series of intermediate con-
nections between the predictors and response variables). There are connections
between neurons from different layers (i.e., input, hidden, and output) but not
within layers. These connections can vary in strength and in their influence (i.e.,
positive or negative) in the same way that signals or activity between brain neurons
can vary in their strength. Similarly, the strength of the connections between layers
is analogous to regression coefficients in that they quantify the association between
the predictor variables and the response variable(s). As in biological nervous sys-
tems, the artificial neural network receives signals from other neurons or outside
through synaptic connections. The neuron processes this information and sends an
output signal to other neurons in the network.

To interpret ANNs, the combination of magnitude and type of signal (±) going
from the input variable to the hidden layer and from the hidden layer to the
output variable must be considered. The general rule is that multiplication of the
input to hidden by the hidden to output neural pathway determines the overall
effect that each input variable has on the response variable. Consider in Figure
18.1 (top panel) that the first input neuron (i.e., X1) represents a habitat variable
(water depth) that has a strong positive state (i.e., the magnitude and direction of
the association) with the first hidden neuron but a weak negative state with the
second hidden neuron. In turn, both hidden neurons have a strong positive state
with the output neuron (e.g., occurrence of bull trout). Now we must consider
the complete path from the input to the output neurons. Water depth has a strong
positive connection weight with the first hidden neuron, which in turn has a
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strong positive connection weight with bull trout occurrence. For this case, both
are strong and positive leading to a large, positive outcome. This part of the
network indicates that as water depth increases, the probability of bull trout
occurrence increases. However, this considers only part of the way in which wa-
ter depth contributes to the probability of bull trout occurrence. There is a

Figure 18.1 Examples of a one-hidden-layer, feed-forward neural network design. Solid lines
indicate positive connections, dashed lines indicate negative connections, and line thickness
indicates strength of the connections. Top panel shows how the incidence of bull trout could be
related to habitat variables ( X1 to Xp). Bottom panel shows a neural network predicting the
incidence of northern redbelly dace among 128 lakes in Ontario, Canada. Nonsignificant
connections were identified using a randomization test and deleted to simplify the network
(Olden and Jackson 2001). Gray shading of the input neurons indicates their overall contribu-
tion is negatively associated with northern redbelly dace incidence whereas black shading
represents a positive association.
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second path through a weak negative association with the second hidden neu-
ron, which has a large positive signal with bull trout incidence. This combina-
tion of a small negative value with a large positive value leads to an outcome of
a small negative contribution of water depth to bull trout occurrence. In assess-
ing how a particular predictor variable relates to the response variable, we sum
the outcomes through the various hidden neuron pathways (see Olden and
Jackson 2001, 2002a for examples). From this simplified example, the sum would
be a strong positive result, leading us to conclude that bull trout incidence is
positively associated with water depth.

As the influence of predictor variables may be expressed through various
neurons in the hidden layer, several predictors often will be associated with
each hidden neuron. This leads to several possible outcomes. First, all predic-
tors may have similar connection weights (either all positive or negative), thereby
strengthening their individual respective effects. More commonly, we find a mix
of positive and negative connection weights that represent negative interactions
between these predictors. Olden and Jackson (2001) found such positive and
negative interactions in the probability of occurrence of northern redbelly dace
from 128 locations within a watershed in Ontario, Canada. The probability of
occurrence was negatively associated with the occurrence of predatory fish spe-
cies, but this effect was decreased due to the interaction with site elevation and
shoreline perimeter (Figure 18.1, bottom panel). In calculating the overall sum
of the pathways by which the predator variable was linked to the response vari-
able, they found the sum was negative, and this is indicated by the gray shading
of the input neuron (in contrast variables having positive associations with north-
ern redbelly dace occurrence are shaded in black). Therefore, the overall pre-
dation effect was negative, but it was moderated by other environmental condi-
tions, especially shoreline perimeter. A likely explanation was that as shoreline
perimeter increases for a given lake area, the shoreline becomes more con-
voluted, increasing the potential for the presence of protected embayments
and patchy nearshore habitats that provide refuge from predators (Olden and
Jackson 2001).

Network diagrams often prove difficult to interpret as every neuron at one
layer is connected to every neuron in adjacent layers. Complicated figures result
when more than a few variables are included, and interpretation becomes chal-
lenging. Olden and Jackson (2001, 2002a) showed how to determine whether the
connections contained nonrandom information by using a randomization test.
This procedure allows nonsignificant variables to be identified (e.g., summer strati-
fication) and nonsignificant connections to be removed from the analysis, thereby
simplifying the network diagrams.

Artificial neural networks provide much greater flexibility in the form of the
model constructed than do traditional approaches such as logistic regression
analysis. These methods are robust to many forms of data varying from binary to
continuous variables and to many forms of error distributions. Many fisheries data
sets do not meet the assumptions for traditional regression methods, such as linear
relationships between variables, homogeneity of variance, or normal distribution
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of errors. In such situations, ANNs offer an attractive alternative approach. In
general, well-resolved solutions offer greater predictive power than do traditional
methods when such assumptions are not met and generally provide comparable
or better results even when the assumptions are met.

Previously there was limited use of ANNs in ecology because of the limited
availability of suitable software. However, the procedure now is available in many
commercial and freeware software packages. The method has great promise
given its flexibility in modeling relationships of very different forms in addition
to simple presence–absence models. Brosse et al. (1999) used ANNs to assess
fish abundance and spatial occupancy and found that various predator and prey
assemblages tended to be separated in space. Laë et al. (1999) used ANNs to
predict fish yield in a set of African lakes from habitat variables such as lake
depth, catchment area, lake surface area, and conductivity. Because of their
flexibility and power to determine the relative importance of predictor vari-
ables, ANNs have great potential in fisheries research (Olden and Jackson 2001,
2002a). Formal comparisons of ANN, CART, logistic regression, and linear dis-
criminant analysis for predicting fish species composition have shown the ANN
method to be superior overall, in particular when trying to model rare species
(Olden and Jackson 2002b).

18.3.4 Multiple Linear Regression

Multiple linear regression is commonly used to quantify the relationship between
a dependent variable such as the abundance of a species and a set of predictor
variables such as watershed characteristics. As with simple linear regression, the
goal is to estimate parameters for a linear model that best relates abundance to
habitat features given a particular set of assumptions. One assumption is that the
expected value of the residuals (observed minus predicted values) is zero (i.e.,
E[e] = 0), which requires that the relationship between the dependent variable
and each predictor variable is linear. This can be examined with a bivariate
scatterplot, and if curvature is evident, one can either transform the variables or
allow for nonlinear components in the model. Another assumption is that residu-
als are normally distributed, which can be assessed using a histogram. Additional
assumptions are that the residuals are distributed with equal variance
(homoscedasticity) and are independent. These assumptions can be checked by
plotting the residuals against each predictor variable and the fitted values from
the model. If no assumptions are violated, the residuals should be randomly dis-
tributed and have a mean of zero. Formal statistical tests have been developed for
each assumption, and these are included in most statistical packages. In many
cases, data transformations may help in meeting these assumptions (Sokal and
Rohlf 1995).

A final assumption is that the predictor variables are not correlated. Correla-
tion among the predictor variables is called multicollinearity and can lead to un-
reliable results from the multiple-regression model. The problem is that two or
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more variables share a considerable amount of variation with the response vari-
able. Estimating the regression coefficients for these variables and their signifi-
cance becomes problematic, and the resulting model may exclude important vari-
ables. As the coefficients may be incorrect, the true predictive capability of the
model may be impaired. One clue that multicollinearity may be an issue presents
itself when variable coefficients change substantially, particularly in their signs,
when used in combination relative to when the variables are used independently.
Other signs of multicollinearity include having a highly significant overall model
F-test even though the t-tests for most of the regression coefficients (betas) are
nonsignificant and having the opposite signs on regression coefficients from what
was expected. Multicollinearity also can be evaluated using the variance inflation
factor (VIF), which reflects the correlation between predictors in their associa-
tion with the response variable. A VIF value of 1 indicates that all variation related
to a predictor is unique information, whereas increasing VIF values indicate in-
creasing degrees of multicollinearity. Values greater than 5 (or sometimes 10) are
suggested as levels at which one may want to consider removing predictors from
the model. If one wants to retain all variables in the analysis, an alternative ap-
proach is to use a principal component analysis to extract a reduced number of
uncorrelated habitat variables and then use these component scores as predictor
variables in a regression analysis (e.g., Braaten and Guy 1999; Whittier et al. 2002).
MacNally (2000) provides an insightful discussion about the use of multiple-re-
gression approaches in ecology and conservation biology.

As an example of the application of multiple regression for identifying fish–
habitat associations, consider how the abundance of a species is related to five
environmental variables measured at 20 sites across a watershed (species A in Box
18.4). For purposes of this example, we have a limited number of observations
(sites), which will reduce the statistical power of our model and increase the error
associated with estimates for each variable. An initial multiple-regression model
included the variables basin, current velocity, and urban development. The vari-
able termed basin is different from the others in that it is a binary variable. Using
this dummy variable in a multiple regression allows us to compare whether the
general regression model is similar or different between the two subbasins. In
the final multiple-regression model, there was a difference (P = <0.001) in how
the abundance of species A varied between the two subbasins. Sites located in the
basin identified as 1 had 2.9 more individuals of species A relative to sites in the
basin identified as 0, given identical conditions for depth. Therefore, inclusion of
such dummy variables can allow one to detect effects of habitat features that exist
as categories rather than as continuous variables.

There are several strategies available for selecting predictor variables. A back-
ward stepwise multiple-regression model begins with all possible predictor variables
included in the analysis. Based on some predefined criterion such as alpha level or
F-value, each variable is considered and removed from the model if it does not meet
this criterion. The variables that remain are significant predictors of the species’
abundance. An alternative approach is a forward stepwise multiple regression, in
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Box 18.4 Multiple Regression Analysis of Species Abundance
and Environmental Conditions

Below is a hypothetical data set showing the abundance of seven fish species and the values for
five environmental variables across 20 stream sites.

Table Hypothetical data set for seven fish species across 20 stream sites. Sampling of the
watershed was focused on two subbasins (coded as 0 or 1). At each site, the average current
velocity (cm/s), stream width (nearest m), and water depth (cm) were measured. The variable urban
represents the percent of the landscape in urban development upstream of the site.

Species abundance Environmental variables

Site A B C D E F G Basin Velocity Width Depth Urban

1 10 9 8 7 6 5 4 0 0 8 10 10
2 9 8 7 6 5 4 3 0 1 6 20 3
3 8 7 6 5 4 3 2 0 2 5 30 8
4 7 6 5 4 3 2 1 0 3 2 40 4
5 6 5 4 3 2 1 0 0 4 1 50 5
6 5 4 3 2 1 0 0 0 0 8 60 5
7 4 3 2 1 0 0 0 0 1 6 70 6
8 3 2 1 0 0 0 0 0 2 5 80 8
9 2 1 0 0 0 0 0 0 3 2 90 9
10 1 0 0 0 0 0 0 0 4 1 100 10
11 13 3 9 8 6 3 3 1 0 4 10 8
12 13 3 3 3 3 7 5 1 1 3 20 2
13 11 9 5 5 8 9 8 1 2 2 30 4
14 10 9 3 9 5 7 9 1 3 1 40 4
15 8 6 9 8 2 5 5 1 4 0 50 5
16 7 2 5 7 4 6 2 1 0 4 60 6
17 7 3 2 5 7 6 9 1 1 3 70 7
18 6 5 7 6 5 3 5 1 2 2 80 2
19 5 7 5 4 3 5 8 1 3 1 90 8
20 4 3 3 3 8 9 4 1 4 0 100 10

Multiple-regression analysis could be used to determine which environmental variables are related
to the abundance of a given species. Below are the results for an initial multiple linear regression
model that relates the abundance of species A to the five environmental variables.

Table Summary of the multiple linear regression model for the abundance of species A based on five
variables. The variation inflation factor (VIF) is a measure of collinearity between predictor variables.

Regression Model

Source df Sum of squares Mean square F-value P > F

Model 5 214.19 42.84 217.16 <0.001
Error 14 2.76 0.20
Total 19 216.95

Root mean square  error 0.444
R 2 0.987
Adjusted R 2 0.983
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Parameter Estimates

Parameter
Variable estimate SE t-value P > t VIF

Intercept 11.520 1.160   9.93 <0.001  0.00
Basin  2.776 0.426   6.52 <0.001  4.60
Velocity –0.065 0.235 –0.28   0.785 11.20
Width –0.041 0.158 –0.26   0.798 14.60
Depth –0.101 0.004 –23.68 <0.001  1.52
Urban –0.021 0.044 –0.47   0.647  1.26

Because the P-value for the overall model is less than 0.001, we would conclude that the abundance
of species A is related to these stream environmental variables. The model also explains a high
amount of variation (adjusted R 2 = 0.983). However, the variation inflation factor (VIF) values for
velocity and width are large, suggesting a high degree of collinearity between some variables. Thus,
the assumption that predictor variables are uncorrelated is likely violated. We can examine a
correlation matrix of the predictor variables and see that there is a strong correlation (r = –0.82)
between stream width and current velocity. Thus, these two variables have a similar pattern of
variation with the dependent variable (i.e., the abundance of species A). Because width has the
highest variance inflation factor (VIF) value, we omit it from the model and redo the analysis. The
new results are as follows.

Table Summary of the multiple linear regression model for the abundance of species A based
on four variables.

Regression Model

Source df Sum of squares Mean square F-value P > F

Model 4 214.17 53.54 289.41 <0.001
Error 15     2.78  0.19
Total 19 216.95

Root mean square error 0.430
R 2 0.987
Adjusted R2 0.984

Parameter Estimates

Parameter
Variable estimate SE t-value P > t VIF

Intercept 11.231 0.318   35.29 <0.001  0.00
Basin  2.874 0.199   14.45 <0.001  1.07
Velocity –0.008 0.078 –0.10   0.920  1.33
Depth –0.101 0.004 –24.68 <0.001  1.53
Urban –0.022 0.042 –0.52   0.611  1.25

(Box continues)
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All VIF values are now close to 1, indicating that collinearity among the remaining four environmen-
tal variables is no longer a problem. However, two of the variables (velocity and urban) have
coefficients that are not significantly different from 0 (P > 0.05). Thus, we could eliminate these
variables to produce a final model as follows.

Table Summary of the multiple linear regression model for the abundance of species A based
on two variables.

Regression Model

Source df Sum of squares Mean square F-value P > F

Model 2 214.12 107.06 644.09 <0.001
Error 17    2.83    0.17
Total 19 216.95

Root mean square error 0.408
R 2 0.987
Adjusted R 2 0.985

Parameter Estimates

Parameter
Variable estimate SE t-value P > t VIF

Intercept 11.117 0.217   51.23 <0.001  0.00
Basin  2.900 0.182   15.91 <0.001  1.00
Depth –0.102 0.003 –32.17 <0.001  1.00

The final model explains almost 99% of the variation in the abundance of species A across the 20
sites. The root mean square error (0.408) provides a measure of the average error associated with
the estimated values. This is considered a better measure of model performance than R 2 when
comparing across different data sets or models because R 2 is greatly influenced by the number of
variables, atypical observations, and the range of variation present within variables.

For site 5, the value for basin is 0 and for depth is 50; our estimate for the abundance of species A is
11.117 + 2.900(0) – 0.102(50) = 6.02. The observed value is 6, indicating the model closely estimates
the abundance of species A at this site. Examination of the residuals could be used to assess
potential bias or errors in the model and the relative degree of departure of observed from
predicted values for any given site.

Box 8.4 (continued)

which all variables are excluded initially. The variable explaining the greatest
amount of variation in species abundance is included if it meets an a priori crite-
rion, again based on alpha level or F-value. After a variable is entered, all variables
are reconsidered as to whether they explain significant amounts of variation in
addition to what is explained by the preceding variables. Variables will be entered
in sequence until those remaining no longer meet the entry criterion. In choos-
ing different values for entry and deletion, the modeler must decide to accept a
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greater error in either including unimportant variables or excluding important
variables (type I and II error rates). Often the implications of this decision are not
recognized nor can the decision be justified. MacNally (2000) provides a detailed
discussion about evaluating models.

