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■ 9.1 INTRODUCTION

Size structure analysis is one of the most commonly used fisheries assessment
tools. The size structure of a fish population at any point in time can be consid-
ered a snapshot that reflects the interactions of the dynamic rates of recruitment,
growth, and mortality. Thus, length-frequency data provide valuable insight into
the dynamics of fish populations and help identify problems such as inconsistent
year-class strength, slow growth, or excessive mortality (Anderson and Neumann
1996). In most cases, a thorough interpretation of size structure data is comple-
mented by other population assessment tools, such as catch per unit effort (C/f),
age-and-growth analysis, recruitment analysis, mortality, and body condition.

Proper analysis and interpretation of size structure data should begin with a
clear understanding of how, when, and where data were collected. Specifically, a
fisheries scientist should know how size structure data are influenced by the sam-
pling gear, time of the year, and location where fish were sampled. The fisheries
scientist should also consider whether an appropriate sample size was obtained to
estimate size structure reliably.

Fisheries scientists use several techniques to analyze size structure data. In the
simplest case, a length-frequency histogram (see section 9.2) is constructed or a
size structure index is calculated. Oftentimes, the primary objective is to compare
size structure among samples. In these cases, a fisheries scientist may be inter-
ested in answering several questions. For example, does the size structure of white
crappie populations differ among water bodies? Did the size structure of a rain-
bow trout population change over time in response to a management action? Are
the size structures obtained from a channel catfish population different between
two or more sampling gears? What factors influence the size structure of walleye
populations?

■ 9.2 PRESENTATION OF SIZE STRUCTURE DATA

Three common measures of fish length include total, fork, and standard length.
Total length is measured from the anterior-most part of the fish to the tip of the
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longest caudal fin ray when the caudal fin is compressed. In this chapter, all lengths
are reported as total length. Fork length is measured from the anterior-most part
of the fish to the median caudal fin rays, which typically make up the concave
portion in a forked caudal fin. Standard length is measured from the anterior-
most part of the fish to the end of the caudal peduncle. Anderson and Neumann
(1996) described measurements of fish length in detail.

Size structure data are most commonly reported using length-frequency histo-
grams and stock density indices (Anderson and Neumann 1996). Length-frequency
histograms show the number or proportion of fish collected in various length
categories. The most commonly used length-frequency histogram is the abso-
lute length frequency, which shows the number of fish collected in various length
categories (Figure 9.1A). A relative-frequency distribution shows the propor-
tion of all fish that are represented in each length category (Figure 9.1B). For
example, in Figure 9.1A, 28 fish are in the 7–9-cm length-group (labeled 8 cm),
which represent about 10% of the total number of fish collected (Figure 9.1B).
Relative-frequency distributions are useful for comparing length categories that
contain different sample sizes, which may result from variable sampling effort
or population abundance. An alternative length-frequency distribution is based
on C/f (Figure 9.1C), which is used to indicate relative abundance of fish in
each length category (see Chapter 7 for treatment of C/f data).

Selection of interval widths is important for interpretation of length-frequency
histograms. Anderson and Neumann (1996) suggested using 1-cm intervals for
species that reach 30 cm, 2-cm intervals for 60-cm species, and 5-cm intervals for
150-cm species. Effects of interval width on the characteristics of a length-frequency
histogram are demonstrated in Figure 9.2. In Figure 9.2, a 1-cm length interval
shows more detail with a clear mode at 10 cm, which likely represents age-0 fish
collected during fall. The 2-cm interval width shows the mode of young fish less
clearly, and 4-cm interval widths mask the first mode completely.

Cumulative-frequency distributions provide an alternate view of length-fre-
quency histograms and are used in some statistical tests comparing two or more
distributions. In Figure 9.3, length-frequency histograms of age-0 walleye from
three populations are presented. The respective cumulative-frequency distribu-
tions are shown in Figure 9.4. Differences in the size structure of walleye among
populations are apparent in the length-frequency histograms and in the cumula-
tive-frequency distributions. In Island Lake, the cumulative-frequency line ap-
proaches 100% at a shorter length than does the cumulative-frequency line in
Lake Thompson because the Lake Thompson sample contains larger walleye (>200
mm) than does Island Lake. The cumulative-frequency lines clearly show that the
sample for Lake Mitchell contains longer walleye overall than do the other lakes,
but the maximum length of walleye is the same between Lake Mitchell and Lake
Thompson (i.e., the cumulative-frequency lines both approach 100% at 210 mm).
Another interpretation is that approximately 50% of the walleye in Island Lake
and Lake Thompson are shorter than 160 mm, whereas 50% of the walleye in
Lake Mitchell are shorter than 190 mm.
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Figure 9.1 Length-frequency histograms for black crappie collected from Lake Jeffords,
Florida. Data are displayed using (A) absolute length frequency, (B) relative length frequency,
and (C) catch per unit effort.
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Figure 9.2 Absolute- length-frequency histograms constructed with length interval widths of
1, 2, and 4 cm for black crappie from Lake Jeffords, Florida.

40

30

20

10

0

Fr
eq

u
en

cy

80

60

40

20

0

100

80

60

40

20

0

Fr
eq

u
en

cy
Fr

eq
u

en
cy

1-cm intervals
N = 288

2-cm intervals

4-cm intervals

Total length (cm)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0 4 8 12 16 20 24 28 32 36 40

0 5 10 15 20 25 30 35 40



Size Structure 379

Figure 9.3 Absolute-length-frequency histograms for age-0 walleye collected from three
South Dakota lakes (data courtesy of the South Dakota Department of Game, Fish and Parks).
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Stock density indices are used to describe size structure. A detailed review of
stock density indices and their calculation can be found in Anderson and Neumann
(1996). Proportional stock density (PSD) is calculated as

PSD =
Number of fish � quality length

Number of fish � stock length
× 100. (9.1)

Relative stock density (RSD) is expressed as

RSD =
Number of fish � specified length

Number of fish � stock length
× 100, (9.2)

where the specified length often refers to preferred, memorable, or trophy length.
Relative stock densities of preferred-, memorable-, and trophy-length fish are re-
ported as RSD-P, RSD-M, and RSD-T, respectively. The standard convention is to
report stock density index values to the nearest whole number without a percent

Figure 9.4 Cumulative-frequency distributions for age-0 walleye collected from three South
Dakota lakes (data courtesy of the South Dakota Department of Game, Fish and Parks). The
respective length-frequency distributions are shown in Figure 9.3.
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symbol. Minimum stock, quality, preferred, memorable, and trophy lengths for
many species are provided in Anderson and Neumann (1996) and Bister et al.
(2000). In traditional stock density index calculations, it is important to empha-
size that stock, quality, preferred, memorable, and trophy lengths are minimum
lengths. For example, stock and quality lengths for largemouth bass are 20 and 30
cm, respectively. Thus, in a sample of largemouth bass, all fish greater than 20 cm
are stock length, and all fish greater than 30 cm are quality length. Length-fre-
quency data can also be indexed using incremental stock density indices (Ander-
son and Neumann 1996).

The use of PSD alone to index size structure can often lead to loss of data
sensitivity. For example, two largemouth bass populations can have PSD values of
60, even though one population may be quite different from the other when the
length-frequency histograms are inspected. This is because quality length includes
all fish greater than or equal to quality, preferred, memorable, and trophy length.
Consider two populations that both have 30 quality-length fish. In one popula-
tion, all 30 quality-length fish may be between quality and preferred length, whereas
in the other, 20 may be between quality and preferred length, and 10 may be
between preferred and memorable length. This example illustrates the impor-
tance of calculating other stock density indices (e.g., RSD-P) to index size struc-
ture precisely. Fisheries scientists should calculate the stock density index for the
largest length category of interest, given an appropriate sample size.

Gustafson (1988) provided a formula and easy-to-use tables for determining
80% and 95% confidence intervals around stock density index values (Tables 9.1,
9.2). Confidence interval widths depend on sample size and the magnitude of the
stock density index value. Although confidence intervals provide a measure of
variation around stock density index values, they should not be used as a test for
determining statistically significant differences between two or more values, pri-
marily because confidence intervals for index values with unequal sample sizes
were derived from distributions with unequal variances. Trippel and Hubert (1990)
cautioned against the use of confidence interval overlap as a test for differences
between means unless variance is pooled. Statistical treatment of stock density
index values is presented in section 9.4.

■ 9.3 COLLECTION OF SIZE STRUCTURE DATA

In an ideal situation, the size structure of a fish population determined from
samples would be the same as the true size structure of the fish population. How-
ever, when fisheries scientists collect a sample of fish, the size structure obtained
from that sample is often different from the true size structure of the fish popula-
tion. Size structure from samples can be misrepresentative of the true population
because the lengths of fish collected may depend on the type of sampling gear
used, the season in which the fish were collected, and the location chosen to
collect the fish. To overcome these effects, fisheries scientists use standardized
sampling so that changes in size structure over time and comparisons of size struc-
ture among water bodies can be adequately assessed.
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9.3.1 Standardized Sampling for Size Structure Data

Willis and Murphy (1996) emphasized the importance of standardized sampling
methods because of the numerous gear-, season-, and location-related effects on
sampling data for many fishes. They recommended that standardized sampling
should consider the use of an effective gear for the fish species being sampled,
that the gear be used during an effective time of the year, and that gears be set in
standard locations from year to year. Thus, long-term data sets can be established,
and trends in sample variables can be monitored over time.

Many fishery management activities focus on the adult portion of a popula-
tion, whether the goal is to increase abundance of adult fish, increase size struc-
ture, or manipulate the adult stock to influence predator–prey dynamics. In cases
in which changes in the adult portion of a population are being investigated, the
use of a gear that effectively samples fishes that are stock length (see section 9.2)
and greater is recommended. Rarely does one gear type effectively sample all
lengths of fish in a population. Thus, investigations focusing on recruitment and
year-class strength, for which the capture of juvenile fishes is necessary, may re-
quire a gear different than that used to capture adult fish. Because each gear

Table 9.1 Approximate confidence intervals (plus or minus) for proportional stock densities
(PSD) as a function of sample size (N) of stock-length fish at the 80% confidence interval. Values
have been omitted when sample sizes are insufficient for a normal approximation to the
binomial distribution (from Gustafson 1988).

Estimated PSD

N 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

10 30
15 22 22 22 22 22 22 22
20 16 17 18 18 18 19 18 18 18 17 16
25 13 14 15 15 16 16 16 16 16 15 15 14 13
30 12 13 13 14 14 14 14 14 14 14 13 13 12
35 10 11 12 12 13 13 13 13 13 13 13 12 12 11 10
40 9 10 11 11 12 12 12 12 12 12 12 11 11 10 9
45 8 9 10 10 11 11 11 11 11 11 11 10 10 9 8
50 7 8 9 9 10 10 10 11 11 11 10 10 10 9 9 8 7
55 6 7 8 9 9 10 10 10 10 10 10 10 9 9 8 7 6
60 6 7 8 8 9 9 9 9 10 9 9 9 9 8 8 7 6
65 6 7 7 8 8 9 9 9 9 9 9 9 8 8 7 7 6
70 6 6 7 8 8 8 9 9 9 9 9 8 8 8 7 6 6
75 5 6 7 7 8 8 8 8 8 8 8 8 8 7 7 6 5
80 5 6 7 7 7 8 8 8 8 8 8 8 7 7 7 6 5
85 5 6 6 7 7 7 8 8 8 8 8 7 7 7 6 6 5
90 5 6 6 7 7 7 7 8 8 8 7 7 7 7 6 6 5
95 5 5 6 6 7 7 7 7 7 7 7 7 7 6 6 5 5
100 3 5 5 6 6 7 7 7 7 7 7 7 7 7 6 6 5 5 3
120 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 5 5 4 3
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type, and configurations within a specific gear type, may select for different sizes
of fish, combining data from several gears to determine size structure is not rec-
ommended. Rather, standard gears should be used that will allow for comparisons
of size structure over time or among water bodies.

9.3.2 Effects of Gear Type on Size Structure

Size selectivity of a particular gear can be related to the physical dimensions of a
mesh, reaction of fish to a gear, and the location in a water body where the gear is
used. Much research has been conducted to achieve a better understanding of
the size selectivity of various sampling gears. Hubert (1996) provided information
on the size and seasonal biases of many passive gears used in fisheries research.

With gill nets, only a limited range of lengths are sampled within a given mesh
size, with fish of a particular length being held most securely. Fisheries scientists
should be aware of mesh-size selectivity and mesh-size efficiency to interpret size
structure data collected with gill nets properly. Hubert (1996) provided a detailed
explanation of mesh-size efficiency and selectivity and referenced methods to
correct size structure data from gill nets. Experimental gill nets, which include

Table 9.2 Approximate confidence intervals (plus or minus) for PSD as a function of sample
size (N) of stock-length fish at the 95% confidence interval. Values have been omitted when
sample sizes are insufficient for a normal approximation to the binomial distribution (from
Gustafson 1988).

Estimated PSD

N 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

10 48
15 34 35 35 36 35 35 34
20 26 27 28 29 29 29 29 29 28 27 26
25 21 22 23 24 25 25 25 25 25 24 23 22 21
30 19 20 21 21 22 22 22 22 22 21 21 20 19
35 15 17 18 19 20 20 20 20 20 20 20 19 18 17 15
40 14 15 17 17 18 18 19 19 19 18 18 17 17 15 14
45 13 14 15 16 17 17 17 17 17 17 17 16 15 14 13
50 11 12 13 14 15 16 16 16 16 16 16 16 15 14 13 12 11
55 10 12 13 14 14 15 15 15 15 15 15 15 14 14 13 12 10
60   9 11 12 13 14 14 14 15 15 15 14 14 14 13 12 11   9
65   9 10 12 12 13 13 14 14 14 14 14 13 13 12 12 10   9
70   9 10 11 12 12 13 13 13 13 13 13 13 12 12 11 10   9
75   8 10 11 11 12 12 13 13 13 13 13 12 12 11 11 10   8
80   8   9 10 11 12 12 12 12 12 12 12 12 12 11 10   9   8
85   8   9 10 11 11 12 12 12 12 12 12 12 11 11 10   9   8
90   7   9 10 10 11 11 11 12 12 12 11 11 11 10 10   9   7
95   7   8   9 10 10 11 11 11 11 11 11 11 10 10   9   8   7
100   5   7   8   9 10 10 11 11 11 11 11 11 11 10 10   9   8   7   5
120   5   6   7   8   9   9   9 10 10 10 10 10   9   9   9   8   7   6   5
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several mesh sizes, are often used to sample a broad length range of the species
under consideration. The use of experimental gill nets does not ensure that the
size structure of the collected fish will be representative of the true size structure
of the fish population because mesh-size selectivity and efficiency may still influ-
ence the sample size structure. Size selectivity may be reduced when the mesh size
and twine diameter complement is carefully chosen and evaluated.

In gears such as gill nets, hoop nets, trap nets, and trawls, the mesh size will
determine the minimum length of fish captured (Hubert 1996). Other aspects of
net construction, such as mesh material, frame dimensions, and mouth size, also
influence size selectivity. Laarman and Ryckman (1982) found that trap nets were
selective for larger sizes of some fish species but not others. Holland and Peters
(1992) compared length distributions of channel catfish captured from the Platte
River, Nebraska, in hoop nets with three different mesh sizes and found that both
the minimum and maximum lengths of fish increased as mesh size increased.
The effects of mesh size on size selectivity for catfishes has been well documented,
and, in general, samples collected with larger mesh sizes produce larger mean
lengths (Vokoun and Rabeni 1999).

Electrofishing has also been shown to have size-selective properties. Reynolds
and Simpson (1978) demonstrated that in Midwestern ponds, electrofishing effi-
ciency increased as a function of total length for largemouth bass. For bluegill,
electrofishing efficiency was higher for 8–15-cm bluegills compared with bluegills
less than 8 cm or greater than 15 cm (Reynolds and Simpson 1978). Milewski and
Willis (1991) found that compared with trap nets, electrofishing resulted in smaller
size structure for smallmouth bass. Robinson (1994) found that large flathead
catfish (�75 mm) were rarely captured when pulsed DC electrofishing was used.
Santucci et al. (1999) determined that for channel catfish in a small impound-
ment, AC electrofishing selected for smaller fish in the population.