Another common approach, called best subsets regression, involves evaluating
all possible multiple-regression models and choosing the best model. There are
different forms of output from different statistical packages for this approach.
Some evaluate and provide the best model containing a single predictor, the best
two-predictor model, and so on, until the full set of variables is included. This
provides the researcher with several competing models that vary in their com-
plexity. The researcher then must choose a model from the set based on its statis-
tical significance, its ability to predict an independent set of observations (i.e.,
cross validation), or other measures based on information criteria.

Researchers often do not recognize that they may be evaluating a large num-
ber of regression models when running stepwise or best subset approaches (Olden
and Jackson 2000). Although researchers have become more aware of the impli-
cations on their overall error rates when comparing many correlations or t-tests,
and use either different analytical approaches or a posteriori corrections (e.g.,
Bonferroni correction), few people consider such problems with multiple-regres-
sion approaches. In fact, the number of possible regression models is 2p - 1, where
p equals the number of independent predictor variables included. Thus, if one
includes eight predictors into one of these approaches, 255 regression models
would be evaluated with only the best one being presented. Therefore, one’s con-
fidence in the associated significance of the results may be overstated if there are
several models that differ little in their explanatory power. When comparing re-
gression models or attempting to pick a “best” model, it is recommended that
various quality-of-fit measures be used. Examples are the adjusted R 2, which takes
into account the number of variables in the model, or the Akaike information
criterion (AIC), which compares the information gained by including additional
predictors in the model (Anderson and Burnham 2001; Burnham and Anderson
2002). The AIC approach is generally preferred over the adjusted R 2 and essen-
tially involves a penalty being imposed for adding each additional predictor to a
model. In the AIC, there is a trade-off related to the additional information gained
by adding predictors to a model relative to the penalty imposed by including them.
The AIC balances these two effects to aid in selecting the optimal model that
includes the fewest predictors. In many cases, the AIC approach will identify a set
of competing models that have a similar level of statistical support.

Another common problem is how to evaluate the value and utility of regression
models. Many conclude that models that are statistically significant, have high R 2

values, or have a strong relationship between the predicted and observed values
for each observation are good models. However there is a degree of circularity
here in that one uses the same data set to generate the model and then to evaluate
the model (i.e., lack of independence). The model may not perform as well when
evaluated with an independent set of observations; that is, the model is biased.
Using an independent set of observations or splitting the data into a training data
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set and a testing data set provide more reliable measures of the model’s utility. In
many cases, investigators do not have a sufficient number of observations to allow
these approaches so other cross-validation techniques, such as jackknifing, may be
appropriate (Manly 1997). In applying the jackknife, an observation is removed,
the model is developed using the remaining (n – 1) observations, and then the
model is used to predict the value for the omitted observation. Each observation is
deleted in turn and a summary made of the overall results. This provides a more
reliable estimate of the model and reduces the bias (e.g., Olden and Jackson 2000).

Multiple regression is one of the most commonly used approaches for relating
fish abundance to watershed features. Lanka et al. (1987) used this approach to
relate trout abundance to habitat features in small Rocky Mountain streams and
found that models based on drainage basin morphology predicted trout standing
stock as well as models based on site level characteristics. Diamond and Serveiss
(2001) used forward stepwise multiple regression to account for variation in the
health of fish and mussel assemblages in the Clinch River and Powell River basins,
Virginia, and found that coal mining and land use conditions were significant
predictors of assemblage status. Multiple-regression analysis indicated few rela-
tions between stream habitat conditions and the abundance of American eel in
streams in Maryland (Wiley et al. 2004). The lack of relationships supported ear-
lier reports that the American eel is a habitat generalist. Interestingly, one of the
few factors correlated with American eel abundance was distance to the nearest
dam, suggesting that American eels were accumulating downstream of these struc-
tures because of impeded migration. Frimpong et al. (2005) used multiple regres-
sion to optimize the riparian buffer parameter in models that related stream fish
community attributes to land cover features in a watershed.

18.3.5 Path Analysis

Path analysis is related to multiple-regression analysis in that both procedures
attempt to explain variation in a dependent variable as a function of several pre-
dictor variables. However, unlike multiple-regression analysis, path analysis allows
one to examine chains of causality whereby the influence of a predictor variable
on the dependent variable is mediated by the effect of an intermediate variable
(Sokal and Rohlf 1995; Legendre and Legendre 1998). For example, Isaak and
Hubert (2001b) found that watershed slope influenced maximum stream water
temperatures in montane landscapes through the intermediate variable of ripar-
ian tree abundance. The causal mechanism was that steeper watersheds created
more mesic conditions for trees that, in turn, shaded streams from the warming
effects of sunlight. In a path analysis, researchers must first develop an a priori
hypothesis about causal linear relationships among a set of variables. An assump-
tion is that both direct and indirect effects can influence the dependent variable.
The relative strengths of these effects are quantified using least-squares regres-
sions for response variables in a manner that is structured by the hypothesis (see
Sokal and Rohlf 1995 for details). Alternatively, the effects can be estimated using
relationships among the various correlation coefficients. An assumption is that
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not all of the variance in the response variables can be explained and there will be
other variables not considered that explain additional portions of the variance in
the dependent variable.

As an example of path analysis (Box 18.5), consider that stream depth has a
direct negative effect on the abundance of a fish species. Similarly, current veloc-
ity also has a direct negative effect on the abundance of the species. However,
stream depth may also have an indirect effect through a corresponding influence
on current velocity. In the example data set, stream depth and current velocity
are positively correlated; hence as streams get deeper, they also have faster cur-
rent velocities. Using a path analysis, we can partition the amount of variation in
the abundance of the species that can be explained into a direct component due
to the effect of current velocity and an indirect component of stream depth that is
mediated through current velocity. As shown in Box 18.5, stream depth has an
overall negative effect on the abundance of species A (–0.898), with the direct
effect (-0.816) being much larger than the indirect effect (–0.082).

Path analysis allows one to test specific hypotheses about causal relationships
among variables and to estimate the amount of variation explained by direct and
indirect pathways. It permits one to display these relationships in a much more
detailed manner than is provided by multiple regressions. However, due to the
complexity of the calculations and numerous direct and indirect components, it
is obvious that such models could not include more than a few variables.

Isaak and Hubert (2001a) used path analysis to explore the direct and indirect
effects of large-scale habitat features such as watershed size, basin elevation, and
watershed slope on reach scale components of fish habitat, such as stream width,
in Rocky Mountain streams. Cumming (2004) demonstrated that low-head dams
reduced fish species richness in Wisconsin streams; however, a path analysis indi-
cated that the effect of dams on species richness was small in comparison to the
influence of water quantity and summer water temperatures. Cumming noted
that, from a management perspective, these results imply that reduction of water
volume and increased water temperature are greater threats to fish assemblages
than is the decrease in stream connectivity caused by low-head dams. Other ex-
amples of the use of path analysis in fisheries studies include Sheldon and Meffe
(1995) and Eros and Grossman (2005). Path analysis can be implemented using
packages such as SPSS or with specialized packages such as AMOS (Miles 2000).

18.3.6 Ordination Techniques

As noted in the discussion of multiple regression (section 18.3.4), having many
correlated habitat variables complicates an analysis by potentially inflating the
type I error rate and making it difficult to identify causal relationships. However,
another class of techniques is ideal for summarizing information from large num-
bers of correlated variables. Ordination methods are designed to summarize pat-
terns of variation among variables and order the observations such that one can
determine their relative similarity based on large amounts of information. For
example, we may want to determine how a suite of correlated habitat features
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Box 18.5 Path Analysis

The general idea is to identify a set of causal mechanisms relating the abundance of species A (y1)
to current velocity (y2 ) and stream depth (y3 ). Not all the variation in the dependent variable
(species A abundance) can be explained by the other variables, so there is a residual amount of
variation (�1) associated with the response variable. Similarly, not all of the variation in current
velocity is explained by stream depth, so there is an unexplained component associated with
current velocity (�2).

The effect of stream depth on the abundance of species A is due to both a direct effect (DE) and an
indirect effect (IE) that is mediated through the current velocity. For this particular path analysis
configuration, we need to calculate the correlations between all variables plus the path regression
coefficients associated with the variable stream depth (i.e., p31 and p32). The path regression
coefficients can be estimated using standardized regression coefficients from a multiple regression
(�31.2) or directly from the associated correlation coefficients as follows.

The correlation coefficients are

r12 = –0.440, r13 = –0.898, and r23 = 0.546.

The path coefficients are

p21 = r12 = –0.440;
p31 = �31.2 = (r13 – r23 r12)/(1 – r2

12 ) = {–0.898 – (0.546 × –0.440)/[1 – (–0.440)2]} = –0.816; and
p32 = �32.1 = (r23 – r13 r12)/(1 – r2

12 ) = {0.546 – (–0.898 × –0.440)/[1 – (–0.440)2]} =  0.187.

The effect of stream depth on species A abundance is the sum of the DE and IE and equals

r13 = DE + IE = p31 + p32 p21 = –0.816 + (0.187 × –0.440) = –0.816 – 0.082 = –0.898.

Therefore, we can conclude that the abundance of species A is strongly influenced by stream depth
but that its influence is mainly due to a direct effect with relatively little of the effect of stream
depth being explained through the mediating effect of current velocity.

Figure This path analysis diagram is based on data from Box 18.4 and examines the abundance of
species A in relation to current velocity and stream depth. Residual variation is represented by �.

�2

Current velocity (y2)

Stream depth (y3)

Species A abundance (y1)

�1

r13 = –0.898

r23 = 0.546

r12 = –0.440
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may be related to the abundance of one or more species. There are many forms
of ordination analysis and interested readers can find detailed discussions in Digby
and Kempton (1987) or Legendre and Legendre (1998).

18.3.6.1 Principal Component Analysis

The simplest ordination method is principal component analysis (PCA), and it is
similar to a multiple regression. In PCA, we calculate a linear model that summa-
rizes the greatest amount of variation in the data. As a simple example, consider
the variables current velocity, stream width, stream depth, and urban develop-
ment from our previous example of factors influencing fish abundance at sites
across a watershed (Box 18.6). We can use PCA to summarize the overall relation-
ship among the sites, that is, to identify which sites are similar and which are
different in regards to the habitat variables. The PCA calculates the first principal
component (also referred to as a principal axis or eigenvector) by fitting a linear
relationship to all of the variables such that this line summarizes the greatest
amount of variance. In a multiple-regression analysis, we have a dependent vari-
able, and it is assumed to contain greater amounts of error than do the predictor
variables. However, in a PCA, we do not have a dependent variable and all vari-
ables are considered in a similar way. Therefore, we fit the line differently. In
traditional regression analysis, we fit a line to minimize the sum of the squared
deviation of the dependent variable for each observation (i.e., each residual).
This means the deviations are measured in a vertical direction, whereas in PCA,
lacking a dependent variable, we fit the line to minimize the sum of the squared
deviations perpendicular to the fitted line (a form of model II regression analysis;
see Sokal and Rohlf 1995). This results in a line that summarizes the general
pattern or trend of the variables. Projecting each point onto this line allows us to
order the sites based on this general pattern.

In a regression analysis, we obtain coefficients that relate the original variables
to the regression line. Multiplying the observed habitat values for a site by their
respective regression coefficients gives the site’s position on the regression line
(see Box 18.4 for multiple linear regression). In PCA, we obtain analogous coeffi-
cients, called eigenvector coefficients, that tell us how each of the original vari-
ables relates to the new line or first principal component (Box 18.6). The magni-
tude and sign of these coefficients indicate their relative importance and whether
they tend to be more important at sites positioned at one end of the principal
component or at the other end. Additional principal components are generated
by summarizing remaining variation in the original data set that is independent
of the variation explained by the first principal component. For principal compo-
nent one (PC1) in our example, we see that current velocity, stream width, and
stream depth have eigenvector coefficients of similar magnitude, but stream width
is opposite in sign relative to the other two. This signifies that current velocity and
stream depth have a negative association with stream width on the first principal
component axis. Sites positioned toward the positive end have higher current
velocity and greater stream depth but smaller widths (this finding is consistent
with the ideas discussed in the path analysis section). Sites positioned toward the
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Box 18.6 Principal Component Analysis of Habitat Data

Here an example of principal components analysis based on the data in Box 18.4 is presented.

1. Plot the variables against one another to determine if they have a linear relationship; if not,
use appropriate data transformation, for example, logarithmic, to produce linear bivariate
relationships.

2. Variables should be standardized if they were measured in different units. This gives each
variable equal weighting in the analysis. This step may be done directly or will be implicit when
the correlation matrix is calculated.

3. Based on the strength of the relationships summarized in the correlation matrix, a new axis is
created that represents a linear combination of the standardized variables. The underlying
relationship among the observations remains unchanged, but the observations are ordered
based on the principal trend (i.e., principal component 1) in the data.

4. Unexplained variation in the data, that is deviations of points away from principal component 1,
is summarized by fitting axes in succession such that they are at right angles to each of the
preceding axes. This ensures that the patterns of variation summarized by different axes are
uncorrelated.

5. There will be as many principal components as original variables. However, often most of the
variation among sites can be summarized in the first few principal component axes, thus
reducing the dimensionality of the data.

Table Summary of steps in principal component (PC) analysis based on data from Box 18.4.

Correlation Matrix

Velocity Width Depth

Width –0.825
Depth 0.546 –0.412
Urban 0.125 0.043 0.363

Eigenvalues of the Correlation Matrix

Cumulative
Proportion proportion

PC Eigenvalue of variance of variance

1 2.251 0.563 0.563
2 1.136 0.284 0.847
3 0.459 0.115 0.962
4 0.153 0.038 1.00

Eigenvectors

Variable PC1 PC2 PC3

Velocity 0.616 –0.187 –0.222
Width –0.568 0.381 0.297
Depth 0.511 0.336 0.784
Urban 0.191 0.841 –0.497
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Principal Component Scores

Observation PC1 PC2

1 –2.439 1.726
2 –1.890 –0.854
.
.
.
19 1.702 0.530
20 2.678 1.006

The score for each observation i on a principal component is calculated by multiplying the
eigenvector coefficient for a variable by the standardized value from the original data and sum-
ming across the variables (the standardized value is obtained by subtracting the observed value
from the mean and dividing by the SD). For example, for site 1 on PC1,

Yi = 0.616(velocity ) + –0.568(width) + 0.511(depth ) + 0.191(urban ) = –2.439.

For site 1 on PC2,

Yi = –0.187(velocity ) + 0.381(width) + 0.336(depth) + 0.841(urban ) = 1.726.

These values or coordinates can be plotted to display the relationship among sample sites. The
scores for the first two axes are plotted below. The proximity of the points is a measure of their
similarity to one another. Thus sites 10 and 20 are similar in their overall habitat conditions but are
different from sites 1 and 2.

Figure Scores for first two principal components of habitat variables affecting abundance of
seven fish species among 20 sites. The amount of the total variation summarized by each principal
component is given on respective axes.
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negative end of the first axis are wider but have lower current velocity and less
depth. The second axis (PC2) is dominated by the contrast in degree of urban
development. Sites positioned toward the negative end of PC2 have low values for
urban development. It is important to emphasize that we have not altered the
relationship among the observations but simply have expressed the relationships
on new axes that are linear combinations of the original habitat variables. Sites
that are positioned close together on the plot tend to share similar environmental
conditions. In our example (Box 18.6), sites 10 and 20 have higher current veloci-
ties and are deeper but narrower relative to sites 6 and 11. Sites 14 and 18 have
intermediate values for those variables but low values for urban development.
This ordering is the basic goal of ordination methods and allows us to integrate
large numbers of correlated variables to determine the relative similarity among
sampling locations.

A PCA produces measurements called eigenvalues, which quantify the amount
of variation summarized by each principal component and which are similar to
the r2 in a correlation analysis. In our example, the first principal component had
an eigenvalue equal to 2.251 and explained 56.3% of the total variation. Variation
unexplained by this first component is summarized on subsequent principal com-
ponent axes (i.e., 28.4, 11.5 and 3.8%, respectively). All variation in the original
data will be summarized when all principal components are considered. In most
cases, we use PCA to reduce large data sets into a few dimensions that we interpret
as habitat gradients. Suggestions for identifying the number of principal compo-
nent axes that summarize ecologically meaningful patterns are found in Jackson
(1993). Peres-Neto et al. (2003) evaluated ways to determine which variables are
contributing meaningfully to individual principal component axes.