Size structure data collected by underwater observation (i.e., snorkel or scuba)
were shown to be overestimated because of underwater magnification (Griffith
1981). Mullner et al. (1998) found that length frequencies of three trout species
and their hybrids were significantly different between snorkeling and electrofishing
samples, and they used an underwater magnification factor of 1.25 to adjust length
frequencies. In contrast, Wildman and Neumann (2003) found that when broad
length categories were used, size structure estimated by snorkeling and
electrofishing were not substantially different for brook trout and brown trout in
Connecticut streams.

Size structure is underestimated for most species of fish captured in cove ro-
tenone samples (Hayne et al. 1967). Bayley and Austen (1990) tested the sam-
pling efficiency of rotenone in ponds and coves and found that efficiency was
high for large fish in warm water and low for small fish in cool water. Typically,
cove rotenone sampling is conducted during mid to late summer, when large
individuals of many species move offshore (Willis et al. 1993; Bettoli and Maceina
1996). Thus, summer cove rotenone samples may be selective for small fish.

The use of size structure data obtained from competitive fishing events and an-
gler diaries is becoming more common. As with any collection technique, caution



Size Structure 385

must be given to how angler data are interpreted because angler data may be selec-
tive for larger fish compared with data from traditional sampling gears (Willis et al.
1993). Gabelhouse and Willis (1986) found that tournament anglers in Kansas se-
lected for larger sizes of largemouth bass than did electrofishing, and stock density
indices (see section 9.2) calculated from angler data were higher than those based
on electrofishing samples. Jacobs et al. (1995) found that in Connecticut lakes, the
proportion of largemouth bass greater than 38 cm was usually greater for
electrofishing samples compared with tournament samples. In contrast, smallmouth
bass greater than 38 cm tended to be underestimated in electrofishing samples
compared with tournament samples. Green et al. (1986) found differences in size
structure of largemouth bass and smallmouth bass based on data collected by an-
glers using diaries versus by electrofishing. They provided empirical adjustment
factors to predict the size structure of largemouth bass and smallmouth bass in
electrofishing samples from the length distribution of the angler catch. In contrast,
Ebbers (1987) found that largemouth bass size structure estimated from angler
diaries and electrofishing samples were similar in Minnesota. Thus, angler behavior
may vary by geographic location and affect data used to determine size structure.

9.3.3 Effects of Sampling Time on Size Structure

Size structure of samples can differ among seasons of the year even when a stan-
dard gear is being used. Seasonal changes in size structure occur because of size-
dependent changes in fish behavior and physiology throughout the year (Pope
and Willis 1996). For example, Carline et al. (1984) found that for largemouth
bass sampled by electrofishing in an Ohio impoundment, samples contained larger
fish in spring and fall compared to summer. Largemouth bass greater than 30 cm
apparently moved offshore after spawning and were not as vulnerable to capture
during summer; as water temperature cooled during the fall, large fish returned
to inshore areas. Gilliland (1987) and Bettross and Willis (1988) have reported
similar seasonal changes in size structure for largemouth bass.

Pope and Willis (1996) provided a review of several studies that documented
seasonal changes in size structure. Spring and fall peaks in size structure have
been observed for several species, including bluegill captured in trap nets (Bettross
and Willis 1988) and yellow perch (Lott and Willis 1991), walleye, and sauger
(Mero and Willis 1992) captured in experimental gill nets. Boxrucker and Ploskey
(1989) found that greater proportions of larger and older white crappies were
captured in trap nets during spring than fall in Oklahoma impoundments. Sea-
sonal patterns in size structure other than spring and fall peaks have also been
observed. In a South Dakota lake, size structure of northern pike sampled with
experimental gill nets was highest during winter and declined into the summer;
significant inverse correlations between size structure and water temperature were
observed (Neumann and Willis 1995).

Size structure has also been shown to differ even within a single season and
between day and night samples. Across a 1-month period during spring, size
structure of largemouth bass captured by electrofishing increased substantially,
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apparently due to a greater proportion of largemouth bass greater than 30 cm
moving to inshore areas in preparation for spawning (Carline et al. 1984).
Paragamian (1989) found that the size structure determined from samples of
smallmouth bass was higher at night than that during the day in an Iowa river.
In Oklahoma reservoirs, largemouth bass size structure was similar between day
and night electrofishing samples in spring, but during fall, day samples pro-
duced a narrower range of fish lengths and contained mostly smaller individu-
als (Gilliland 1987). Size structure of sauger captured by electrofishing during
the day in a turbid main-stem reservoir was consistently higher than at night,
and sauger greater than 51 cm were collected only during the day (Van Zee et
al. 1996).

9.3.4 Effects of Sample Location on Size Structure

Biologists often choose subjective sampling sites based on the likelihood of cap-
turing a large sample size of the target species (Willis et al. 1993). Hubbard and
Miranda (1988) found that the size structure of largemouth bass collected by
electrofishing from subjective sites was greater than was the size structure ob-
tained from random sites. King et al. (1981) compared sample parameters for
several fish species collected by electrofishing from fixed and random sites. They
found few statistical differences in population parameters between the two types
of sampling sites. However, the fixed sites they sampled over time were initially
chosen at random.

Sampling fish from fixed or random sites should depend on the experimental
design being used. Sampling at fixed sites is often used to track changes in popu-
lation characteristics within a single water body, whereas sampling at random sites
is more suitable for comparing population characteristics among water bodies.
The use of fixed or random sites may also depend on the need to continue stan-
dard sampling designs previously developed.

9.3.5 Sample Size Considerations

The sample size necessary to describe the size structure of a fish population ad-
equately is quite large. Anderson and Neumann (1996) recommended that for
general stock assessment purposes, at least 100 fish greater than stock length (see
section 9.2) should be sampled. Gilliland (1987) compared length frequencies
based on various sample sizes of largemouth bass that were sampled by
electrofishing in Oklahoma reservoirs and concluded that a sample size of 150
largemouth bass was adequate to estimate size structure, whereas a sample of 50
was not adequate. More recently, Vokoun et al. (2001) estimated the sample size
necessary to construct a length-frequency distribution with a given accuracy and
precision for bluegill and channel catfish. They compared the length frequency
histogram from a known sample to computer generated length frequency histo-
grams by means of bootstrapping methods. Their results demonstrated the im-
portance of using at least 300–400 individuals whenever possible.
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Weithman et al. (1980) developed a sequential sampling method that allows a
biologist to monitor continuously how many stock-length and quality-length fish
are necessary to obtain a reliable estimate of PSD while sampling is being con-
ducted. Miranda (1993) developed a method by which biologists can approxi-
mate the sample size required for estimating PSD before collection begins. These
sampling methods are further described in Anderson and Neumann (1996).
Sample size requirements discussed in this section are recommendations based
on existing information. Clearly, the sample size necessary to describe size struc-
ture reliably will depend on the species, population structure, sampling constraints,
and study objectives.

■ 9.4 STATISTICAL ANALYSES FOR SIZE STRUCTURE DATA

Analysis of size structure data should begin with an exploratory analysis by con-
structing length-frequency histograms or calculating stock density index values.
There are also many statistical tests available to analyze size structure data. In this
section, we review several statistical techniques commonly applied to size struc-
ture data. Experimental design considerations and statistical assumptions are re-
viewed in Chapters 2 and 3.

Fisheries scientists are often interested in comparing size structure between
two or more samples. For example, comparisons of size structure are often made
between different gear types, water bodies, or time periods. Consider the com-
parison of two hypothetical length-frequency data sets. Many commonly applied
statistical tests, such as t-tests and analysis of variance (ANOVA), assume that data
are normally distributed and, as such, are typically not appropriate for tests of
length-frequency data (Brown and Austen 1996). When a broad length range of
fish is sampled, length-frequency data are often multimodal, highly skewed, and
contain extreme observations. In these cases, nonparametric tests may be more
appropriate for comparing length-frequency distributions. Conditions favorable
for nonparametric statistics and cautions about their use are described in Brown
and Austen (1996) and Chapter 1. Given sufficient sample sizes, and when data
approximate a normal distribution, most commonly employed parametric tests
are sufficiently robust and can perform well (Zar 1996). Methods to evaluate
normality of data and considerations for data transformations are provided in
Chapter 3.

9.4.1 Parametric Tests

Assuming a normal distribution, size structure data are commonly compared be-
tween two samples using a t-test or by an ANOVA in the case of comparing more
than two samples. These tests are used to compare the estimated means (e.g., means
of length) to determine whether or not the samples come from the same popula-
tion (Koopmans 1987). The fisheries scientist may use these tests to determine if
mean lengths of samples are significantly different. An ANOVA is typically followed
by a multiple-comparison test to determine which means are significantly different
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from one another. An example of using an ANOVA to compare mean length among
three length-frequency samples is provided in Box 9.1.

9.4.2 Nonparametric Tests for Comparing Size Structure

Several nonparametric statistical tests are useful for comparing size structures from
two or more samples. Nonparametric tests are usually applied to length-frequency
data, primarily because of concerns regarding the distribution of the data. Non-
parametric tests commonly applied to length-frequency data include the
Kolmogorov–Smirnov two sample, Wilcoxon’s rank sum, Kruskal–Wallis,  and the
chi-square. The Kolmogorov–Smirnov two-sample test is used to determine whether
the distribution of a variable (e.g., length) is the same across different groups (e.g.,
lakes). The test statistic is calculated as the largest absolute distance between the
distribution functions (cumulative frequency distributions) associated with the
samples (Zar 1996; SAS 1999). This test is often used to determine whether length-
frequency distributions are different between samples (Box 9.2). Examples of the
application of the Kolmogorov–Smirnov test to examine differences among length-
frequency distributions can be found in Cornelius and Margenau (1999), Underwood
(2000), Unmuth et al. (2001), Isermann et al. (2002), and Tate et al. (2003).

When applying two-sample tests (such as the Kolmogorov–Smirnov), pairwise
tests are performed rather than multiple comparisons. Under these circumstances,
the significance level for comparisons should be adjusted using the Bonferroni
correction in order to maintain the predetermined experimentwise error rate
(Koopmans 1987). This can be achieved by setting the significance level for each
subtest equal to the experimentwise error rate divided by the number of subtests.
For example, if the experimentwise error rate was � = 0.05 and there were three
subtests performed, then the significance level for each subtest would be � =
0.05/3 = 0.017.

Wilcoxon’s rank-sum test for two samples and the Kruskal–Wallis test for sev-
eral samples are rank-testing procedures and sometimes are considered nonpara-
metric counterparts to the t-test and ANOVA, respectively. In fact, the Kruskal–
Wallis test is often called “ANOVA by ranks” (Zar 1996). For these tests, the
observations from all samples are combined, ordered, and assigned a rank value,
and the test statistic is calculated based on rank scores. These tests are used to test
for differences in location and scale based on rank scores. Fisheries scientists of-
ten use these tests to determine whether length-frequency distributions are dif-
ferent among samples (i.e., does one population tend to yield larger or smaller
values than the other). An example of the Kruskal–Wallis test applied to length-
frequency data is provided in Box 9.3; additional applications of the Kruskal–
Wallis test to length-frequency data can be found in Neumann et al. (1995) and
Neal et al. (1999). Several nonparametric multiple-comparison tests are available
for use with tests such as the Kruskal–Wallis test (Conover 1980; Zar 1996). Ex-
amples of multiple-comparison testing procedures are provided in Box 9.4.

According to Conover (1980), an advantage of the Kolmogorov–Smirnov two-
sample test over rank tests (e.g., Wilcoxon-s rank sum and Kruskal–Wallis) is that
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the Kolmogorov–Smirnov test is sensitive to detecting differences in location
(magnitude of observations) and shape (variance) between distribution functions.
Methods based on ranks are sensitive to differences in the magnitude of ranked
data among samples, but they may not detect differences in variances or shape of
the distributions. Thus, fisheries scientists should visually inspect length-frequency
histograms and use statistical tests cautiously when analyzing length-frequency data.

Chi-square tests are commonly used to test for differences in length frequency
among samples. Examples of the application of the chi-square test to length-fre-
quency data can be found in Michaletz et al. (1995), Van Den Avyle et al. (1995),
Roni and Fayram (2000), and Wildman and Neumann (2003). The chi-square
test is used to test that the frequencies of observations among length-groups is
independent of the treatment (e.g., water body, gear type, or time period). Chi-
square tests are often applied, but not limited to, length-frequency data for which
the length-groups are rather large. For example, length data are often catego-
rized using stock density index length categories rather than by more detailed
length intervals (Box 9.5)

When size structure is indexed using stock density indices, a fisheries scientist
may be interested in statistically comparing stock density index values between two
or more samples. Because stock density index values are frequently calculated from
a more detailed length-frequency histogram, statistical procedures (as described
above) can be applied to the raw length-frequency data, and the outcome of those
tests along with stock density index values can be reported. An alternate approach
may be to use a chi-square test (Box 9.5) in which stock density index length catego-
ries are used as length intervals. Fisheries scientists are often involved in studies in
which a treatment (e.g., an experimental harvest regulation) is applied to several
water bodies, and additional water bodies are used as a control group. In this case,
stock density indices can be calculated for each water body, and the fisheries scien-
tist can test for differences in the mean stock density index values (e.g., mean PSD)
between treatments. For example, Margenau and AveLallemant (2000) used two-
sample t-tests to compare mean stock density index values of muskellunge popula-
tions before and after a special harvest regulation was implemented. Proportions
(such as PSD) form a binomial distribution rather than a normal distribution (Zar
1996). Thus, PSD values may require a data transformation (e.g., arcsine-root) be-
fore analyses (see Chapter 3 for discussion of data transformations).

9.4.3 The Experimental Unit

In each of the examples presented in Boxes 9.1–9.5, catches of fish in each unit of
effort were pooled into a single sample, and statistical tests were performed on
pooled length-frequency data. By far, this is the most commonly used approach to
treating and testing size structure data. In some instances, performing tests on
pooled length-frequency data can result in tests with inflated power, resulting in
significant differences in length-frequency distributions even though there may
be only slight differences between distributions. This is especially the case when
large sample sizes are created by pooling length-frequency data. For example, in
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Box 9.1 Testing for Differences in Mean Length By Means of Analysis of Variance (ANOVA)

Age-0 walleye were sampled from three eastern South Dakota lakes (Island Lake, Lake Mitchell, and
Lake Thompson) by biologists from the South Dakota Department of Game, Fish and Parks in
September 2001. In each lake, six 20-min-standardized sites were sampled at night with an
electrofishing boat. Because the distributions of lengths in each sample were considered normal,
ANOVA was chosen to analyze these data. The analysis was performed using the general linear
model procedure (PROC GLM) in SAS (SAS 1999). The purpose of this analysis was to compare mean
length of age-0 walleyes among the three lakes. Differences in mean length of age-0 walleye
among lakes in fall should indicate differences in growth achieved during the first year of life. The
null hypothesis is that there is no difference in mean length among lakes.

Data
The length-frequency histograms for each population are presented in Figure 9.3. All walleye were
measured to the nearest millimeter.

Program
DATA ONE;

INPUT LAKE $ LENGTH;

CARDS;

ISLAND         122

ISLAND         126

ISLAND         129

[Data input continued]

MITCHELL       145

MITCHELL       152

MITCHELL       160

[Data input continued]

THOMPSON       123

THOMPSON       128

THOMPSON       129

[data input continued]

;

PROC SORT;

BY LAKE LENGTH;

PROC GLM;

CLASS LAKE;

MODEL LENGTH=LAKE;

RUN;

Output

Table General linear model (GLM) procedure for length of age-0 walleyes (dependent variable)
compared among three South Dakota lakes. The data included 360 observations.

Class Level Information

Class Levels Values

Lake 3 Island Mitchell Thompson

GLM Procedure

Source df Sum of squares Mean square F-value P > F

Model 2 49324.1151 24662.0575 81.73 <0.0001
Error 357 107724.5072 301.7493
Corrected total 359 157048.6222
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Results
Results of the ANOVA indicated that there was a significant (F = 81.73; P < 0.0001) difference in
mean length among lakes, leading to the rejection of the null hypothesis.

Next, a multiple-comparison test was performed to determine which mean lengths (lakes) were
different from one another. In this example, the Tukey’s multiple-comparison test was used; it  can be
invoked using the following code. The program also calls for calculation of mean length for each lake.