As habitat features (e.g., current velocity and urban development) are often
measured in different units, we generally standardize the data before running a
PCA by centering (i.e., subtracting the mean of each variable and dividing by the
standard deviation). This gives all variables an equal weighting or importance in
the analysis and is implicit when we use a correlation matrix in the analysis. In
addition to summarizing the similarity of sites based on their environmental char-
acteristics, PCA provides a set of new variables that can be related to species abun-
dance data via graphical or regression approaches. As the new axes are orthogo-
nal, there are no problems with multicollinearity, and the new axes can be used as
predictor variables in a multiple regression. For example, Braaten and Guy (1999)
used PCA to summarize seven habitat variables in two principal component axes
representing gradients of temperature (PC1) and turbidity–discharge–depth (PC2)
in tributaries of the Missouri River. A multiple-regression analysis then predicted
fish abundance based on a tributary’s position along these two habitat gradients.
Sheldon and Meffe (1995) reduced sixteen habitat variables to four principal
components prior to doing path analysis on relationships between fish assem-
blage attributes and habitat gradients. Rahel (1984) used PCA to summarize envi-
ronmental conditions from 43 Wisconsin bog lakes and to contrast the differ-
ences in their fish communities relative to their environmental conditions. Whittier
et al. (2002) used PCA to combine data on land use, road density, and human
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population density in a watershed into a new variable termed the watershed dis-
turbance index. They found that the number of invasive fish species in streams
increased with the degree of watershed disturbance.

Principal components analysis works well when there are strong linear rela-
tionships between variables. Where these relationships are nonlinear or ran-
dom, the ability to summarize the variation is impaired, and the resulting PCA
will be less informative or potentially misleading about the relationships among
variables. Environmental variables often show such linear relationships, or can
be transformed to provide linear relationships, but species abundance data sel-
dom show such features. Therefore, PCA often is not an appropriate approach
for summarizing species or site patterns in fish communities. Input variables
should not be derived from one another (e.g., ratio variables, percentages, or
proportions) and included in a PCA. As the PCA is designed to summarize lin-
ear relationships among variables, including variables that are derived from one
another will inflate the amount of variation summarized (Jackson 1997), lead-
ing one to overestimate the strength of the patterns in the data. In addition,
multivariate approaches are generally preferable to trying to combine many vari-
ables into a single measure (e.g., diversity indices or indices of biotic integrity)
as the multivariate measures retain more statistical and biological information
and have better statistical properties.

18.3.6.2 Correspondence Analysis

When the abundances of species are related to each other in a nonlinear manner,
linear approaches, such as the correlation used in PCA, will not adequately cap-
ture the relationship. In such cases, it would be appropriate to use approaches
based on measures of species association that do not assume linear relationships.
One such approach is correspondence analysis (CA, also called reciprocal averag-
ing), which is based on a chi-square distance measure rather than a correlation
measure of association among species. This ordination method generally works
better for data sets having numerous zero abundance values or having nonlinear
relationships in species abundance (Legendre and Legendre 1998). In CA, we do
not need to standardize the data, as most statistical packages implement the cal-
culations on the original data values.

We can plot the CA results from both the analyses of species and the sampling
sites together on a graph called a biplot (Figure 18.2). In our example, the first
axis distinguishes sites dominated by species A and B from sites dominated by
species E, F and G. By positioning vectors from the origin to each species, we can
assess the relationships between species in the ordination space. Angles close to
0° (e.g., between species F and G) indicate strong positive correlations between
the species occurrences whereas angles approaching 180° (e.g., species B and E)
indicate strong negative correlations. The length of the vectors is proportional to
the importance of each variable on the ordination plot. The position of species
relative to the sampling sites on the plot is a measure of their association. Species
will be positioned close to sites where they tend to be abundant and positioned
away from sites where they are absent or in low abundance. We can correlate site
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scores on axis 1 with the environmental variables to determine if the similarity
among the sites is associated with the environmental conditions. This is called
indirect gradient analysis because we are assessing the relationship between as-
semblage composition and environmental conditions across sites through an in-
direct approach. We initially analyze our community data to determine the pat-
terns in species occurrences among sites and then subsequently determine if there
is an association with the environmental conditions. This contrasts with a direct

Figure 18.2 Biplot graph of the correspondence analysis results for the species abundance
data in Box 18.4. Sampling locations are numbered with sites 1–10 being from one subbasin
and sites 11–20 from the second subbasin. Letters indicate the position of each species on the
biplot.
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gradient analysis in which we determine environmental gradients among the sites
and then ask how the species composition relates to these gradients (see the dis-
cussion of canonical correspondence analysis in section 18.3.7). In our example,
the site scores on axis 1 have correlations of r equal to –0.03, –0.34, –0.20, and
–0.18 with current velocity, stream width, stream depth, and urban development,
respectively. Thus, wide and deep sites are located on the left end of the first axis
(e.g., sites 6 and 7). Site scores on axis 2 have correlations of r equal to –0.30, 0.13,
–0.48, and –0.37 for velocity, stream width, stream depth, and urban develop-
ment, respectively. Thus, sites with deep water and extensive urban development
in their watershed are located on the bottom portion of the second axis (e.g., sites
9 and 10).

Jackson and Harvey (1989) used a CA to examine similarities among fish as-
semblages in 286 lakes in Ontario and to convert fish presence–absence relation-
ships into continuous variables suitable for use with other statistical analyses. Jack-
son and Harvey (1993) used CA to show there was a high degree of concordance
between the similarity of Ontario lakes based on their fish species composition
and similarity based on their benthic invertebrate communities. Marsh-Matthews
and Matthews (2000) used a variant of CA to determine that large-scale geographic
factors were more important than local habitat conditions in explaining differ-
ences in fish assemblages among stream sites.

18.3.7 Canonical Correspondence Analysis

An alternative approach to indirect gradient analysis is canonical correspondence
analysis (CCA; Legendre and Legendre 1998), a form of direct gradient analysis
that involves linking species composition to environmental conditions across sample
sites. A CCA combines features of multiple regression and ordination analysis in
that it develops a predictive model linking the pattern of species abundance with
the environmental conditions. As in correspondence analysis, the axes represent
gradients of community change. The goal is to constrain the ordination of the
species abundances by the environmental conditions. This means that the pat-
tern in the species and the sites will be linked directly to the habitat features
included in the analysis and will provide the best summary of relationships be-
tween the fish community and environmental conditions given the underlying
model. In doing a CCA, we can make individual plots showing the patterns involv-
ing fish species, sampling sites, or habitat features; biplots related to pairs of these
variables; or triplots that relate habitat features to the patterns in the fish species
and the sampling sites (Figure 18.3). In a biplot or triplot, the strength of the
correlation of an environmental variable is reflected in the length of the line, and
its association with a particular axis is reflected in the acuteness of the angle to the
other variables or an axis. Vectors with a small angle between them are positively
correlated, angles approaching 180° indicate a strong negative correlation, and
angles approximating 90° indicate that the variables are uncorrelated. In Figure
18.3, we see that stream width is negatively correlated with current velocity, stream
depth, and the amount of urban development. Species A is most abundant at sites
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that are wide and have slow current velocity, shallow depth, and low values for
urban development. Species G is most abundant at narrow sites that are deep,
have high current velocity, and high values for urban development. The abun-
dance of species E, on the other hand, tends to be uncorrelated with the environ-
mental conditions measured in this example.

Figure 18.3 Triplot graph of the canonical correspondence analysis results based on species
abundance and habitat data in Box 18.4. Sampling locations are numbered with sites 1–10
being from one subbasin and sites 11–20 from the second subbasin. Letters indicate the
position of each species (A–G) on the triplot. The four environmental variables (stream width,
stream depth, velocity, and amount of urban development) are identified with their respective
vectors indicating the associated correlation between variables and association with the
species and sites. Vectors with a small angle between them are positively correlated, angles
approaching 180° indicate a strong negative correlation, and angles approximating 90° indicate
that the variables are uncorrelated.
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Comparing the results from CA and CCA can be revealing. If species abun-
dances are strongly related to the habitat features, then both techniques will
show similar patterns in species associations and explain similar amounts of varia-
tion in fish assemblage structure across sites. If substantially less variation is sum-
marized with the CCA compared with the CA, this indicates that the environ-
mental variables do not explain much of the variation in fish assemblage
composition across sites.

Canonical correspondence analysis is the most commonly used method of com-
munity analysis currently. Williams et al. (2002) used CCA to demonstrate that
timber-harvesting practices and drainage basin differences in water chemistry and
riparian vegetation were related to trophic and taxonomic characteristics of stream
fish assemblages in the Ouachita Mountains, Arkansas. Quist et al. (2004a) found
that stream geomorphology and thermal conditions were important factors struc-
turing stream fish assemblages in Rocky Mountain streams. Marchetti et al. (2004)
used CCA as a means of determining whether native versus nonnative fish assem-
blages differed in their relationship to environmental conditions.

■ 18.4 STATISTICAL ANALYSES OF SPATIAL RELATIONS

18.4.1 Spatial Autocorrelation and the Importance of Spatial Location
in Watershed Analyses

In fisheries studies, we often wish to relate the characteristics of fish assemblages
to environmental conditions across a range of sites. The standard approach to
analyzing such data is to regress or correlate the dependent variables against the
corresponding environmental variables from the sites. We calculate the slope or
correlation coefficient and determine whether it meets some level of statistical
significance based on the associated degrees of freedom. For many studies, this
type of analysis may be appropriate. However, in other cases, the patterns we ob-
serve and the strength of the association between variables may be strongly influ-
enced by the location of the sampling points relative to one another (Williams et
al. 2002; Grenouillet et al. 2004). Sample sites that are close together may be
similar because of environmental gradients not considered in the analysis. Such
sites do not function as true replicates, and their similarity due to spatial proxim-
ity can confound our ability to detect the influence of other environmental fac-
tors on species assemblage characteristics. Situations for which the spatial loca-
tion of sites is of concern lead us to the topic of spatial autocorrelation.

We begin with a simple example to illustrate the issues and possible solutions
for dealing with spatial autocorrelation. Consider a situation in which fish species
richness and water alkalinity, a chemical parameter often associated with biologi-
cal productivity, were measured at 10 locations. A plot of the locations in an x and
y geographical coordinate framework along with the alkalinity and species rich-
ness at each location are shown in Box 18.7 (panel A). We show the same points
positioned within a lake (panel B) or along a stream drainage (panel C) to illustrate
how such samples might be located in two familiar situations. We need to be con-
cerned about the spatial relationships of these samples because spatial correlations
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Box 18.7 Example of Spatial Autocorrelation between Fish Species Richness
and Alkalinity

Table Ten site locations in an x and y geographical coordinate framework along with the
alkalinity (measured as mg/L CaCO3) and fish species richness at each location.

Geographic coordinates Measured variables

Sampling site x y Alkalinity Species richness

1 1 9 1.0 2
2 2 7 1.5 3
3 1 8 3.0 3
4 1.5 6 2.0 3
5 4 3 8.0 7
6 5 2 9.0 11
7 4.5 2.5 9.0 9
8 8 7 3.0 4
9 8.5 8 3.5 6
10 9.5 9 2.0 5

Figure (A) Plot of the ten site locations in an x and y geographical coordinate framework; the
same points positioned within a lake (B) or along a stream drainage (C); and the checkerboard-type
pattern indicative of a negative autocorrelation at small distances for species presence (darkened
rectangle) versus absence (open rectangle) data (D).
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can violate some of the fundamental assumptions in standard statistical tests. A
basic assumption is that our observations are independent of one another. The
stream example provides a situation where an effect occurring at one site is likely
to have a direct impact on a site located downstream. Therefore, the observations
are not independent. Similarly, sites within one of the embayments in a lake could
be influenced by factors that are not important elsewhere in the lake (e.g., sedi-
ment characteristics that are determined by wave actions caused by fetch effects).
In these two examples, sites in close proximity would exhibit positive spatial corre-
lation because their attributes would tend to be more similar than for pairs of sites
distributed at random.

Spatial correlation is not always positive. If we partitioned a stream into rectan-
gular quadrants and mapped the fine-scale spatial distribution of trout within a
stream, we might find that behavioral interactions tend to keep trout spaced apart,
likely due to their competition for resources. Trout tend to remain in specific
areas, such as downstream of rocks, and defend the surrounding waters from
other trout. Therefore, at a fine spatial scale we may find trout occupying a site
and excluding fish from the surrounding sites, thereby causing those sites to be
empty. This would result in a pattern of negative association in occurrence for
adjacent locations or, alternatively, a negative spatial autocorrelation related to
small distances. A negative autocorrelation at a small distance for presence–ab-
sence data tends to result in a checkerboard-type pattern (see panel D of Box 18.7
or the results in Figure 18.4 for the negative correlation at the intermediate dis-
tance around 12 km).

When the attributes of sites exhibit positive or negative spatial correlations,
then the sites are not independent observations for the purpose of statistical tests.
As the degrees of freedom in our statistical tests are based on the independence
of the observations, a lack of independence leads us to overestimate the degrees
of freedom (or underestimate in the case of negative spatial correlation). The
redundancy in the data due to spatially proximate sites results in the effective
sample size being smaller than the actual number of observations. Consequently,
we will tend to reject the null hypotheses in our tests more frequently than we
really should; that is, our type I error rates are incorrect. This means that relation-
ships between habitat variables and fish assemblage characteristics deemed statis-
tically significant may not be significant at the stated alpha levels. Given that stan-
dard approaches may not be appropriate, we need to consider the following
alternative methods of analysis.

18.4.2 Use of Distance Matrices to Assess the Geographic Proximity
or Ecological Similarity among Sites

In some cases, we may want to make pairwise comparisons between sites for a set
of variables. For example, how far apart geographically are the sites, how differ-
ent are sites in terms of their species richness, or how different are the various
populations in their genetic relatedness? This leads us to creating distance matri-
ces (or alternatively similarity matrices, such as a correlation matrix) of our sites
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that serve as the basis for many multivariate techniques (e.g., principal coordi-
nate analysis or cluster analysis). Many types of distance or similarity measures
have been developed that are appropriate for working with different types of
data (e.g., presence–absence, ordinal, or continuous) or that emphasize differ-
ent attributes of the data. Measures commonly used with presence–absence data
include the Jaccard, simple matching, and phi coefficients (see Chapter 15).
For continuous data, Euclidean distance (Chapter 15) may be suitable for small
geographic distances where distances can be calculate directly from Universal
Transverse Mercator (UTM; see Chapter 14) coordinates or from latitude and
longitude. However, corrections must be employed for larger distances due to
errors in measuring straight-line distances over a curved space. Other measures
such as Bray–Curtis (Chapter 15) or chord distance may be more appropriate
for species data for which some form of standardized relative abundance com-
parison may be desired. Legendre and Legendre (1998) describe the numerous
measures available.

Having chosen a particular distance measure, we begin with n sampling points,
potentially lacking independence among their attributes, and create a distance

Figure 18.4 Correlogram of species richness. There are weak positive correlations between the
species richness values at sites located close together or far apart but a strong negative correla-
tion in species richness values for sites separated by intermediate distances.
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matrix having n(n – 1)/2 elements or values (see Box 18.8). These values are not
independent as a large distance between sites 1 and 10 and a small distance be-
tween sites 1 and 2 means that sites 2 and 10 cannot be located close together.
Although we might be interested in assessing how these distance matrices relate
to one another, clearly we cannot use the total number of elements to estimate
our degrees of freedom. We are left with two main solutions, namely we summa-
rize and interpret the results graphically without using inferential statistics, (i.e.,
no hypotheses are tested formally) or we must use statistical approaches that are
not compromised by the lack of independence among points or spatial
autocorrelation.

18.4.3 Comparison of Distance Matrices by Means of Graphical Approaches

Simple graphical approaches can be used to indicate if spatial autocorrelation
exists within a dataset and at what spatial scale(s) autocorrelation is important.
One measure of whether a variable has a spatial pattern is obtained by correlat-
ing the distance matrix of between-site differences in the variable of interest
with a distance matrix of inter-site geographical distances. If several variables
are measured this way, a ranking of the resulting correlations provides a relative
measure of which variables show the greatest spatial autocorrelation. However,
as pointed out earlier, we cannot test whether these correlations differ from
random by means of standard approaches (but we can test using the Mantel test
discussed in section 18.4.4).

Another approach is to divide the geographic distance matrix into distance
classes, for example, the sites that fall between 0 and 5 km apart, between 5 and
10 km, and so on. Then we can ask how the variable of interest (e.g., species
abundance) is related between sites within each distance class. If sites located
close together tend to have similar abundance values, we will find a strong posi-
tive correlation in abundance at small distances. If sites far apart have very differ-
ent abundance values, then a strong negative autocorrelation would exist for
large distances. Generally, this type of analysis is presented graphically as the aver-
age correlation in the variable of interest versus the distance classes. This type of
graph, called a correlogram, shows how the pattern of autocorrelation changes
across a range of geographic distances (Figure 18.4). The pattern we observe in
the correlogram may help support or reject specific hypotheses about our eco-
logical system. In our example (Figure 18.4), we see weak positive correlations in
species richness at small and large distance classes but a much stronger negative
correlation at intermediate distances. This form of a relationship might arise when
fish assemblages are sampled in two tributaries and their downstream confluence
in a drainage basin. The distance between sites is measured as the separation
along the drainage network. Samples taken close to one another along the drain-
age network tend to have similar habitats and fish communities. Therefore, they
have a positive association. The greatest distance will occur in comparisons of a
headwater site from one branch with a headwater site in the other branch. These
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sites likely have similar habitat and fish communities, thereby leading to a positive
correlation. However, the intermediate distances typically compare sites from the
headwaters with sites farther downstream near the area of confluence. Sites from
these two areas will tend to have the most different habitats and likely the most
divergent fish communities. As a result, comparisons of sites at this intermediate
spatial scale tend to have negative associations. Typically the correlation values
obtained are not assessed statistically due to their lack of independence, but suit-
able randomization tests can be used that correctly evaluate the null hypothesis
for each of these correlations (see Legendre and Legendre 1998 for details).

Box 18.8 Estimation of Distances between Samples and Calculation
of Distance Matrices

A standard way of estimating the distance between the observations i and j is the Euclidean
distance (Dij ), or minimum straight-line distance between them.

� (Xi k  – Xj k)2 ,
k = 1

P

Dij = 

where X is the observed values for the p variables measuring the geographic location for each site.
In the case of sites 1 and 2 from Box 18.7, the Euclidean distance is

� (Xi k  – Xj k)2 =     (1 – 2)2 + (9 – 7)2  =    5  = 2.24.
k = 1

2

Dij  = 

If we calculate all pairwise distance values, we can fill out the following table.

Table Pairwise Euclidean distance values for geographic coordinate data in Box 18.7. Note that
the distance between a location and itself is 0. The table is symmetric; therefore, we only need to
present one half of the matrix in most cases.

Site

Site 2 3 4 5 6 7 8 9 10

1 2.24 1 3.04 6.71 8.06 7.38 7.28 7.56 8.5
2 0 1.41 1.12 4.47 5.83 5.15 6 6.58 7.76
3 0 2.06 5.83 7.21 6.52 7.07 7.5 11.85
4 0 3.91 5.32 4.61 6.58 7.28 8.54
5 0 1.41 7.07 5.66 6.72 8.14
6 0 7.07 5.83 6.94 8.32
7 0 5.70 6.80 8.20
8 0 1.12 2.5
9 0 1.41
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Somers and Jackson (1993) used a correlogram to study the spatial relation-
ships of mercury concentrations in 30 populations of lake trout from Ontario.
They used randomization methods to assess the significance of the individual
distance classes and found significant positive spatial autocorrelation in mercury
concentration at large distances, a trend toward positive autocorrelation at small
distances, and nonsignificant negative relationships at intermediate distances. Their
study involved ten lakes from each of three geographical regions. There was consid-
erable similarity in the patterns of mercury concentration among lakes within
each region, thereby producing a strong correlation in mercury concentrations

We can calculate a similar table of values comparing the difference in species richness between sites.

Table Pairwise Euclidean distance values for species richness data in Box 18.7.

Site

Site 2 3 4 5 6 7 8 9 10

1 1 1 1 5 9 7 2 4 1
2 0 0 0 4 8 6 1 3 0
3 0 0 4 8 6 1 3 0
4 0 4 8 6 1 3 0
5 0 4 2 3 1 4
6 0 2 7 3 6
7 0 5 3 6
8 0 2 1
9 0 1

Are the patterns in species richness related to the geographic distance among sites?  For example,
if two sites are close to one another (corresponding to a small value in the spatial distance matrix),
do they tend to have a similar species richness (corresponding to a small distance, or difference, in
the species richness matrix)?  An overall measure of whether the two matrices show similar
patterns is provided by the sum of the cross products of the two matrices (Mantel 1967):

� Xj , k  Yj , k .
j = 1, 

k = j + 1

n

Z = 

In comparing the distance matrices for species richness versus the geographic location for each
site, we obtain a Mantel Z value of 916.4 and a standardized correlation coefficient, r, of 0.32, both of
which have an associated probability of  0.026. This indicates that there is a strong spatial pattern in
the species richness values with sites close together tending to have a similar number of species.
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for small distances. The two most distant groups of lakes also had similar concen-
trations of mercury in fish, leading to strong positive correlations at large dis-
tances. However, the geographically intermediate set of lakes had quite different
patterns in the mercury concentrations relative to either of the other sets. This
led to the negative correlations at intermediate distances. Nash et al. (1999) used
correlograms, also with tests of significance, to compare biomass of fish in rivers
versus lakes over various distances. The incorporation of spatial autocorrelation
into their analyses led to some major differences between their conclusions and
those from an earlier study by Randall et al. (1995). In particular, Nash et al.
found no statistically significant difference in fish biomass between lakes and riv-
ers, which was in contrast to the results reported by the earlier study that did not
account for spatial autocorrelation among sample sites.

In many cases, the variable of interest may not have a continuous distribution
or even be quantitative. For example, consider the spatial pattern shown in panel
D of Box 18.7, where we have the presence (P, darkened rectangle) or an absence
(A, open rectangle) of an attribute in a spatial grid. We want to determine if there
is a spatial component to values in the cells (e.g., the presence or absence of a
trout species or the type of land use within a watershed) and if the spatial pattern
varies across spatial scales. Two adjacent cells will be one of the following cases:
both present (PP); both absent (AA); or a combination (PA or AP). We need to
quantify the relative frequency of these three cases and their likelihood given the
number of individual cases of P and A. In its simplest form, we estimate the prob-
ability of these results occurring if the underlying pattern were random. This
analysis is termed the joint count approach. We can calculate the number of each
type of outcomes or connections between adjacent cells. These can be compared
against expected values to determine whether the number of PP, AA, or PA com-
binations differs from a purely random scenario (see Griffith 1987 for details).

Often we are interested in whether these patterns change depending on the
particular distance used in the comparison. For example, if we consider a check-
erboard, the pattern is negatively associated at a distance of one unit, positively
associated at distances of two units, negatively at three units, and so on. These
results can be plotted to show the proportion of joint counts in particular catego-
ries (e.g., PP) over various distance intervals in a manner similar to the correlogram.
There are two main metrics, Moran’s I and Geary’s C, used with these types of
patterns to quantify the association between cells over various distances. Details
are provided by Griffith (1987) or Legendre and Legendre (1998). If we are work-
ing with continuous response variables, Moran’s I is similar to the correlation
coefficient and bounded between –1 and +1. Increasing values of Moran’s I indi-
cate positive autocorrelation between sites whereas Geary’s C would tend toward 0
under such conditions. The lower bound for Geary’s C is 0 and indicates a strong
positive association. As negative spatial autocorrelation increases, Geary’s C in-
creases but has no upper bound. It is normally most informative to plot Moran’s I
or Geary’s C in a correlogram manner as this allows interpretation of how the
patterns of autocorrelation vary across spatial scales. The designation of distances
classes can be made so that equal distance intervals are considered or so that
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equal numbers of observations occur within each interval. The choice of distance
classes can influence the outcome in a correlogram, so it is important to examine
the results for varied distance classes.

18.4.4 Comparison of Distance Matrices by Means of the Mantel Test

We have stressed the difficulty in knowing the appropriate degrees of freedom to
use in tests for which there is a lack of independence among the observations
(Fortin and Gurevitch 2001; Ver Hoef and Cressie 2001). Fortunately, alternatives
have been developed that permit us to evaluate the strength of the association
between matrices and whether it differs from random. Dutilleul (1993) devel-
oped an analytical approach that can be used with correlations between variables
(e.g., species richness and alkalinity) that corrects for the spatial autocorrelation
in the test of the null hypothesis. Mantel (1967) developed an approach, now
called the Mantel test, to test for spatial or temporal autocorrelation. In our ex-
ample from Box 18.8, we can test for spatial autocorrelation by determining if
sites close to each other in the spatial distance matrix also have a corresponding
small distance, or difference, in the distance matrix based on species richness. An
overall measure of whether the two matrices show similar patterns is provided by
the sum of the cross products of the two matrices (Mantel 1967):

�Xj,kYj,k .
j = 1, 

k = j + 1

n

Z = (18.1)

This measure is an unstandardized correlation between the two distance matri-
ces X and Y. The larger Z is, the greater the match between a given pair of matri-
ces. However, Z increases as the size of the matrices increase and varies depend-
ing on the distance measures used. As well, we know that the distances between
points are not independent. Mantel (1967) proposed an analytical solution to test
the null hypothesis based on some additional assumptions that are not always
met. Therefore, this test is now evaluated using randomization methods that al-
low us to calculate what values of Z are likely when the null hypothesis of no
spatial autocorrelation is true. This randomization approach commonly involves
thousands of iterations (e.g., Jackson and Somers 1989), and then the observed
value of Z is compared to the distribution of randomized Z values. The proportion
of randomized values equal to or greater than the observed value represents the
resulting probability value of the test. The Mantel test allows us to go beyond the
simple correlation summary of various matrices or the simple graphical approach
of the correlogram. We can use the test to infer whether there is a nonrandom
linear relationship between distance matrices.

As an example of using the Mantel test, Jackson and Harvey (1989) tested
whether spatial or environmental factors were more closely associated with at-
tributes of lake fish assemblages in Ontario. Rodriguez and Lewis (1997) found
no significant spatial relationship between the similarity of fish species assem-
blages and spatial location in the Orinoco River basin. Cattaneo et al. (2003) used
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a series of Mantel tests to relate synchrony in population fluctuations of brown
trout to stream connectivity. More detailed considerations of the Mantel test can
be found in Legendre and Legendre (1998), Fortin and Gurevitch (2001), and
Peres-Neto and Jackson (2001). The Mantel test is included in commercial pack-
ages such as NT-SYS (Rohlf 1993) or free packages available on the World Wide
Web (e.g., http://www.bio.umontreal.ca/legendre/indexEnglish.html).

The Mantel test allows us to determine whether two distance matrices match
more closely than expected due to chance. However, in many cases we may be
interested in testing the association of two variables (e.g., species richness and
alkalinity) rather than their association with their spatial configuration. This can
be done directly using the correlation procedure developed by Dutilleul (1993)
or through a modification of the Mantel test. In this latter approach, we use a
partial Mantel test to control or remove the variation in species richness and alka-
linity that is due to spatial position. We can regress the distance matrix based on
species richness against the distance matrix based on sampling locations. Then
the residuals from this regression are calculated. Next, the distance matrix based
on alkalinity is regressed against the same distance matrix based on sampling
locations and the residuals are determined. The two distance matrices of residu-
als then are analyzed through the standard Mantel test. If the Mantel test indi-
cates a significant probability of correlation (e.g., P < 0.05), we conclude the two
variables (e.g., species richness and alkalinity) are significantly associated even
after removing the influence of spatial autocorrelation. Hinch et al. (1994) used
the partial Mantel test to test the relationship between lake fish assemblages and
several matrices of environmental variables while controlling for spatial relation-
ships among the environmental variables. The results differed for various between-
matrix comparisons depending on whether the spatial autocorrelation was in-
cluded or removed prior to the analyses. The partial Mantel approach was used to
factor out the influence of spatial relationships before doing a principal coordi-
nates ordination on the fish assemblages. Hinch et al. (1994) found major differ-
ences in their interpretation of fish assemblage patterns due to the strong spatial
autocorrelation of abundances for brown bullhead and pumpkinseed whereas
white sucker abundance was not spatially autocorrelated.

Peres-Neto and Jackson (2001) demonstrated that a test based on a random-
ized Procrustean rotation provides improved statistical power over the Mantel
test. The test is used to compare sets of variables such as morphological, genetic,
environmental, or spatial information collected at a series of locations. As with
the Mantel test, the Procrustean rotation test determines whether the pattern
between two data sets is consistent with the null hypothesis of random association.
Peres-Neto (2004) used Procrustes analysis to compare fish morphology among
stream fish assemblages with respect to spatial and environmental conditions.

18.4.5 Consideration of Spatial Autocorrelation in Regression Analysis

Because information on fish–habitat relations is often spatial in nature, there is
growing interest in using spatially explicit regression approaches to identify habitat



Watershed Level Approaches 931

features that influence the occurrence and abundance of fish. The typical ap-
proach is to do a traditional (nonspatial) regression relating the property of inter-
est (often the abundance of individual species or a group of species) to habitat
characteristics. The residuals from this regression are then tested for spatial
autocorrelation using a statistic such as Moran’s I and a spatial weights matrix
based on the distance between sample locations. The distance between sample
locations can be determined as the geographic straight-line distance for lakes or
the ocean. However, studies involving stream sites also should consider the dis-
tance along the drainage network because the similarity in fish assemblages among
sites may depend more on the distance an organism or disturbance has to travel
along a stream corridor than the overland distance between the sites.

Tiffan et al. (2002) tested whether spatial correlation among habitat features
influenced logistic regression models that predicted the probability of Chinook
salmon presence among sites in the Columbia River. In addition to habitat condi-
tions at a site, they included the distance of each site from the downstream end of
the study reach as a predictor variable. This variable was not statistically signifi-
cant in their model, indicating that spatial autocorrelation was not a problem in
their data set.

If spatial autocorrelation is detected, one has four options. First, a plot of re-
siduals across the study area may suggest some geographic gradients in abiotic
factors not considered in the original analysis. For example, a latitudinal gradient
among the residuals may indicate that a climate variable should be added to the
regression model to account for the fact that the growing season declines with
increased latitude in the northern hemisphere. Or there may be underlying
elevational or geologic gradients across the study area that could be incorporated
into the analysis. If no new variables can be identified that remove the
autocorrelation, then the second option is to adjust the regression model to ac-
count for the fact that the error terms (i.e., the residuals) are not independent.
This is done by adjusting the covariance matrix used in the general least-squares
method to account for the fact that off-diagonal elements (assumed to be zero in
traditional regression analysis when error terms are not correlated) will have non-
zero values that increase as the spatial separation between pairs of sampling loca-
tions decreases. Further information is presented by Odland (1988).

Adjusting the regression model typically leads to increased standard errors for
the regression model parameter estimates and may cause some of the original
variables to be dropped from the regression model. The parameter estimates them-
selves usually are not changed greatly. In general, failure to account for spatial
autocorrelation will result in an increased chance of type I statistical errors (i.e.,
finding regression model parameters to differ significantly from zero when, in
fact, they do not).

Isaak and Hubert (2001a) contrasted nonspatial and spatial regression analy-
ses in predicting stream habitat attributes from watershed characteristics. They
used watershed characteristics such as watershed size, basin elevation, basin slope,
and vegetation characteristics to predict three reach scale characteristics: base flow
stream width, stream alkalinity, and stream slope. Thirteen of fifteen least-squares
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regressions had spatially correlated residuals. When the regressions were spatially
adjusted, the magnitude of standardized regression coefficients tended to decline
slightly indicating that the impact of these predictor variables would be overesti-
mated if spatial autocorrelation were ignored.

A third option for dealing with spatial autocorrelation in regression analysis is
to include a categorical variable in the regression analysis along with the site level
characteristics that are used as predictor variables. This allows one to assign clumped
sites to a similar category or group and then to test for the relative importance of
category effects (indicative of spatial autocorrelation) versus site level effects in
explaining the variation in the dependent variable. Dunham and Vinyard (1997)
provide an example of this approach for relating variation in fish abundance to
both stream level and site level effects. Their data consisted of multiple sample
sites for each of several streams. At each site both fish abundance and local habi-
tat features were measured. When the analysis was done considering only site
level variability (i.e., without a categorical variable identifying individual streams),
wetted stream width was a strong predictor of cutthroat trout abundance. How-
ever, when a categorical variable for stream identity was added to the regression,
it explained the majority of the variation in trout abundance and site level effects
such as wetted stream width became nonsignificant. The reason for the loss of
significance of site level effects was that variables such as wetted stream width
were highly confounded among streams. Some streams contained only narrow
sample sites and other streams contained only wide sample sites, and this made it
impossible to separate out site level influences on fish abundance from larger-
scale influences operating at the stream level.