Program
PROC SORT;

BY LAKE LENGTH;

PROC GLM;

CLASS LAKE;

MODEL LENGTH=LAKE;

MEANS LAKE/TUKEY;

PROC MEANS;

BY LAKE;

VAR LENGTH;

RUN;

Output

Table The GLM procedure for Tukey’s studentized range (HSD) test for length. This test controls
the type I experimentwise error rate. Comparisons significant at the 0.05 level are indicated by ***.

Test Statistics

Alpha 0.05
Error df 357
Error mean square 301.7493
Critical value of studentized range 3.32840

Means Comparisons

Lake comparison Difference between means Simultaneous 95% confidence limits

Mitchell–Thompson 22.210 17.054 27.366***
Mitchell–Island 28.315 22.736 33.894***
Thompson–Mitchell –22.210 –27.366 –17.054***
Thompson–Island 6.105 0.852 11.359***
Island–Mitchell –28.315 –33.894 –22.736***
Island–Thompson –6.105 –11.359 –0.852***

The MEANS Procedure

Lake N Mean SD Minimum Maximum

Island 104 159.4326923 15.8853687 122.0000000 195.0000000
Mitchell 111 187.7477477 13.7136087 145.0000000 218.0000000
Thompson 145 165.5379310 20.5895809 123.0000000  216.0000000

Results
According to this test, all mean lengths are significantly (P � 0.05) different from one another. Mean
length is greatest in Lake Mitchell (188 mm) followed by Lake Thompson (166 mm) and Island Lake
(159 mm).
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Box 9.2 Testing for Differences among Length-Frequency Distributions by Means
of the Kolmogorov–Smirnov Two-Sample Test

The same walleye data analyzed in Box 9.1 (and shown in Figure 9.3) are used in this example. The
purpose of this analysis is to compare length-frequency distributions of walleyes among the three
lakes by means of a Kolmogorov–Smirnov two-sample test. The analysis was performed using the
NPAR1WAY procedure in SAS (SAS 1999). The null hypothesis is that there are no differences in
length-frequency distributions (i.e., distribution functions) among lakes. This is a popular nonpara-
metric method to determine differences in length frequencies, as length-frequency data
oftentimes deviate substantially from normal. Because this is a two-sample test, only two lakes can
be compared simultaneously. Thus, a total of three comparisons (between Mitchell and Thompson,
between Island and Thompson, and between Island and Mitchell) were made. In the SAS code
shown, Island Lake was deleted from the analysis for the comparison between Lake Mitchell and
Lake Thompson. To maintain an experimentwise error rate of � = 0.05, the significance level for
each comparison (P = 0.017) was established by dividing � (0.05) by the number of comparisons (3).

Data
See Box 9.1 and Figure 9.3.

Program
DATA ONE;

INPUT LAKE $ LENGTH;

CARDS;

ISLAND         122

ISLAND         126

ISLAND         129

[Data input continued]

MITCHELL       145

MITCHELL       152

MITCHELL       160

[Data input continued]

THOMPSON       123

THOMPSON       128

THOMPSON       129

[Data input continued]

;

DATA TWO; SET ONE;

IF LAKE = “ISLAND” THEN DELETE;

PROC SORT;

BY LAKE LENGTH;

RUN;

PROC NPAR1WAY;

CLASS LAKE;

VAR LENGTH;

RUN;

Output

Table Comparison of Lake Mitchell and Lake Thompson. Kolmogorov–Smirnov test for variable
LENGTH classified by variable LAKE. The EDF is the empirical distribution function; KS represents
the Kolmogorov–Smirnov statistic and KSa the asymptotic KS; D is the two-sample KS statistic; and
P > KSa is the asymptotic P-value of KSa, which equals P > D.

Kolmogorov–Smirnov Test

Lake N EDF at maximum Deviation from mean at maximum

Mitchell 111 0.090090 –3.166332
Thompson 145 0.620690 2.770345

Total 256 0.390625
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Maximum deviation occurred at observation 201
Value of LENGTH at maximum 169.0

Kolmogorov–Smirnov Two-Sample Test (Asymptotic)

KS 0.262950 D 0.530600
KSa 4.207193 P > KSa <0.0001

Table Comparison of Island Lake and Lake Thompson. Kolmogorov–Smirnov test for variable
LENGTH classified by variable LAKE.

Kolmogorov–Smirnov Test

Lake N EDF at maximum Deviation from mean at maximum

Island 104 0.846154 0.929386
Thompson 145 0.689655 –0.787098

Total 249 0.755020

Maximum deviation occurred at observation 204
Value of LENGTH at maximum 175.0

Kolmogorov–Smirnov Two-Sample Test (Asymptotic)

KS 0.077181 D 0.156499
KSa 1.217900 P > KSa 0.1029

Table Comparison of Island Lake and Lake Mitchell. Kolmogorov–Smirnov test for variable
LENGTH classified by variable LAKE.

Kolmogorov–Smirnov Test

Lake N EDF at maximum Deviation from mean at maximum

Island 104 0.875000 3.421086
Mitchell 111 0.225225 –3.311458

Total 215 0.539535

Maximum deviation occurred at observation 129
Value of LENGTH at maximum 176.0

Kolmogorov–Smirnov Two-Sample Test (Asymptotic)

KS 0.324715 D 0.649775
KSa 4.761259 P > KSa <0.0001

Results
Results of these tests indicate that differences in the length-frequency distributions (i.e., distribu-
tion functions) were found among the three lakes, leading to the rejection of the null hypothesis.
The length-frequency distribution of age-0 walleye in Lake Mitchell was significantly (P < 0.0001)
greater than that in Island Lake and Lake Thompson. No difference was observed between Island
Lake and Lake Thompson (P = 0.1037). Thus, the fisheries scientist may conclude that growth of
age-0 walleye was fastest in Lake Mitchell.
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Box 9.3 Testing for Differences among Length-Frequency Distributions by Means
of the Kruskal–Wallis test

A Kruskal–Wallis test was applied to the same walleye data used in Boxes 9.1 and 9.2. The objective
of this analysis was to test whether length-frequency distributions were different among samples
(i.e., does one population tend to yield larger or smaller values than the other) based on rank
scores. The null hypothesis was that there was no difference among the length-frequency distribu-
tions. The Kruskal–Wallis test is an extension of Wilcoxon’s rank-sum test for two samples. Results of
the Kruskal–Wallis and Wilcoxon’s rank-sum tests are provided in the output through execution of
the NPAR1WAY procedure in SAS (SAS 1999). The input data are the same as used in Box 9.1 and
presented in Figure 9.3.

Program
DATA ONE;

INPUT LAKE $ LENGTH;

CARDS;

[See data input in Box 9.1]

;

DATA TWO; SET ONE;

PROC SORT;

BY LAKE LENGTH;

RUN;

PROC NPAR1WAY;

CLASS LAKE;

VAR LENGTH;

RUN;

Output

Table Wilcoxon scores (rank sums) for the variable length classified by the variable lake.

Wilcoxon Scores

Lake N Sum of scores Expected under H0 SD under H0 Mean score

 Island 104 12969.00 18772.00 894.755226 124.701923
 Mitchell 111 29767.50 20035.50 911.651297 268.175676
 Thompson 145 22243.50 26172.50 968.212806 153.403448

Kruskal–Wallis Test

Chi-square 118.5671
df 2
P > chi-square <0.0001

Results
The output indicates that there is a significant (P < 0.0001) difference among the three length-
frequency distributions, and thus, the null hypothesis is rejected. The mean ranks for Island Lake
(124.7), Lake Mitchell (268.2), and Lake Thompson (153.4) are provided in the output under the
mean score column.

By default, the NPAR1WAY procedure in SAS provides approximated P-values based on asymptotic
methods (SAS 1999). Exact P-values can be calculated by using the EXACT statement in the
NPAR1WAY procedure. Asymptotic methods may not be valid when sample sizes are very small and
when data are sparse, skewed, or heavily tied (SAS 1999). When sample sizes are large, asymptotic
P-values approach exact P-values. The EXACT statement in SAS can be computationally time-
consuming depending on the sample size and the number of groups. Exact P-values for this
example can be obtained by using the following code.



Size Structure 395

PROC NPAR1WAY;

CLASS LAKE;

VAR LENGTH;

EXACT;

RUN;

Program
In SAS, the Kruskal–Wallis test can also be performed by using a combination of the RANK and GLM
procedures (SAS 1990). The overall F-test is asymptotically equivalent to the Kruskal–Wallis test in
SAS. The program below will perform an ANOVA based on ranked data.