A fourth option can be used for data that consist of groups of spatially clumped
sample sites that show autocorrelation within groups but not across groups. In
such a case, a solution is simply to average all sites within a group into a single
composite site for both the dependent and independent variables. Nash et al.
(1999) used this approach for a comparison of fish abundance patterns in lakes
versus streams. The data came from widely distributed locations around the world
but were highly clumped in that a group of lakes or streams had been sampled at
each location. When Nash et al. (1999) formed a composite site for the lakes or
rivers at each location, they found that differences in fish assemblage attributes
between lakes and rivers were less pronounced than when all sites at a location
were considered as independent samples.

18.4.6 Conclusions Regarding Spatial Analyses in Fisheries Applications

Spatial patterns sometimes confound relationships between fish assemblage char-
acteristics and environmental features, but such problems may not be recognized
unless researchers examine the data for spatial autocorrelation. Researchers should
consider carefully the design of their study in order to minimize spatial
autocorrelation. For example, a spatially blocked or nested design may reduce
the impact of spatial autocorrelation by ensuring that sampling sites are spread
across the study area. This reduces the probability of having many sites in clumped
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patterns as aggregated sampling tends to emphasize positive or negative spatial
autocorrelation at small scales and tends to complicate the assignment of suitable
degrees of freedom. In some studies, biologists may be interested primarily in the
spatial aspects of the data as these may be important in relating fish abundance to
environmental quality in river systems or may strongly determine spawning migra-
tion patterns. The spatial connectivity of these systems may be the information of
interest. Alternatively, for some studies, spatial aspects may be confounding infor-
mation about fish–habitat relations. We also caution that researchers should not
necessarily be alarmed if they find strong autocorrelation. In some cases, research-
ers may be interested in longitudinal patterns of species richness within a river
system. Attributes of downstream sites are not likely to be independent of condi-
tions upstream. Therefore, we may not want to test the significance of our null
hypotheses formally, but it is appropriate to provide summary statistics (e.g., cor-
relation or regression coefficients) for variables of interest as these help us under-
stand how the variables are related. We may be able to provide an excellent pre-
dictive model of species richness within a river (without the need to assign a
probability to this model) but may not be able to generalize beyond the bounds of
the system. When we want to control for spatial autocorrelation and apply infer-
ential statistics, we now have a set of tools suitable for addressing many of our
questions. Spatial autocorrelation is neither inherently good nor bad, but we must
consider the impact that it may have on our application of inferential statistics
and the conclusions made.

■ 18.5 ADDITIONAL FISHERIES ISSUES AT THE WATERSHED SCALE

18.5.1 Quantification of the Ecological Condition of Watersheds

There is a long history of trying to assess the well-being of aquatic ecosystems
based on the status of fish assemblages (Simon 1999). A popular approach has
been to summarize information on species abundances and guild composition in
an index of biotic integrity (IBI; see Chapter 15). Typically IBIs assess aquatic
conditions at the site scale, but there is growing interest in evaluating biological
integrity at the watershed scale (Jensen and Bourgeron 2001; Saunders et al. 2002).
One approach is simply to average site IBI scores across a basin (Steedman 1988).
Another approach is to develop indices of watershed condition that explicitly con-
sider large-scale characteristics. Moyle and Randall (1998) developed such an in-
dex they termed the watershed index of biotic integrity (W-IBI). To use the W-IBI,
each watershed was scored along six metrics thought to reflect overall ecosystem
health (Table 18.2). For each metric, the condition of the watershed was scored as
1 (poor), 3 (intermediate), or 5 (good), and the sum of the scores became the
W-IBI for that watershed. The higher the W-IBI score, the better the biological
condition of the watershed. A negative correlation between W-IBI score and wa-
tershed characteristics such as the abundance of dams, reservoirs, and roads close
to streams indicated that the index could be used to rank watersheds based on the
degree of human-related perturbation. Being able to quantify the biological status
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of watersheds is important for prioritizing watersheds for conservation or reha-
bilitation purposes (Moyle and Randall 1998; Saunders et al. 2002).

Another example of an approach to summarize habitat conditions at a water-
shed scale is the watershed disturbance index developed by Whittier et al. (2002).
The authors used PCA (section 18.3.6) to combine data on watershed land use,
road density, and human population density into a single metric of disturbance
and found that the number of invasive species in streams was positively correlated
with the degree of watershed disturbance. Van Kirk and Benjamin (2001) devel-
oped indices of salmonid population status and hydrologic integrity for 41 water-
sheds in the Greater Yellowstone Ecosystem. The status of salmonid populations
was correlated with hydrologic integrity when both nonnative and native species
were considered together. However, the status of native salmonid populations
considered separately was not strongly correlated with hydrologic integrity. This
indicated that other factors, especially introduction of nonnative salmonid spe-
cies, was more important than were physical factors in determining the status of
native salmonids across watersheds in the Greater Yellowstone Ecosystem.

Although much effort has been applied to developing sampling protocols for
determining the number of fish species at the site scale, relatively little work has
been done in determining fish species richness at the watershed scale. Smith and
Jones (2005) provided guidelines for determining riverine fish species composi-
tion at the watershed scale and emphasized the value of plotting species accumu-
lation curves to determine adequate inventory completion. They also indicated
the value of combining random site selection with targeted site sampling to en-
sure capture of species associated with rare habitats.

18.5.2 Identification of Sufficient Habitat for Conservation of Stream Fishes

Identifying the amount of habitat necessary to sustain a population is a basic prob-
lem in conservation biology, particularly when trying to establish new populations.
Population genetic theory suggests that an effective population size of at least 500
breeding adults is necessary to prevent extinction from stochastic population pro-
cesses or inbreeding. An effective population size of 500 could be achieved if 250
males and 250 females each contributed equally to the genetic make-up of the next
generation. For stream fishes, the length of stream necessary to sustain a given
number of breeding adults can be estimated based on demographic data and popu-
lation density. For example, Hilderbrand and Kershner (2000) estimated that a
population of 2,500 cutthroat trout (>75 mm total length) would be needed to
attain an effective population size of 500 breeding adults. The abundance of cut-
throat trout in their Rocky Mountain streams varied from 0.1 fish to 0.3 fish per
meter of stream length. Thus, the length of stream needed to support 2,500 cut-
throat trout would be 25 km at low fish abundance and 8 km at high fish abun-
dance. Using this approach, Kruse et al. (2001) found that only 7 of 23 headwater
populations of cutthroat trout in the Absaroka Mountains of Wyoming contained
sufficient habitat to maintain an effective population size of 500 or more breed-
ing individuals. They concluded that isolating headwater populations to prevent
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invasion by nonnative trout would not be an effective long-term conservation strat-
egy because small size would make most populations vulnerable to extinction.

Harig and Fausch (2002) examined the minimum habitat requirements for es-
tablishing translocated populations of cutthroat trout. Rather than estimate stream
length needed to maintain a certain number of fish, they used an empirical ap-
proach to relate the persistence of previously translocated populations to various
habitat factors. Using logistic regression, they found that watershed area was a use-
ful predictor of the probability of success of a translocated population. In particular,
they estimated that the chance of a translocation being successful was greater than
50% when watershed area was greater than 14.7 km2. The explanation was that
watersheds of that size would contain sufficient stream habitat to support a large
population of cutthroat trout and have enough lower elevation streams where ther-
mal conditions would be optimal to ensure recruitment of young fish.

18.5.3 Approaches from Landscape Ecology: Influence of Patch Size, Isolation,
and Landscape Position on Fish Distribution and Abundance

Landscape ecology encompasses both the study of ecological phenomena at large
spatial scales as well as the study of habitat patchiness. Recently, there has been
interest in understanding how landscape concepts such as patch size, isolation, or
juxtaposition influence the distribution and abundance of fishes (Schlosser 1995;
Fausch et al. 2002). Habitat patches are areas of suitable habitat surrounded by
unsuitable habitat. Patches can consist of subcatchments in stream networks
(Rieman and McIntyre 1995); embayments in reservoirs (Phillips et al. 1997);
pools in streams (Lonzarich et al. 2000; Eros and Grossman 2005); stream reaches
with suitable temperatures (Torgersen et al. 1999); or macrophyte beds in lakes
(Chick and McIvor 1994).

Rieman and McIntrye (1995) studied large-scale distribution patterns of bull
trout in Idaho and defined a habitat patch as a stream catchment above 1,600 m
elevation that contained thermally suitable habitat for this species. Using logistic
regression, they found patch size was a good predictor of the occurrence of bull
trout (Box 18.2). In a similar analysis, Dunham et al. (2002) found that patch size
also was a good predictor of the occurrence of Lahontan cutthroat trout in the
Lahontan basin of Oregon and Nevada.

Based on island biogeographic theory, isolated patches should have fewer spe-
cies than would patches near sources of colonists. Dunham and Rieman (1999)
explored this phenomenon for bull trout in Idaho where patches were stream
catchments containing thermally suitable habitat. Using logistic regression mod-
els, they found that patch isolation, measured as the stream distance to the near-
est occupied patch, interacted with patch size to determine the probability that a
patch would contain bull trout. As expected, bull trout were less likely to occur in
isolated patches, especially if the patches were small. Eros and Grossman (2005)
used path analysis to show that patch location in the landscape (measured as the
distance from downstream tributaries) and patch size (measured as pool volume)
were important predictors of fish species richness in pools in a Hungarian stream.
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For fish adapted to pool habitat in streams, shallow, fast-flowing reaches associ-
ated with road crossings or natural riffles can be an isolating mechanism. Lonzarich
et al. (2000) found that pools separated by long riffles experienced less fish move-
ment than did pools separated by short riffles. Management implications were
that natural riffles or shallow, fast-flowing reaches created by human activities
such as road culverts could be isolating mechanisms for some species and could
slow fish recolonization after disturbances (Warren and Pardew 1998). On a larger
scale, dams and their associated reservoirs fragment river systems into disjointed
reaches of flowing water (Dynesius and Nilsson 1994). This can lead to the extir-
pation of obligate riverine fishes from isolated patches of river habitat (Winston
et al. 1991; Quist et al. 2004b).

In lakes, distance to the nearest lake has been used as a measure of isolation.
Olden et al. (2001) explored various measures of lake distance in their study of
how lake isolation influenced fish assemblage patterns across a large watershed in
Ontario. An isolation measure based on the straight-line distance between two
lakes did not appear to be as insightful as measures that incorporated waterway
distance and stream gradients between lakes. Understanding lake isolation helped
in interpreting lake assemblage patterns. For example, some lakes contained
coldwater species not predicted based on the lake’s small area and shallow depth.
These species appeared to be sustained because the lakes were in close proximity
to deep lakes that could support these species. Thus, the small lakes appeared to
be sink populations for coldwater species originating from source populations in
other lakes. Measures of lake isolation that incorporate waterway distance and
stream gradient also are important when modeling the dispersion of exotic spe-
cies across a lake district (Hrabik and Magnuson 1999).

In addition to patch size and isolation, the juxtaposition of a habitat patch
relative to other patches and landscape features can influence the biological char-
acteristics of aquatic systems. For example, the position of a lake in a watershed
can influence limnological properties. Riera et al. (2000) developed the concept
of lake order to quantify a lake’s position along a drainage network. Low-order
lakes are isolated water bodies at the headwaters of drainage systems whereas
high-order lakes are lower in the drainage and have river connections with other
lakes. For the lake district studied by Riera et al., lake size, ion concentrations,
crayfish abundance, and fish species richness all increased with lake order.
Snodgrass and Meffe (1998) also provided evidence that the location of a water
body within a watershed could influence biological properties. They found the
composition of fish assemblages in South Carolina beaver ponds depended on
landscape position. In particular, piscivorous fishes appeared to eliminate small-
bodied prey species in upstream beaver ponds but not in downstream beaver ponds
because the latter were closer to sources of colonists.

For streams, the spatial position of tributary streams within a drainage can in-
fluence fish assemblage composition. Adventitious first-order streams are small
streams that originate low in the drainage basin and flow directly into large rivers.
These streams naturally have more diverse fish assemblages than do first-order
streams higher in the watershed (Osborne and Wiley 1992). Although stream
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order is a strong predictor of fish assemblage characteristics, it fails to distinguish
between the two types of first-order streams. This has important implications for
attempts to quantify fish assemblage well-being through indices of biotic integrity.
With such indices, stream order is used to calculate expected species richness at a
site. However, this process would unfairly characterize first-order streams high in
the drainage network as having degraded fish assemblages relative to adventitious
first-order streams (Osborne et al. 1992).

■ 18.6 CONCLUSIONS

Watershed-scale analyses will play an increasing role in fisheries management for
three reasons. First, local habitat features often are the result of landscape level
influences on stream catchments (Nelson et al. 1992; Isaak and Hubert 2001a).
Thus, understanding fish–habitat relations often requires an understanding of
the large-scale habitat features that determine fish distribution patterns (Wiley et
al. 1997). Second, some processes that influence fish occurrence or abundance
operate mainly at the landscape level, particularly phenomena such as habitat
complementarity or metapopulation dynamics related to patch size, isolation, and
juxtaposition (Schlosser 1995; Dunham and Rieman 1999; Fausch et al. 2002;
Scheurer et al. 2003). Understanding the importance of these factors requires
looking beyond site level habitat features to a landscape level perspective. Third,
humans continue to cause large-scale alterations across the landscape. For ex-
ample, the status of fish populations often is related to land use at the watershed
scale (Allan et al. 1997; Moyle and Randall 1998; Schrank et al. 2001). Further-
more, human alterations increasingly occur at large spatial scales due to such
phenomena as acid rain, climate warming, and watershed fragmentation.

An important reason for the growing interest in watershed-level analyses is the
emergence of GIS technology that makes it relatively easy to quantify watershed
features from existing maps or GIS coverages without the need for expensive and
labor-intensive fieldwork (Fisher and Rahel 2004). For example, fish biomass
(Lanka et al. 1987), maximum stream temperature (Isaak and Hubert 2001b),
mean annual stream discharge (O’Shea 1995), trout occurrence (Dunham and
Rieman 1999), and the number of nonnative fish species (Marchetti et al. 2004)
can be predicted from characteristics such as watershed area, mean basin eleva-
tion, soil types, and the proportion of urban development in a watershed. This
provides a way for fisheries scientists to gain insight about fish abundance or habi-
tat conditions when extensive field measurements are not available or too costly
to collect. With the increasing emphasis on ecosystem management, watershed-
level approaches will play an important role in the management and conservation
of fish populations.
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Abbreviated convergence
approach, 869

Absolute growth, 202
Absolute length frequency,

376, 378–379
Abundance. See also Catch per

unit effort (C/f); Relative
abundance

direct observation
methods, 328–331

mark-recapture methods,
332–345

removal methods, 345–
353

sampling gear limitations
and, 327–328

“true” fish density, 327
Acid rain, 888, 938
Active-capture methods, 774
Active metabolism, 516
Activity (ACT) multiplier

estimation, 537
Adaptive designs, 78
Adaptive resource manage-

ment, 39
Additive mortality, 232, 266–

268
Ad libitum feeding, 516, 520,

551
ADYN hydrologic flow model,

853
Age-based matrix models. See

Leslie matrix
Age determination and

validation, 187–195
age data applications,

194–195

calcified structure
interpretation,
190–192

calcified structure
validation, 192–194

length-frequency
method, 188–190

use of known-age fish,
187–188

Age-length keys, 195, 196–201
Aggregate assessment meth-

ods, 600–603
equivalent adult method,

600–601
production forgone

method, 601–602
reproductive potential

method, 602–603
Akaike’s Information Criterion

(AIC)
as adjustment to

likelihood function,
341

movement analysis and,
638, 651

origin of, 21–23
regression model

comparisons and,
909

Akaike’s weights, 23
Allen curve, 361, 364–366
Allozyme electrophoresis, 474
Alternative hypotheses, 4, 7, 10
American eel, 910
AMOs, 911
Amundsen method, 483
Analogous coefficients, 913

Analysis of covariance
(ANCOVA), 95, 97–98

diet patterns and, 492,
495

fish size/temperature
variation and, 533

regression lines differ-
ences and, 433–435,
436–438

Analysis of variance (ANOVA)
catch per unit effort and,

300–303
general linear model

and, 85
log-linear models and,

128
metabolism experiments

and, 522
nonparametric alterna-

tives to, 303–304
population bioassess-

ment and, 612
predator-prey interac-

tions, 767, 774, 783,
788, 789

repeated-measures, 123,
401, 405–410

size structure data and,
387

Andrews’ plots, 754
Angler catch per effort, 64
Angler surveys, 42
Annual variability, 605
Apparent survival, 345
Applied research, 5
Approximation method, 17
Arcsine transformations, 16

Index
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Artificial neural networks
(ANNs), 536, 896, 901–904

Assemblage, 677–678, 688. See
also Community

Assemblage structure, 680
Assumption-free tests, 15
Asymptote, 212
Atlantic sturgeon, 281
Autocorrelation

spatial autocorrelation,
921–923, 925, 927–
933

telemetry and, 629–630,
651, 655, 662, 667

temporal, 304, 929
Automated receiving systems,

668
Autoregressive integrated

moving average (ARIMA),
490–491

Average linkage, 729

BACI. See Before-and-after
studies (BACI)

Backward stepwise multiple-
regression model, 905

Bartlett’s test, 87
Basic research, 5
Basins, 887, 888
Basinwide visual estimation

technique, 892–894
Bayesian approach, to data

analysis, 370
Bayesian inference, 10–11,

17–20
application to fisheries

management, 17, 18
conditional or posterior

probabilities, 19
statistical inferences and,

17
Bayesian Information Criterion

(BIC), 22
Bayes’ theorem, 17
Before-and-after studies

(BACI)
measuring aquatic

habitat improve-
ment with, 844

treatment effects
measurement and,
38–39

Behavioral thermoregulation,
808

“Belief fields,” 3
“Best current data” approach,

32
Best subsets regression, 909
Beverton-Holt

length-based mortality
estimator, 248

recruit-spawner curve,
154, 155, 156–160, 161

stock-recruit model, 24
Binary classification system, 60
Binary coefficients, 708, 709–

712
Bioelectrical impedance

analysis, 537
Bioenergetics, 515–554. See also

Bioenergetics modeling
balanced energy

equation, 515, 516
data analysis, 527–534
defined, 515
fish bioenergetic models,

515, 516, 534–553
calibration of,

536–537
consumption and

growth esti-
mates, 538–539

model platforms
and execution,
534–539

site- and species-
specific input
data, 537–538

fish energy budgets,
516–517

information needs for,
553–554

lab experiments, 517–534
duration of, 519–

520
experimental

treatments,
526–527

repeated measures
vs. random
factorial design,
524–526

treatment levels/
replication,
520–524

maximum consumption,
516, 517–519, 527–
534

Bioenergetics modeling, 767,
769, 779

analysis of, 545–552
diet inputs, 806–807
energy density of

predators/prey,
808–810

field evaluation design,
544–545

growth inputs, 803–806
lab evaluation design,

543–544
model error, 548–552
predator-prey interac-

tions, 802–821
size-structured relative

predation rates,
814–821

thermal experience, 808
types of, 540–543

Biomass and yield estimation
biomass estimation, 357,

360
surplus production

methods, 353–357
Biomass dynamic models, 353
Biotic integrity indices,

701–705
indicator species and

guilds, 702–703
in practice, 707
rationale, 701–702

Biplots, 917, 918, 919
Bivariate normal models,

660–661
Bivariate plots, 896
Bivariate scatterplot, 904
Blocked design, 300, 301–302,

307
Bluegill, 290, 787, 875
Bonferroni confidence

intervals, 550, 649, 650
Bonferroni correction, 909
Bootstrapping, 57, 175, 249,

298–299, 306
Bray-Curtis coefficient, 718,

719–720, 924
Break point, 738
Brook trout, 577, 604, 609
Brown trout, 608, 889, 930
Buffer zones, 891
Bull trout, 891–892, 898, 899,

902, 936
Burbot, 287, 299
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Cadmium exposure, 604
Calibration experiments,

536–537
Canonical correspondence

analysis, 896, 919–921
Captive rearing, 194
Capture history, 334
Capture probability, 345
Capture success models, 769
Carnivore feeding models, 552
Catch and release mortality,

262
Catch and release regulations,

583
Catch-at-age models, 369–370
Catch-curve analysis, 584

to estimate M, 258
weighted catch-curve

analysis, 246
Catch-curve models, 232–246

catch-at-age-data for
unequal recruitment,
241

cohort catch curves, 246,
248

Heincke’s method, 233,
234

instantaneous mortality
rates from, 244–245

linearized catch curves,
236–242

precision of catch-curve
mortality estimates,
242–245

relative abundance of
consecutive age-
classes, 232–236

Robson and Chapman’s
method, 233–236

Catchment, 887
Catch per area, 688
Catch per linear distance, 688
Catch per unit effort (C/f),

279–316, 688
active and passive gears,

279–280
analysis of variance and,

300–303
computing effort (f), 279
efficacy of fisheries man-

agement and, 281
interpretation/applica-

tion of C/f statistics,
306–313

life history/behavior
considerations,
291–292

mathematically defined,
279

normalization of
distributions, 294, 297

regression analysis,
305–306

regression estimator use,
310–313, 314–315

sampling design, 285–294
seasonal/daily variation,

290–291
spatial distribution

patterns, 281
spatial pattern assess-

ment, 310
statistical analysis,

294–306
stock abundance

monitoring, 280–281
stock assessment relative

to other stocks, 281
surveys, 281–282
temporal modeling,

307–310
time series analysis,

304–305
underlying assumptions,

282–285
variance and bias,

minimizing, 292–293
Categorical data, 746, 845
Central tendency, 25
Certainty of conclusions, 9
Channel catfish, 384, 797
Chapman estimator, 332
Chapman-Robson’s catch

curves, 233–235, 270
Chemical exposure, 578
Chemical marks, 194
Chernoff faces, 754
Chinook salmon, 290, 931
Chi-square, 389, 401, 644–648,

650, 655–656, 661, 869, 874
Chord distance, 924
Chronology-of-feeding

methods, 552
Classification and regression

trees (CART), 895, 896,
898–901

Clean Water Act (1972), 44
Cleithra, 191

Climate warming, 888, 938
Closed population

mark-recapture methods,
332–343

removal methods, 345,
348–351

Cluster sampling, 56, 71–75
example, 73–74
mean per secondary unit

estimation, 72–74
single-stage, 72
two-stage, 74–75

Coefficient of fluctuation,
605–606

Coefficient of variation (CV),
25, 604–605

Cohort catch curves, 246, 248
Cohort-specific life table,

569–570
Collie-Sissenwine catch survey

models, 352
Community. See also Commu-

nity indices; Sampling
advantages/limitations

to community
approach, 678–680

analysis, 921
classification techniques,

721–733
comparison methods,

707–754
data analysis strategies,

680, 681
data standardization,

688–689
definitions, 677–678
multivariate techniques,

746–752
ordination techniques,

733–746
sample data set/

structural indices,
682–683

sampling consider-
ations/assumptions,
683–689

similarity measures,
708–720

Community indices, 689–707
biotic integrity indices,

701–707
structural, 690–701

Community ordination
techniques, 733–746
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Compare and contrast
approach, 564

Compensatory mortality,
266–268

Complete linkage clustering,
723, 724, 729

Completely randomized
design, 81–91

analysis of, 85–86
assumptions, 86–91
example, 83–84
testing errors for

normality, 89–90
Completely random with

factorial treatment design,
524, 526

Compound symmetry, 410
Comprehensive census, 892
Compensatory mortality, 232
Computer-intensive methods,

11
Concentrated likelihood, 335
Conceptual model, 7
Condition, 423–466. See also

Relative weight data
factors affecting condition

data, 455, 458–460
indices, 439–442, 466
morphometric measures

of, 451, 455, 456–458,
466

parasites, assessing
effects of, 461–465

physiological measures
of, 450–451

weight-length relation-
ships, 424–439

Conditional probabilities, 19
Confidence interval, 25, 26, 53,

381, 382, 383
Constancy of catchability

coefficient, 282–284
Constant prey abundance, 504
Constant ratio sampling, 688
Constrained ordination, 733
Consumption

fluctuations in, 548, 554
predictive accuracy for,

546, 548
rates, 516, 517–519, 546,

548
in situ estimation, 552,

553, 554
trajectories, daily, 549

Continuous data, 845
Continuous feeding models,

552
Controlled lake acidification,

566
Convex-polygon approach,

658–660
Cophenetic correlation, 729,

730–731
Cormack-Jolly-Seber survival

models, 344, 346–347
Correlation analysis, 26
Correlation coefficient, 26
Correlogram, 925, 928
Correspondence analysis,

917–919
Cramér-von Mises statistic,

631
Critical habitat, 843
Critical thinking skills, 10
Cubic clustering criterion

(CCC), 732–733
Cumulative-frequency distribu-

tions, 376
Cumulative relative frequency

distribution, 133
Current velocity, 911
CUT curve, 878–879
Cutthroat trout, 262, 935

Dahl-Lea method, 205
Data collection, 41
“Data dredging,” 175
Data interpretation and

synthesis, 6, 7, 9–10
Data pooling, 475
Data statement, 7
Data transformation, 16–17
Date-specific marking, 194
Decision-making process, 1
Deductive reasoning, 5
Delaunay triangles, 662, 663
Delphi technique, 858
Dendogram, 722, 729
Density as index of abundance,

282
Density-dependent model, 18
Density-dependent mortality,

267
Density-independent model,

18
Descriptive field studies, 5–6
Developmental plasticity,

588

Diets and feeding patterns,
473–509, 767, 769, 770

ANCOVA, 492, 495
data evaluation, 488–492
data with graphical

techniques, 483–484
determination of, 779–782
diet composition com-

parisons, 492–499
diet index selection,

479–483
diet overlap estimations,

499, 503
experimental studies,

477–479
field studies, 475–477
Komolgorov-Smirnov

test, 492, 493–494
MANOVA with random-

ization, 492, 494, 496
ordination techniques,

496, 498–499
prey numbers and log-

linear contingency
tables, 496

prey preference estima-
tions, 504–505

prey size variation, 484–488
quantifying diet compo-

sition, 473–479
sampling/identifying

stomach contents,
473–475

stable isotope analysis,
506–509

statistical analysis of,
782–783

Direct gradient analysis, 918–919
Direct observation methods,

328–331
critical assumptions,

329–330
distance sampling, 331
single line-transect

survey, 330
specialized software

packages for, 330
Dirichlet tessellations, 662, 663
Discrete response categories,

746
Discriminant analysis, 746–752

assemblage predictabil-
ity, 747–748

example, 748–752
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Discriminant function biplots,
753

Dissolved oxygen, 850–851
Distance matrices, 923–930
Distance measures, 718–720
Distance sampling, 37
Distribution-free tests, 15
Diversity indices, 697–698
Dogfishes, 192
Doppler technology, 880
Double sampling, 77–78, 79
Drainage basin, 887
Dry weight percentage of wet

weight, 537–538
Dyes, and age estimates, 188

Ecological integrity, 701–702
Ecopath/Ecosim, 767, 769,

797, 823, 827
Ecoregions, 888
Ecosystem management, 888
Effect size, 14
Egestion

estimates, 516
experiments, 526

Eigenvalues, 736, 738, 746,
916

Eigenvector, 736. See also
Principal component
analysis

Eigenvector coefficients, 913
Elasmobranchs, 192
Electivity indices, 767, 777
Electrofishing

catch per unit effort and,
289–292

diet/feeding pattern
studies and, 475

recruitment and, 123,
125

size structure and, 384–
385, 400, 402, 405,
409, 412

at watershed level, 891,
893–895

El-Niño-El-Niña events, 192
Empirical data, 3
Empirical models, 852
Encounter rate models, 769,

821–823
Endangered Species Act of

1973, 843
Endangered species surveys,

892

Energetics data analysis, 527–
534. See also Bioenergetics

Energy balance equations, 553,
802

Enhanced stream water quality
model, 852

Environmental effects, on
growth, 187–188, 190–192,
218–220

Equilibrium return time, 587
Equivalent adult method,

600–601
Error-correction equations,

539
Essential fish habitat, 843
Estimation biases, 38, 46
Ethical standards, 3
Euclidean distance, 718–719,

720, 924
Euler-Lotka equation, 571, 576
Eurasian perch, 551, 577
Evenness, 698–701
Excretion

estimates, 516
experiments, 526

Experimental designs, 80–116
analysis of covariance,

92, 95–96
completely randomized

design, 81–91
factorial design, 99,

102–107, 117
nested design, 107–108,

109–110, 117
random effects and

mixed models, 96,
98–99, 100–102

randomized block
design, 82, 91–92,
93–94

repeated-measures
design, 113–116, 117

split-plot design, 108,
110–112

Experimental studies, and
frequentist methods, 11

Experimental treatments,
526–527

Experiments, duration of,
519–520, 521

Extirpations, 766
Extra-binomial variation, 306
Extra-Poisson variation, 306
Extrapolation, 695–697

Factorial design, 99, 102–107,
117

Factor loadings, 738
FAST, 128
Fatty acid analysis, 474
Feasibility studies, 36–37
Fecundity values, age-specific,

585–586
Federal Aid in Fish Restoration

Act, 37
Feeding patterns. See Diets and

feeding patterns
Field studies, 4, 9, 11
Final day values, 548
Finite population correction,

57
Finite rate of population

increase, 579
Fin rays, and age estimation,

191
First-differencing, 304
First discriminant function,

746
Fish assemblage, 677–678, 688.

See also Community
Fish Bioenergetics Model

software, 527, 534–535,
546

Fisherian statistical paradigm,
10, 11

Fisheries
defined, 2
management, defined, 31
science, 1–3

Fish growth. See Growth
Fish-habitat index, 854–855
Fish populations, importance

of long-term monitoring of,
44

Five-cell model (Gabelhouse),
444

Fixed-effects general linear
model, 85

Fixed sites, 42–44
long-term monitoring

and, 40
pilot studies and, 38
and random site selec-

tion compared, 44
Fixed time sampling, 37
Flathead catfish, 384
Fork length, 376
Forward stepwise multiple

regression, 905
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Fourier series estimation, 662
Fraser index, 18
Fraser-Lee model, 206, 208
Frequency of prey occurrence

index, 479–481
Frequentist method, 10, 11
Friedman’s test, 656
F-test, 905
Fullness-gastric evacuation,

767, 783, 784, 803
Fulton’s condition factor, 439–

440, 461–465
Functional response curves,

791–796
Functional response models,

767, 769, 822

Gammon’s index of well being,
701

Gastric evacuation rates, 552–
553

Gastropods, 604
Gear

active, 289
effect of on size struc-

ture, 383–385
habitat variation and,

292
life stages and, 291
multiple, 290
passive gears, 288–289
sampling issues specific

to, 288–289
saturation, 287–288
species and habitat

specific performance,
287

standardization effort,
289–92

Geary’s C, 928
Generalist feeding strategy, 484
Generalized linear model, 300
General linear model, 85, 529,

531, 636
Generational cycle length, 571
Geographic information

systems (GISs), 628, 631,
644, 890, 893, 938

Geometric mean, 297–298
GIFSIM, 128
Gill nets, 123, 288, 384, 475
Global positioning systems,

628, 630, 644
Global warming, 851

Gompertz growth model, 214
Goodness of fit, 350–351
Graded-exposure-response

approaches, 563, 564, 566,
616

Graphical techniques, 752–754
Gravimetric, 585
Grid cell, 662
Gross reproductive rate, 571
Groundwater-dominated lakes,

888
Growth, 195, 202–223

absolute and relative, 202
back-calculated length,

204–212
environmental effects

on, 187, 188, 190,
191, 192, 218–220

growth increment, 362
in length, 212–223
length at age, assessing

differences in, 210–211
mark and recapture data

and, 221–223
predictive accuracy for,

546, 554
in weight, 212

Growth inputs
annual growth, 803–804
seasonal growth, 804–806

G-test, 869
Guild(s), 678

defined, 863
habitat suitability criteria

and, 868
Habitat alterations, 888
Habitat evaluation, 843–880.