PROC RANK OUT=RANKS;

RANKS RLENGTH;

VAR LENGTH;

RUN;

PROC GLM DATA=RANKS;

CLASS LAKE;

MODEL RLENGTH=LAKE;

RUN;

Output

Table The GLM procedure for the dependent variable RLENGTH, the rank for the variable length.
Abbreviations are as follows: mean square error (MSE); coefficient of variation (CV); and sum of
squares (SS).

Analysis of Variance

Source df Sum of squares Mean square F-value P > F

Model 2 1283518.268 641759.134 88.03 <0.0001
Error 357 2602744.232 7290.600
Corrected total 359 3886262.500

R2 0.330271 Root MSE 85.38501
CV 47.30472 RLENGTH mean 180.5000

Source df Type I SS Mean square F-value P > F

Lake 2 1283518.268 641759.134 88.03 <0.0001

Source df Type III SS Mean square F-value P > F

Lake 2 1283518.268 641759.134 88.03 <0.0001

In this ANOVA, note that (n – 1)R2 = 118.57 and is the same as the chi-square statistic provided for
the Kruskal–Wallis test (SAS 1999). There is a significant (P < 0.0001) difference in mean ranked
length among the three lakes, leading to the rejection of the null hypothesis.
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Box 9.4 Performing Multiple Comparisons of Length-Frequency Data

In Box 9.3, three length-frequency distributions were compared using the Kruskal–Wallis test. The
distributions were found to be significantly different. Once the null hypothesis is rejected, the
fisheries scientist usually will want to determine between which of the samples the significant
differences exist. An example of a nonparametric multiple-comparison test (Zar 1996) based on the
walleye data presented in Box 9.3 is illustrated below. This particular multiple-comparison test is
appropriate in the case of several tied ranks and unequal sample sizes, which are typical character-
istics of length-frequency data, especially when fish are measured and reported to the nearest
length-group (e.g., centimeters). However, several other multiple-comparison tests are available,
depending on the characteristics of the data being analyzed (Conover 1980; Zar 1996). Information
in the summary table below can be found in the SAS output for the Kruskal–Wallis test in Box 9.3.

Parameter Island Thompson Mitchell
Mean rank (R

–
) 124.70 153.40 268.18

Sample size (n) 104 145 111

After the entire data set was rank ordered, the number of groups (lengths) with tied ranks (m)  was
determined to be 69. Next, calculate T, the tied-rank statistic,

T = �
i = 1

m

(ti – ti ) ,3

where t = the frequency of observations with tied ranks in the ith group (length). For example, if in
a data set there were two groups (lengths) with tied ranks (three 247-mm fish and two 248-mm
fish), T would equal (33 – 3) + (23 – 2) = 30. For the walleye example used in this box, there were
many ties, and T = 20,490.

Next, SEs are calculated for each comparison. The SE for the comparison of Lake Mitchell with Island
Lake is calculated as

SE =  T

12(N – 1)( N ( N  + 1)

12
– ) 1

nIsland( 1

nMitchell

+ )
=  20,490

12(359)( 360(361)

12
– ) 1

104( 1

111
+ ) =  14.20

For the comparison of Lake Mitchell and Lake Thompson, the SE = 13.12.
For the comparison of Lake Thompson and Lake Island Lake, the SE = 13.37.

The test statistic (Q) for each comparison is calculated as the difference in mean ranks divided by
the associated SE. Critical values for Q can be obtained from tables for nonparametric multiple
comparisons (e.g., Zar 1996). In this example, the critical value of Q at � = 0.05 for three samples is
2.394. For each comparison, the null hypothesis of no difference between length-frequency
distributions is rejected if the calculated Q exceeds the critical value of Q.
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Table Nonparametric multiple comparison among three lakes of length-frequency distributions
of walleye.

Comparison R
–

x – R
–

y SE Q Q0.05, 3 Conclusion

Mitchell and Island 268.18 – 124.70 = 143.48 14.20 10.10 2.394 Reject H0

Mitchell and Thompson 268.18 – 153.40 = 114.78 13.12 8.75 2.394 Reject H0

Thompson and Island 153.40 – 124.70 =   28.70 13.37 2.14 2.394 Accept H0

The fisheries scientist can conclude that the length-frequency distribution from Lake Mitchell is
significantly greater than that of Island Lake and Lake Thompson. Length-frequency distributions
were not significantly different between Lake Thompson and Island Lake.

Program
Currently, nonparametric multiple-comparison procedures are not available in SAS. However, some
of the required calculations such as a table of ranked lengths, a table of the frequency of observa-
tions with tied ranks in the ith group, and T can be obtained by invoking the following SAS
program.

PROC RANK OUT=RANKS;

RANKS RLENGTH;

VAR LENGTH;

RUN;

PROC FREQ; TABLES RLENGTH/OUT=FRANK;

RUN;

PROC PRINT DATA=FRANK;

RUN;

DATA CALCT; SET FRANK;

IF COUNT=1 THEN DELETE;

T=((COUNT*COUNT*COUNT)-COUNT);

PROC PRINT;

RUN;

PROC MEANS SUM;

VAR T;

RUN;

Multiple comparisons can also be accomplished on the ranked data in the GLM procedure in SAS.
The following SAS program performs an ANOVA on the ranked data (see Box 9.3) and uses a Tukey’s
multiple-range test to determine differences among the mean ranks.

PROC RANK OUT=RANKS;

RANKS RLENGTH;

VAR LENGTH;

RUN;

PROC GLM DATA=RANKS;

CLASS LAKE;

MODEL RLENGTH=LAKE;

MEANS LAKE/TUKEY;

RUN;

(Box continues)
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Output
The ANOVA output for this analysis is shown in Box 9.3. The results of the Tukey’s multiple-compari-
son test are shown below.

Table Tukey’s studentized range (HSD) test for RLENGTH (the rank for variable length). This test
controls the type I experimentwise error rate. Comparisons significant at the 0.05 level are indi-
cated by ***.

Test Statistics

Alpha 0.05
Error df 357
Error mean square 7290.6
Critical value of studentized range 3.32840

Means Comparisons

Lake comparison Difference between means Simultaneous 95% confidence limits

Mitchell–Thompson 114.77 89.43 140.12***
Mitchell–Island 143.47 116.05 170.90***
Thompson–Mitchell –114.77 –140.12  –89.43***
Thompson–Island 28.70 2.88 54.52***
Island–Mitchell –143.47 –170.90 –116.05***
Island–Thompson –28.70 –54.52 –2.88***

Results
These results show that there is a significant difference in mean ranked length among each of the
three lakes.

In these examples, the multiple-comparison-testing methods had different results. The nonpara-
metric multiple-range test was more conservative that the Tukey test. This clearly demonstrates
that different multiple-comparison tests can provide different results. The choice of a multiple-
comparison test should be made before the analysis is conducted rather than by searching for
significance by performing multiple tests.

Box 9.4 (continued)
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Box 9.5 Using Contingency Tables to Test for Differences in Length-Frequency
Distributions

The chi-square test is commonly used to test for differences in length-frequency distributions. In
this example, DC electrofishing at night was used to collect bluegill in 1996, 1998, and 2000 from a
private pond in Connecticut. Bluegills were classified into two length-groups: stock to quality
length (80–149 mm) and quality length (�150 mm). Proportional stock density (see section 9.3) was
also calculated for each year. The objective of this analysis was to determine whether length-
frequency distributions (summarized by PSD values) were different among years. The chi-square
analysis was performed using the frequency procedure (FREQ) in SAS (SAS 1999). The null hypoth-
esis is that the frequency of observations among length-groups (stock to quality length and quality
length) is independent of year.

Data

Table The number of bluegill collected in each length-group and proportional stock density (PSD).

Year

Size category and length index 1996 1998 2000

Stock to quality length (80–149 mm)   77 124 251
Quality length (�150 mm)   85  44   34
Total stock length (�80 mm) 162 168 285
PSD   52  26  12

Program
In the following SAS program, LCAT is the length category (S–Q = stock to quality length and Q =
greater than or equal to quality length) and NUM is the number of fish.