See also Habitat suitability
criteria; Habitat use

continuous-under-
threshold habitat-
duration curve,
878–879

duration curves and
exceedance thresh-
olds, 878

fish habitat use and habi-
tat quality, 857–873

future directions of, 880
guild- or community-

based approaches,
863–865

habitat evaluation pro-
cedure, 874, 875–876

habitat-fish population
indices, 854–857

habitat suitability index
models, 870–873

lotic vs. lentic analysis,
847, 849–850

measurement of
parameters, 844–847

one- and two-dimen-
sional hydrologic
models, 874–879

procedures, 854, 858,
874, 875–876

qualitative vs. quantita-
tive data, 845–846

quantification of fish
habitat, 873–880

for single species, 858–
863

spatial and temporal
considerations,
846–847

specific terms for fish
habitat, 843

stream flow data
approaches, 879–880

transect-and grid-based
approaches, 874

unbiased sampling
approaches, 847

verification/transferabil-
ity of suitability
criteria, 869

water quality and, 850–854
Habitat patches, 891, 936, 937
Habitat “squeeze,” 850
Habitat suitability criteria, 858,

859, 861–862, 864, 865
sample sizes required for,

865–869
transferability testing, 872
verification and transfer-

ability of, 869–870
Habitat suitability index

models, 870–873, 875–876
Habitat unit (HU), 874
Habitat use, 639, 667

chi-square tests, 644–648,
650, 655–656

continuous distribution
of availability, 649–655

evaluation of, 645–646
selection ratios, 648–649,

650
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Harmonic mean, 662–664
Hatch date analysis, 195
Heincke’s method, 233, 234
Heteroscedasticity, 533
Hierarchical cluster analysis,

722–732
average linkage, 729
classification, 729, 732
clustering procedure for,

725–728
complete linkage cluster-

ing, 723, 724, 729
cophenetic correlation,

729
K-means cluster analysis,

732–733, 734–735
single linkage, 722–724

High-order lakes, 937
Histogram, 376, 904
Historical data analysis, 5, 6, 7
Holism, 823
Home range, 658–666, 667

bivariate normal models,
660–661

Dirichlet tessellations,
662, 663

harmonic mean,
662–664

kernal estimators,
664–665

minimum convex
polygons, 658–660

utility of concept of,
665–666

Homoscedasticity, 904
Hoop nets, 384
Horn’s index, 503
Hotellings’s T2-statistic, 496,

550
HSC, 871
Hydroacoustics, 880
Hydrologic models, 876
Hydrologic unit boundary

(HUB) codes, 887–888
Hydropower management, 874
Hynes method, 366
Hyperaggregation, 284
Hyperdepletion, 284
Hyperstability, 284
Hypotheses, modifying, 9
Hypothesis testing, 80, 304

statistical errors in, 12–13
Hypothetico-deductive

method, 4, 10

Illinois Natural History Survey,
44

Illinois River Fish Population
Monitoring Program, 44–45

Imaginative thinking skills, 10
Immunoassays, 474
Increment summation

method, 362
Index of biotic integrity, 701–

705, 933, 934
fish abundance and

condition, 704–705
spatial influences and

reference systems,
705–707

species composition,
703–704

trophic composition, 704
Index of hydraulic alteration,

880
Indicator fish approach, 701
Indicator species and guilds,

702–703
Indirect gradient analysis, 918
Inductive reasoning, 4–5
Inference space, 9
Information theory, 20, 23
Informative priors, 20
In-situ estimation procedures,

552
Instantaneous growth rate,

363, 364
Instantaneous mortality rates,

230, 232, 236, 244–245
Instream flow incremental

methodology, 854, 876
Integrity, 3
Intercept-corrected direct

proportion model, 208
Inter-individual physiological

variability, 604
Interval mortality rates, 230,

232, 236
Intuitive pooling, 475
Invasive species, 935
Island biogeographic theory,

936
Isolation, 936, 937

Jaccard coefficients, 709–712,
924

Jaccard’s similarity index, 744
Jackknifing, 175, 298–299, 306,

910

Joint count approach, 928
Joint probability distribution,

20
Jolly-Seber model, 252, 253,

254–255
Juxtaposition influence, 936,

937

Kendall’s tau, 712, 713, 714–
716, 744

Kernal estimators, 664–665
Key-factor analysis, 606–612,

615
drawbacks, 608
interpretive ambiguities,

607
K-means cluster analysis, 732–

733, 734–735
Kokanee

fishery, 819–820
fundamental response

curve for, 794
population estimates

and, 775
predator/prey relation-

ship, 811, 813, 814,
815

Kolmogorov-Smirnov test
diet comparison using,

492, 493–949
habit suitability and, 869,

870, 871
normality testing, 16–17,

87
two-sample, 388–389,

392–393, 400, 416
Kruskal-Wallis test

catch per unit effort and,
303–304

condition analysis and,
447, 448

habit suitability criteria
and, 869

for one factor, 783
size structure and, 388–

389, 394–395
Kullback-Leibler information,

21

Laboratory studies, 9
Lahontan cutthroad trout,

936
Lake order, 937
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Lake trout
diet composition

analysis, 780–781
in Flathead Lake,

Montana, 811, 813,
814, 815, 819–820

in Lake Superior, 281
population dynamics,

588
spatial relationships of,

927
Landscape ecology, 936–938
Largemouth bass, 237, 246,

267, 292
catch curves for, 240
chi-square tests and,

644–646
foraging behavior, 791
in Lake Ladora, CO, 651
management and mon-

itoring program, 34
minimum convex poly-

gon home ranges of,
659

population dynamics,
587

size structure, 385
Latitude-longitude system, 628
Lavage technique, 474
Least-squares means

(LSMEANS) procedure,
551, 552

Lefkovitch matrix, 588–589
Length-based models, 246–250
Length-frequency distribu-

tions, 188–190, 249–250
Length-frequency histograms,

375, 376, 377
Lentic environments, 847, 850
Leslie matrix, 578–589, 613,

615
assumptions in applica-

tion of, 586
elements of, 578–579,

584
stable age distribution,

579, 590
working example, 580–

583
Levene test, 87
Life requisite suitability values

(LRSI), 871
Life table analysis, 568–578,

615

Hunt Creek, MI cohort
of brook trout data,
572–576

life table types/construc-
tion, 568–571

study examples, 577–578
summary parameters,

571–577
Likelihood analysis, 11
Likelihood function, 334, 337–

338
Lilliefors’ test, 17
Limit reference points, 265
Linear regression, 26, 527, 767,

774
List servers, 37
Literature review, 5, 6, 7
Livestock grazing, 889
Location maps, 631
Logarithmic transformations,

16, 297
Logging. See Timber harvest
Logistic growth model, 214
Logistic regression models,

656–657, 855, 856, 895,
896–898

Log-likelihood function, 335, 340
Log-likelihood statistic, 644
Log-linear contingency tables,

496, 500–501
Low-order lakes, 937

Magnuson-Stevens Fishery
Conservation and Manage-
ment Act, 843

Maintenance ration require-
ments, 518

Management studies, 31–46
data collection for multi-

ple objectives, 41
duration of, 38, 42, 46
feasibility studies, 36–37
field operations, 45
financial and personnel

resources, 44–45
fixed sites, 42–44
goal of, 34
management and research

compared, 35
measurement of treat-

ment effects, 38–39
modifying, 9
monitoring, 39–40
pilot studies, 37–38

replication of, 9–10
and research compared,

35, 37
safety, 45–46
statistical efficiency in

sampling, 41–42, 43
study objectives versus

management objec-
tives, 32–35

Manly-Chesson index, 504
Mann-Whitney U-test, 303
Mantel test, 491–492, 925,

929–930
Mapping systems, 628
Marginal distribution, 20
Marginal increment analysis,

193–194
Mark and recapture data,

221–223
MARK program, 334, 344, 351,

627
Mark-recapture, 251–256,

332–345
closed population

methods, 332–341,
342–343

to estimate F and M,
259–262

fishing mortality
estimation from, 260

multiple recapture
events, 333–341

multiple tagging events,
252–254

open population
methods, 341–345

Schnabel, 333
selected computer

programs, 257
single tagging event,

251–252
studies, 804

Mass-balance models, 767, 769
MATLAB platform, 535
Matrix models, 578–590

age-based (Leslie
matrix), 578–588

density-dependent
parameters in
construction of, 590

extensions to stage-based
models, 588–589

summary appraisal of
approach, 589–590
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Matrix survival coefficient
constants, 590

Mauchly’s test of sphericity,
489

Maximum absolute daily
growth error (MaxGE),
548–549

Maximum consumption
experiments, 516–519

data analysis, 527
designs, 526
duration, 520
repeated measures vs.

random factorial
design, 524–526

striped bass data (sample
analysis), 528–532

treatment levels/replica-
tion, 522–524

Maximum-likelihood estima-
tors, 348–349

Maximum sustainable yield,
265

Maximum total prey volume,
481

Mean annual density, 363
Mean annual discharge

(MAD), 880
Mean component, 550
Mean cumulative consumption

error (MCCE), 549, 550
Mean growth error (MGE),

548, 549
Mean life expectancy, 571
Mean of ratios, 66
Mean square error, 53, 76
Mean stomach fullness index,

481, 482
Measurement error, 304, 305
Measurement error bias, 175–

176
Memorable-length fish, 380
Meta-analysis, 264–265
Metabolic costs, 516
Metabolism experiments,

519–520, 526
MicroFish, 351
Microsoft Excel, 535
Migration

among habitats, 889
population numbers

and, 589
Minimum convex polygons,

658–660, 662, 667

Mixed-model procedure
(MIXED), 303

MOCPOP, 128
Model checking, 20
Model comparison procedure.

See Akaike’s Information
Criterion (AIC)

Model selection, 11, 20–23, 24
Model utility, 11
Monitor and modify manage-

ment, 39
Monitoring, 39–40, 44
Montana method, 879
Monte Carlo simulation, 306
Moon phases, and catchability,

291
Moran’s I, 928, 931
Morisita’s index, 503, 716,

717–718, 719
Mortality

basic computations, 231
basic concepts, 229–232
biased and imprecise

estimates, 268–270
catch-curve models,

232–246
compensatory and

additive, 266–268
length-based models,

246–250
mark-recapture models,

251–256
rates from the slope of

regression line, 238–
239

reference points, 265–266
separation of fishing

from natural mortal-
ity, 256–265

Mortality factors. See Key-factor
analysis

Movement patterns, 634, 636–
639

with categorical data, 636
with continuous data,

636–639
environmental effects

on, 640–643
MULTFAN-CL, 190
Multicollinearity, 904–905, 916
Multidimensional scaling, 740–

746
Multiple classification system,

60, 64

Multiple-comparison test, 387–
388

Multiple linear regression,
904–910

Multiple regression analysis,
533, 896, 906–908

Multistage sampling, 475
Multi-trophic sampling, 566
Multivariate analysis of

variance (MANOVA), 764,
767

diet composition and,
492, 494, 496

predation sequence data,
786–787

for predator-prey behav-
ioral data, 788–789

Multivariate profile analysis,
550

Multivariate statistical tech-
nique, 746

National Research Council, 3
Natural marks, and age

estimation, 192
Natural mortality, 256–265, 591
Natural variability, 269
Necessary pooling, 475
Negative binomial distribution,

297, 316
Nested design, 107–108, 109–

110, 117
Net reproductive rate, 571
Networking, 37
New England base flow

method, 879–880
Neyman-Wald frequentist

statistical paradigm, 10
Nonfrequentist inference, 11
Noninformative priors, 20
Nonlinear least-squares

regression, 791
Nonlinear regression, 767, 774,

794, 795, 796
Nonmetric multidimensional

scaling (NMDS), 736, 740–
744

Nonparametric class of priors,
20

Nonparametric statistics, 25
Nonparametric testing, 14–16,

91, 388–389
Nonparametric tolerance

limits, 860, 862
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Normality testing, 15–16, 16
NT-SYS, 930
Null hypothesis testing, 1, 25

data transformation,
16–17

four possible outcomes,
13

parametric and nonpara-
metric statistical tests,
14–16

power analysis, 13–14
statistical errors in

hypothesis testing,
12–13

statistical hypothesis
formulation and
testing, 11–12

Observational studies, and
nonfrequentist approaches,
11

Observation area curve, 660
One-hidden-layer, feed-forward

ANN, 901–902
Open population mark-

recapture methods,
341–345

Open population removal
methods, 351–353, 354–356

Opercular bones, 191
Optimal foraging

encounter rates and,
822

experimental and field
data for, 769

predator-prey interac-
tions and, 771, 779,
787, 790, 791, 792

Optimum yield, 33
Ordinal coefficients, 708,

712–713
Ordination techniques,

733–746
diet composition and,

496, 498–499
multidimensional

scaling, 740–746
principal component

analysis, 736–740
watershed levels and,

911, 913–919
Otoliths, 127, 191, 192, 194,

224, 241

Overfishing, 578, 766
assessing with adult

spawner data, 176–
178

recruitment overfishing,
121–122

Oxycalorific coefficients, 516
Oxygen concentrations, and

growth, 519

Pacific salmons and trouts, 122,
797

Parabola model, 263
Parametric class of priors, 20
Parametric analysis, 874
Parametric statistical tests, 14,

15
Parametric tests, 387–388
Passive-capture methods, 774
Passive integrated transponder

(PIT) tags, 194
Path analysis, 896, 910–911,

912
Pearson correlation coefficient,

313, 729, 851
Pearson statistic, 644
Peer review, 3, 23, 26
Percent composition by

number index, 479–481
Percent composition by weight

index, 479–481
Percent error (PE), 548, 549
Percent similarity index, 716–

717, 719
Percent usable area, 876
p-fit, 546, 548
Phi coefficients, 924
Physical habitat simulation

analysis, 858
Physical habitat simulation

system (PHABSIM), 876
Pierce, C.L., 108
Pikes

foraging behavior, 791
losses to predation, 796,

798–799
Pilot studies, 37–38
Poisson sampling distribution,

891
Pollutant-related impact

studies, 587
Pop/Pro, 362
Population abundance, 345

Population bioassessment,
561–616

density-dependent
factors, 563–564, 586,
587, 595, 596, 601

density-independent
factors, 563, 595–596,
600

field-based approaches
to, 562, 564–567,
612–613, 616

key-factor analysis,
606–612

life table analysis,
568–578

matrix models, 578–590
modeling-based ap-

proaches to, 567–568,
612–613

natural variability, 563
population defined, 563
problems in, 563–564
stock-assessment-based

methods, 590–603
variance analysis,

603–606
Population estimation, 892. See

also Abundance; Population
bioassessment

removal methods, 345–
353

using mark-recapture
methods, 332–345

Population genetic theory, 935
Posterior distribution

Bayesian analysis and, 21
defining, 20

Posterior predictive results, 20
Posterior probabilities, 19
Post-treatment study, 39
Potential recruit fecundity, 177
Power analysis, 13–14
Power transformations, 16
Precautionary reference

points, 270
Precipitation-dominated lakes,

888
Predation rates, in natural

systems, 797–823
bioenergetics modeling,

802–821
community/ecosystem

level models, 823



Index 957

prey encounter rate
models, 821–823

production-based
consumption
estimates, 797–802

Predator food habits, 777–786
consumption estimates

(field-based), 783–784
continuous data categori-

zation, 777–778
diet analysis variables,

777
diet composition, 779–783
short-term acute preda-

tion analysis, 784–786
Predator-prey interactions,

765–797. See also Predation
rates, in natural systems;
Predator food habits

conceptual framework,
770–772

distribution, size struc-
ture, and abundance,
775–777

experimental results,
application of, 796–
797

functional response
curves, 791–796

influences on, 765
nonnative predators, 766
objectives and approaches,

766–770
optimal foraging, 787, 790
perspectives for studying,

767
predation sequence, 770,

771–772, 786–787
size/species selection,

790–791
study design/field data

analysis, 772–786
Predator-prey relations, 41, 537
Predators, presence of, and

catchability, 291
Prediction interval, 26
Predictions, development of,

6–7
Predictor variables, selecting,

905, 908
Preference criteria, 859

Preferred habitat, 843
Preliminary data, 7
Presence-absence data, 924
Presence-absence indices, 298
Pretreatment study, 39
Prey, 519
Prey abundance-availability-

vulnerability hierarchy, 770,
774

Prey importance index, 481,
482

Principal axis. See Principal
component analysis

Principal component analysis,
496, 502, 736–741, 913–917

Principle component analysis,
455

Prior distributions, 19–20
Prior probability, 19
Probability theory, 17
Probability values, 11, 12
Problem definition, 5–6
PROC GLM, 303, 307, 310
PROC MIXED, 303, 307, 309
Procrustes analysis, 930
Production, defined, 360–361
Production-based models, 767,

797–802
Production estimation, 360–369

concepts and definitions,
360–361

future directions, 369–
370

in practice, 367, 369
production to mean

biomass ratio, 367
summation methods, 362

Production forgone method,
601–602

Production modeling, to
estimate M, 262–263

Proportional stock densities,
380, 382, 769

Protected ANOVA, 788
Publishing, 23, 25–26
Puget Sound study, 587
P-value. See Probability values
P-value, 634, 635

Quadratic equation, 527
Quadrat sampling, 687–688
QUAL2E model, 853
Qualitative data, 845

Quantitative coefficients, 708,
713, 717–718

Quasi-AIC (QAIC), 22

Radioactive carbon, 192
Radiochemical dating, 192–193
Radioisotope concentrations, 536
Radioisotope studies, 553
Radio tags, 261
Rainbow trout fishery (Madi-

son River, MT), 2
Randall, P.J., 933
Randall, R.G., 928
Randomization, 307
Randomization test, 903, 929
Randomized block design, 82,

91–92, 93–94
Random sampling, 37, 43
Ranked coefficients, 708, 712–

713
Rarefaction, 691–695
Rare species, 688
Ratio data, 845
Ration requirements, 518, 526
Ratio of means, 66
Ratio of totals, 66
Ratios for individuals, 66
Reactive research, 5
Reciprocal averaging, 917
Recruitment, 121–179, 237. See

also Recruit-spawner
relationships

adult age-structure data
and, 132–138, 142–144

assessment in freshwater
fisheries, 121–122

data required to assess,
122–123

environmental factors
and, 138, 145, 146–
150, 151–154

freshwater vs. marine
assessment, 123–124

indices and, 125–126
marks/tags and, 126–127
otolith microstructure

analysis and, 127
overfishing assessment,

176–178
population estimates

and, 125
spatial variation in, 129,

132, 139–141

Predation rates, in natural
systems (continued)
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temporal variation in,
128–129, 130–132

time series trends
evaluation, 134–136

Recruitment variability index,
133

Recruit-spawner relationships,
124, 145, 151, 154–176

bias sources, 175–176
coefficients, 161, 167
statistical properties/in-

ferences, 167–169, 174
types of, 151, 154–161
uncertainty estimates in,

175
Reference site comparisons,

565–566, 614
Reference systems, 706–707
Regional influence, 705
Regression analysis, 26, 305–

306, 526
spatial correlation in,

930–932
Regression estimator, 310–313,

314–315
Regression-line-percentile

technique, 441
Regression sampling, 77–78, 79
Regression tree methods, 306
Relative abundance, 327. See also

Catch per unit effort (C/f)
of consecutive age-

classes, 232–236
Relative catch as proportion of

all species, 688
Relative condition factor

index, 440
Relative-frequency distribution,

376
Relative growth, 202
Relative stock density, 380
Relative weight data

fat composition data
analysis, 452–454

length-related patterns
in, 444

mean relative weight
comparisons, 445–449

relationship to physi-
ological/environmen-
tal measures, 444–450

statistical analysis of,
442–444

Relative weight index, 440–442
RELEASE program, 344
Removal methods, 345, 348–353

open population, 351–
353

removal summation,
362

Renkonen index, 717
Repeated measures ANOVA,

123, 300, 401–410
Repeated measures design,

489
Repeated-measures design,

113–116, 117
Repeated measures vs. random

factorial design, 524–526
Replicated treatments, 38, 522
Representative reach extrapo-

lation technique, 892
Reproduction, contaminant

effects on, 587
Reproductive potential

method, 602–603
Resampling, 11
Research hypotheses, 7

credibility of, 9
evaluation of, 12
and statistical hypotheses

compared, 7
Resemblance coefficients, 708
Reservoir aging, 273
Residual analysis, 438
Residual component, 550
Residual condition, 438
Resource management

agencies, 888
Return time, 587
Richards growth model, 214
Ricker recruit-spawner curve,

124, 154–155, 161
additional variation in,

174–175
computation of, 162–

166. 169–173
Ricker stock-recruit model, 18,

23
Ricker tagging method, 252–

253
Robson and Chapman’s

method, 233–236
Rotenone samples, 123, 125,

384
RQUAL water quality model,

853

Sablefish, 299
Safety, 45–46
Sampling. See also Sampling

designs
bias, 53, 683
comparison of two

samples, 299–300
constant ratio sampling,

688
diet analysis, 475
error, 269
feasibility studies and, 36
fish assemblage sampling

designs, 687–688
gear, 36, 37, 40, 42, 43,

46, 287–290, 475, 686
habitat characteristics,

685–686
measurement of treat-

ment effects in, 38
minimizing variance/

bias, 292–293, 295–
296

monitoring and, 40
multi-trophic, 566
pilot studies and, 37
population and samples,

51–53
precision and confi-

dence intervals, 53–54
quadrat sampling, 687–

688
random vs. nonrandom,

54
season, 686–687
sequential, 564, 566, 614,

616
size structure and, 385–

386
sources of sampling bias,

684–686
species and body size, 685
statistical efficiency in,

41–42
time, 475

Sampling designs, 54–80
advanced, 80
in catch per unit effort

estimates, 285–294
cluster sampling, 56,

71–75
model-based estimators,

76–78
overview, 54–56

Recruitment (continued)
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simple random sam-
pling, 56–67

stratified random
sampling, 56, 67–71,
286, 292, 316

systematic sampling, 56,
75–76, 77, 286–287,
316

Sampling fraction, 57
Saprobien system, 701
SAS platform, 243, 535, 551,

552, 651, 667, 680, 851
Sauger, 285
Scales, and age estimation, 190
Scatterplot matrix, 752, 755
Schaefer yield model, 265
Schnabel method, 333
Science, defined, 2–3
Scientific inference, 7
Scientific inquiry, defined, 3
Scientific method and research,

3–10
data interpretation and

synthesis, 6, 7, 9–10
development of predic-

tions/research
hypotheses, 6–7

identification of theory, 6
problem definition, 5–6
scientific method

process, 6
Scope for growth, 516–517, 518
Scope of inference, increasing,

9
Scree test, 738, 744
Sea lampreys, and lake trout,

588
Seasonal effects, on metabo-

lism and activity, 519, 554
Second discriminant function,

746
Second-order criterion (AICc),

22
Seining, 123
Seining-site boundaries, 52
Sequential sampling methods,

564, 566, 614, 616
Shannon’s index of diversity,

697, 698, 699, 700
Shannon-Wiener index/

function, 697
Shapiro-Wilk test, 16, 87
Shepard diagram, 742, 746

Significance level, 12, 14, 25, 26
Similarity matrices, 923
Simple matching, 924
Simple random sampling, 56–

67, 64, 65–66, 475
estimation of mean

values, 56–60
estimation of propor-

tions, 60–64
estimation of ratios,

64–66
Simpson’s D (Simpson’s index

of diversity), 698, 699, 701
Simulation modeling, 306
Single classification system, 60
Single-linkage clustering, 722–

724
Single marking period, 332–333
Single recapture period, 332–

333
Site-specific information, 537–

538
Size-frequency estimation

method, 366–367, 368
Size structure, 375–416

analysis of repeated
measures, 401–410

analysis of variance
(ANOVA), 387, 388,
390–391

data collection, 381–387
data presentation, 375–

381
experimental unit, 389–

401
gear type and, 383–385
interpretation of, 410–415
length-frequency data,

multiple comparisons
of, 396–398

length-frequency
distributions, contin-
gency tables for, 399–
400

length-frequency
distributions as
interpretation of,
410–413

sample location and, 386
sample size and, 386–387
sampling time and, 385–

386
standardized sampling

for, 382–383

statistical analysis for
data, 387–410

stock density indices, 376,
380, 389, 413–415

testing by treating fish as
samples, 402–404

Size treatments, 520, 521, 522
Slope component, 550
Slope heterogeneity test, 96
Smallmouth bass
bioenergetics models, 551–552
size structure, 385
Smoothing, 304, 664
Snorkeling, 891, 893, 894–895
Social interaction, among

conspecific fish, 519
Sockeye salmon commercial

fishery, 2, 18
Spatial autocorrelation. See

under Autocorrelation
Spatially explicit models, 767, 769
Spatial patterns assessment, 310
Spatial relations, statistical

analysis of, 921–933
conclusions regarding,

932–933
distance matrices, 923–930
spatial autocorrelation in

regression analysis,
930–932

spatial location, 921–923
Spawning potential ratio, 124,

176–177
Spearman’s rank correlation,

712, 714–716
Specialist feeding strategy, 484
Species richness, 691–697

estimating by extrapola-
tion, 695–697

estimating by rarefac-
tion, 691–695

Species-specific behaviors, 685
Species-specific energetics

information, 537–538
Specific dynamic action, 515, 516
Speculation, 10
Spines, and age estimation, 191
SPSS, 911
Square-root transformations, 16
Stable isotope analysis, 506–

509, 767, 768, 827
applying data, 507–509
determining trophic

position, 507, 508

Sampling designs (continued)
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Stage-based models, 588–589
Standard deviation (SD), 14, 25
Standard error of the estimate,

53
Standard error of the slope, 243
Standard error (SE), 25
Standard length (fish measure-

ment), 376
Star plots, 754
Static life table, 569–570
Statistical analysis

bootstrap and jackknife
techniques, 298–299

estimation biases, 38, 46
Statistical and research

hypotheses compared, 7
Statistical approaches, 10–23

Bayesian inference, 10–
11, 17–20

model selection, 11, 20–
23, 24

null hypothesis testing,
11–17

Statistical efficiency, in
sampling, 41–42

Statistical errors, in hypothesis
testing, 12–13

“Statistically significant”
outcome, 12

Statistical models, 852
Statistical null hypotheses, 7, 12
Statistical pooling, 475
Statistical reliability, 37
Statistical software programs,

16–17
Statistical test, 307

common outcomes of, 13
nonparametric, 14–16
parametric, 14, 15

STELLA platform, 535
Stochastic models, 852
Stock, defined, 280
Stock-assessment-based

methods, 590–603
aggregate assessment

methods, 600–603
stock-recruitment

models, 595–600
surplus production

models, 591–592, 593
yield or yield-per-recruit

models, 592, 594–595
Stock density indices, 376, 380,

389, 413–415

Stocking, of sport fish, 797,
798–799

Stock-recruitment models, 564,
589, 591, 595–600, 615

Stock-recruit model, 18
Stomach contents

analysis, 474, 506
indices used for, 479

Stratification, 40, 42, 43
Stratified random sampling

allocation of samples,
70–71

diet analysis and, 475
estimation of mean

values, 68–70
estimation of propor-

tions, 71
example, 69
minimizing error with, 316
optimal sampling

intensity and, 292
overview, 56
strata construction, 68
temporal trends and, 286

Stream network model, 852
Stream order, 705, 937–938
Stream reach model, 852
Streams

depth, and effect on fish
abundance, 911

invasive species in, 935
representative reach

extrapolation
technique for, 892

riparian land cover and,
891

sampling programs, 37–38
watershed conditions

and, 888–889
Stressor impacts, on fish

populations, 586–588
Striped bass

data (sample analysis),
528–532

estimating natural
mortality of, 261, 262

recovery in Chesapeake
Bay, 122

Structural indices, 38, 690–701
diversification, 697–698
evenness, 698–701
species richness, 691–697

Stunting, 412
Sturgeons, 122

Sturges equation, 859–860
Suitability index curve, 870–871
Summation estimation

methods, 362
instantaneous growth

rate/Allen curve, 361,
363–366

size-frequency method,
366–367, 368

Sun-ray plots, 754
Surplus production methods,

265, 353, 356–357, 358–359
Surplus production models,

591–592, 593, 615
Systematic sampling, 56, 75–77,

286–287, 316, 475

Tagging events
cost and difficulties of,

251
multiple, 252–254, 260
radio tags, 261
single, 251–252, 260

Takeuchi’s Information
Criterion (TIC), 22

Target reference points, 265
t-distribution, 57
Technical writing, 23
Telemetry, 516, 554, 625–668

data format, 628
error estimation, 630–

631, 632
future of, 668
habitat use, 639, 644–657
home range, 658–666
movement patterns, 634,

636–639, 640–643
natural mortality of

striped bass estimates,
261

pseudoreplication, 629–
630, 667

representative samples,
626–627

spatial distribution, 631,
633–634, 635

study design, 628–629
Temperature-dependence

graph, 527
Temperature evaluations, 526
Temperatures, and physiologi-

cal rates, 517, 518–519
Temporal monitoring, 307–310
Tennant method, 879
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Tennessee Valley Authority
(TVA) river modeling
system, 852–853

Theory identification, 6
Thermal experience, 803, 808,

809–810
Thermal history, 538
Thornton and Lessum

algorithm, 527
Timber harvest, 889, 891
Time series analysis, 304–305
Time series bias, 87, 175–176
Total catch, 688
Total length, 375–376
Total mortality, 591
Township-range landmapping

system, 628
Transferability test, 869
Transmitters. See Telemetry
Trap nets, 384
Trawls, 384
Treatment levels and replica-

tion, 520–526
Tree diagram, 722
Triple-catch study, 252
Triplots, 919, 920
Trophic cascade, 766
Trophic interactions, 803
Truss analysis, 455
t-tests, 11, 387, 551, 905
Type I and Type II errors,

12–13

Unconstrained ordination, 733
Universal Transverse Mercator

system, 628, 635, 924
Useable area, 876
Utilization criteria, 858

Value judgments, 3
Variability, measures of, 25
Variable prey abundance, 504
Variance analysis, 603–606, 615
Variance inflation factor, 22,

905
Vertebrae, and age estimation,

191–192
Videography, 516
Visual encounter rate model,

824–826
Visual foraging models, 767, 824
Visual inspection, 607

Visual observation. See Direct
observation methods

von Bertalanffy equation, 212–
217, 246, 594

Walford plot, 213, 214, 215
Walleye, 138, 145, 176, 242, 285

foraging behavior, 791
losses to predation of

stocked, 797
population dynamics,

587
Water allocation, 874
Water quality, 850–854

habitat defined by, 851–
854

temperature and dis-
solved oxygen data,
850–851

trophic interactions and,
766

Watershed disturbance index,
935

Watershed index of biotic
integrity, 933

Watersheds, 887–938
artificial neural net-

works, 901–904
canonical correspon-

dence analysis,
919–921

classification and
regression trees,
898–901

correspondence analysis,
917–919

features related to fish
abundance, 889–900

fragmentation, 938
identification of suffi-

cient habitat, 935–936
importance of watershed

scale analysis, 888–
889

landscape ecology,
936–938

logistic regression,
896–898

multiple linear regres-
sion, 904–910

ordination techniques,
911, 913–919

path analysis, 910–911
principal component

analysis, 913–917
quantification of

ecological condition,
933–935

quantification of species
occurrence, 891–894

relationship between
fish occurrence and
features of, 894–921

spatial scale in, 890–891
statistical analysis of

spatial relations,
921–933

watershed defined,
887–888

Water temperature, 517, 518–
519, 520, 522

Weigh-dependence graph,
527

Weighted catch-curve analysis,
246

Weighted usable area, 876, 880
Weight-length relationships,

424–439
regression line residual

analysis, 435, 438–439
regression lines differ-

ences, 433–438
regression of weight-

length data, 424–433
White crappies, 241
White sturgeon, 178
Wilcoxon’s rank-sum test, 303,

388–389
Wildlife profession, 3–4
Wisconsin bioenergetics

model, 527, 802–804, 806,
807, 810. See also Fish
Bioenergetics Model
software

Writing skills (technical), 23

Yellow perch, 280, 310, 311,
551, 901

Yield or yield-per-recruit
models, 592, 594–595

Zebra mussels, 281
Zooplankton, 604
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