DATA ONE;

INPUT YEAR LCAT $ NUM;

CARDS;

1996 S-Q   77

1996   Q   85

1998 S-Q  124

1998   Q   44

2000 S-Q  251

2000   Q   34

;

PROC SORT;

BY YEAR LCAT NUM;

RUN;

DATA TWO;

SET ONE;

BY YEAR LCAT NUM;

IF FIRST.LCAT THEN DO;

DO I = 1 TO NUM;

LCAT = LCAT;

YEAR = YEAR;

OUTPUT;

END;

END;

RUN;

PROC FREQ;

TABLES YEAR*LCAT / CHISQ;

RUN;
(Box continues)
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Box 9.1 an F-test with 357 error degrees of freedom results in a high level of power
to detect differences among length-frequency distributions. Similarly, Kolmogorov–
Smirnov two-sample tests are often highly significant when sample sizes are large,
even though the distributions can appear similar. Caution should be applied when
using individual fish as experimental units, resulting in very high sample sizes.

An alternative approach to comparing length frequencies would be to treat
each group of fish caught in a unit of effort (e.g., trap net or electrofishing sta-
tion) as a sample. In other words, each unit of effort would be considered a sample
or “collection event,” and individual fish would be considered subsamples. Con-
sider sampling black crappies with 20 trap nets during a single sampling period in
a reservoir. If the 20 nets are set according to a particular sampling design, then
each net (location) may be adequate to use as an independent experimental unit.
Examples of using units of effort as samples to compare size structure are pro-
vided in Boxes 9.6 and 9.7.

Output

Table Summary statistics for chi-square analysis of length category (LCAT) by year. Sample size is 615.

Length category

Year and measure Q S–Q Total

1996
Frequency 85 77 162
Percent 13.82 12.52 26.34
Row % 52.47 47.53
Column % 52.15 17.04

1998
Frequency 44 124 168
Percent 7.15 20.16 27.32
Row % 26.19 73.81
Column % 26.99 27.43

2000
Frequency 34 251 285
Percent 5.53 40.81 46.34
Row % 11.93 88.07
Column % 20.86 55.53

Total
Frequency 163 452 615
Percent 26.50 73.50 100.00

Box 9.5 (continued)
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Table Chi-square statistics of length category  by year.

 Statistic df Value P

Chi-square 2 87.1540 <0.0001
Likelihood ratio chi-square 2 85.5173 <0.0001
Mantel–Haenszel chi-square 1 84.8020 <0.0001
Phi coefficient 0.3764
Contingency coefficient 0.3523
Cramer’s V 0.3764

Results
According to the chi-square test, there is a significant (�2 = 87.15, P < 0.0001) difference in the
frequency of observations between length-groups, leading to the rejection of the null hypothesis.
To test which years were significantly different from each other, a chi-square test was performed for
each combination of years (i.e., 1996 and 1998, 1998 and 2000, and 1996 and 2000) based on 2 × 2
contingency tables. Although the results for each comparison are not shown, all pairwise tests
showed significant differences (P < 0.0001) between years. To maintain an experimentwise error
rate of � = 0.05, the significance level for each comparison (P = 0.017) was established by dividing �
by the number of comparisons (3). Size structure declined from 1996 (PSD = 52) to 1998 (PSD = 26)
to 2000 (PSD = 12).

In this pond, the decrease in PSD of bluegills over the 3 years was probably due to the reduction in
density of chain pickerel in the pond. Mean C/f (number/h electrofishing) of chain pickerel declined
from 82 in 1996 to 39 in 2000. Declines in chain pickerel abundance probably lead to reduced
predation on bluegills, resulting in higher abundance and reduced growth of bluegills.

To test for differences in length-frequency data that are summarized using stock density indices
other than PSD (e.g., relative stock density preferred length [RSD-P] or quality-to-preferred length
[RSD-Q-P]), simply change the length categories in the analysis. For example, to test for differences
in length frequency summarized as RSD-P, test for differences in the frequency of occurrence of
stock-to-preferred-length fish and preferred-length fish among treatments.

9.4.4 Analysis of Repeated Measures

Fisheries scientists frequently assess changes in size structure on one population
through time (e.g., across years). One consideration is that many of the statistical
procedures mentioned above (e.g., chi-square test and Kruskal–Wallis) assume
the samples are independent. For example, in Box 9.5 bluegill PSD was tested
using samples collected at 2-year intervals, and the chi-square test assumes that
those samples are independent. Because samples were at 2-year intervals, this as-
sumption may be realistic. However, samples collected over a number of consecu-
tive years are likely not independent (Maceina et al. 1994) because catch rates or
size structure in 1 year may influence the size structure in subsequent years (i.e.,
the same year-classes are sampled over time).

Repeated-measures ANOVA provides a series of models that incorporate time
dependency of the data into the analysis (see also Chapter 7 for discussion of
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Box 9.6 Testing for Differences in Size Structure by Treating Groups of Fish Caught
in Each Unit of Effort as Samples

Fisheries scientists oftentimes evaluate the effectiveness of alternative sampling methods.
However, before alternative sampling methods are implemented into standard sampling programs,
the fisheries scientist should understand how data (e.g., size structure) collected by the new
sampling method compares to the method currently used. For example, the use of angler-collected
data in research and monitoring is becoming more popular due to reliability and reduced costs and
effort associated with data collection compared with more traditional methods such as
electrofishing.

In this example, size structure of largemouth bass obtained from two sampling methods is
compared. Largemouth bass were sampled from Mansfield Hollow Reservoir, Connecticut, in
spring 2002. Twelve stations along the lake perimeter were sampled at night by means of  DC
electrofishing, and size structure data were collected at 12 bass fishing tournaments over the same
time period. Individual fish were measured to the nearest centimeter total length at the end of
each electrofishing station and fishing tournament.

Catches from each electrofishing station and fishing tournament were considered independent
samples. Electrofishing stations did not overlap, and catches in one tournament were considered
independent of the others. The null hypothesis tested is that the ratio of the number of preferred-
length (i.e., �38 cm) fish to the number of quality-length (i.e., �30 cm) fish was not different
between the two sampling methods.

Data

Table Largemouth bass data from Mansfield Hollow Reservoir, Connecticut, in spring 2002. Catches
from each electrofishing station and fishing tournament were considered independent samples.

Number of fish
Electrofishing

Number of fish

Fishing tournament �30 cm �38 cm station �30 cm �38 cm

1 3 2 1 23 12
2 28 4 2 22 2
3 13 1 3 35 8
4 8 0 4 6 2
5 61 16 5 11 1
6 76 12 6 15 7
7 38 10 7 12 3
8 49 12 8 9 6
9 62 24 9 25 5
10 43 10 10 25 8
11 59 18 11 9 1
12 24 5 12 7 1

Program
Electrofishing (ELEC) and fishing tournaments (TOURN) are the sampling methods used, and QUAL
and PREF are the number of fish collected in each length category for each electrofishing station
and fishing tournament. The variable LOGIT was created, which is the ratio of the number of
preferred-length (�38 cm) fish to the number of quality-length (�30 cm) fish in each sample, after
a value of 0.5 was added to QUAL and PREF to remove zeros prior to log transformation. From a
parametric statistics standpoint, using LOGIT has an advantage over using a proportion because it
can exceed one and is more likely to be normally distributed.
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The GLM procedure (SAS 1999) was used to conduct a t-test to determine whether there was a
significant difference in mean LOGIT between the two sampling methods. The WEIGHT statement
weights each sample based on the number of fish collected in each sample.

DATA BASS;

INPUT METHOD $ QUAL PREF;

CARDS;

ELEC    23 12

ELEC    22  2

ELEC    35  8

ELEC     6  2

[Data input continued]

TOURN   28  4

TOURN   13  1

TOURN    8  0

TOURN   61 16

[Data input continued]

;

DATA BASS2; SET BASS;

LOGIT=LOG((PREF+0.5)/(QUAL+0.5));

PROC PRINT;

PROC SORT; BY METHOD;

PROC MEANS; BY METHOD; VAR LOGIT;

WEIGHT QUAL;

PROC GLM;

CLASS METHOD;

MODEL LOGIT=METHOD;

WEIGHT QUAL;

RUN;

Output

Table The number of fish collected in each length category for each sampling method. The
variable LOGIT is the ratio of the number of preferred-length (�38 cm) fish to the number of
quality-length (�30 cm) fish in each sample, after a value of 0.5 was added to QUAL and PREF.

Number of fish

Method and observation QUAL PREF LOGIT

TOURN
1 3 2 –0.33647
2 28 4 –1.84583
3 13 1 –2.19722
4 8 0 –2.83321
5 61 16 –1.31568
6 76 12 –1.81156
7 38 10 –1.29928
8 49 12 –1.37624
9 62 24 –0.93649
10 43 10 –1.42139
11 59 18 –1.16821
12 24 5 –1.49393

(Box continues)
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Number of fish

Method and observation QUAL PREF LOGIT

ELEC
13 23 12 –0.63127
14 22 2 –2.19722
15 35 8 –1.42947
16 6 2 –0.95551
17 11 1 –2.03688
18 15 7 –0.72594
19 12 3 –1.27297
20 9 6 –0.37949
21 25 5 –1.53393
22 25 8 –1.09861
23 9 1 –1.84583
24 7 1 –1.60944

Table Summary statistics (MEANS procedure) based on LOGIT values for two sampling methods.

Method N Mean SD Minimum Maximum

ELEC 12 –1.3281428 2.2037466      –2.1972246 –0.3794896
TOURN 12 –1.4280742 2.4069863 –2.8332133 –0.3364722

Table Result of GLM procedure to compare mean LOGIT (t-test) between the two sampling
methods. The WEIGHT statement weights each sample based on the total number of fish (QUAL)
collected in each sample. Analysis is based on 24 observations.

Class Level Information

Class Levels Values

METHOD 2 ELEC TOURN

GLM Procedure

Source df Sum of squares Mean square F-value P > F

Model 1 1.3907895 1.3907895 0.26 0.6144
Error 22 117.1509050 5.3250411
Corrected total 23 118.5416945

R2 0.011732 Root MSE 2.307605
CV –165.0553 LOGIT mean –1.398080

Results
At the top of the output, LOGIT values for each sample are provided by the PROC PRINT statement.
Sample LOGIT values are followed by the mean LOGIT for electrofishing (mean LOGIT = –1.33) and
fishing tournaments (mean LOGIT = –1.43) weighted by METHOD based on the number of fish in
each sample (QUAL). By calculating the inverse loge of these values, the mean ratio of the number
of preferred-length (i.e., �38 cm) fish to the number of quality-length (i.e., �30 cm) fish was 0.26 for
electrofishing and 0.24 for fishing tournaments. The output for the GLM procedure indicates that
there was not a significant difference (F = 0.26; P = 0.6144) in mean LOGIT between electrofishing
and fishing tournaments. The fisheries scientist fails to reject the null hypothesis that the ratio of
the number of preferred-length (i.e., �38 cm) fish to the number of quality-length (i.e., �30 cm)
fish was the same between the two sampling methods.

Box 9.6 (continued)
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Box 9.7 Using Repeated-Measures ANOVA to Test for Size Structure Differences
with Time-Dependent Data

Repeated-measures ANOVA is commonly used to test for differences in a population response when
samples are not independent, often because they are collected through time. In this example, we
assessed differences in the size structure of a largemouth bass population at Lake Jackson, Florida,
after implementation of a 330–431-mm protected-slot-length limit. Data were collected by Florida
Fish and Wildlife Conservation Commission biologists. The population had no size limit prior to 1991,
and the slot-length limit was enacted in July of 1990. Daytime electrofishing samples were collected
at 12 fixed sites during April from 1988 to 1996. Fixed sites in the analysis were treated as subjects
sampled through time. The size distribution of largemouth bass is likely to be dependent through
time (i.e., size structure of fish present in previous sampling influences size structure at later time
intervals). Thus, the analysis should consider that the size structure of fish at a given site is not
independent through time. In this example, we assessed whether the size structure of largemouth
bass differed before the slot-length limit (N = 3 years of data) compared with after the slot limit
(N = 6 years of data). Largemouth bass were classified into three groups (based on total length):
below 200 mm, 200–329 mm, and 330 mm and larger. The objective of this analysis was to test
whether the ratio of fish 330 mm and larger to fish between 200 and 329 mm differed before and
after the slot-length limit was enacted. Fish below 200 mm were removed from the analysis because
the slot limit was not expected to influence abundance of fish below 200 mm. The null hypothesis is
that the ratio of fish 330 mm and larger to subslot-size fish (i.e., fish > 200 mm but less than 330 mm)
was not different before and after the slot limit was enacted. The mixed-models procedure (PROC
MIXED; SAS 1999) was used to conduct the test.

Data: Part I
In the data table below, COUNT is the number of fish in each size-group, and size-groups are given as
UND (200–329 mm) and SLOT (330 mm and longer). A SITE was included if a fish was collected in at
least one size-group. However, sites that did not contain fish in either size-group were removed from
the analysis because collection of no fish provides no information about size structure (i.e., if both
the UND and SLOT size groups had a COUNT of zero, the site was not included in the analysis).

Table Size-group data for largemouth bass fishery in Lake Jackson, Florida, before and after
slot-length limit implementation.

Year and site Size-group Count

1988
1 UND 4
1 SLOT 1
2 UND 9
2 SLOT 2

[Data continued]

1996
11 UND 4
11 SLOT 4
12 UND 9
12 SLOT 4

[Data continued]

Program: Part I
In the following SAS program, the data were rearranged using PROC TRANSPOSE prior to creating
the dependent variable for the test. This procedure changes columns to rows or rows to columns. In
this example the column COUNT was changed to rows for both size-groups.

(Box continues)
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DATA A;

INPUT YEAR SITE    SIZEGRP $ COUNT;

CARDS;

1988        1        bund       4

1988        1        slot       1

1988        2        bund       9

1988        2        slot       2

[Data input continued]

;

DATA B; SET A;

IF YEAR LE 1990 THEN PERIOD = ‘APRE’;

IF YEAR GT 1990 THEN PERIOD = ‘BPOST’;

RUN;

PROC SORT;

BY PERIOD YEAR SITE;

PROC TRANSPOSE OUT=C;

BY PERIOD YEAR SITE;

VAR COUNT;

DATA D; SET C;

RENAME COL2 = UNDER;

RENAME COL3 = SLOT;

DATA E; SET D;

UNDERT=UNDER+0.5;

SLOTT = SLOT+0.5;

TOTAL =UNDERT+SLOTT;

LOGIT=LOG(SLOTT/(UNDERT));

In step DATA E, 0.5 was added to each count to remove zeros prior to the log transformation.

The variable TOTAL is used to weight each transect in PROC MIXED below. Remember that fish
shorter than 200 mm were removed, and the ratio of the number of fish greater than or equal to
330 mm to the number of fish between 200 and 329 mm was used.

The variable LOGIT is the log of the ratio of fish greater than or equal to 330 mm relative to fish
between 200 and 329 mm. It was predicted that after the slot limit is in place (i.e., anglers cannot
keep fish between 330 and 431 mm) the ratio, and thus, the LOGIT, would increase.

PROC PRINT;

VAR YEAR PERIOD SITE UNDER UNDERT SLOT SLOTT LOGIT;

RUN;

Data: Part II
From the above program, the final data set was created prior to analysis.

Table Final data set for analysis of largemouth bass fishery before and after slot-length limit
implementation. Size-groups are UNDER (200–329 mm), SLOT (330 mm and longer), and those two
categories transformed (UNDERT and SLOTT).

Period,  year, and observation Site UNDER UNDERT SLOT SLOTT LOGIT

Pre-slot limit
1988

1 1 4 4.5 1 1.5 –1.09861
2 2 9 9.5 2 2.5 –1.33500
3 3 11 11.5 1 1.5 –2.03688

Box 9.7 (continued)
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[Data continued]

Period,  year, and observation Site UNDER UNDERT SLOT SLOTT LOGIT

Post-slot limit
1996

1 10 4 4.5 2 2.5 –0.58779
2 11 4 4.5 4 4.5 0.00000
3 12  9 9.5 4 4.5 –0.74721

[Data continued]

Program: Part II

PROC UNIVARIATE PLOT NORMAL;

BY PERIOD;

VAR LOGIT;

The Wilk’s lambda in PROC UNIVARIATE, specified with the NORMAL option, was used to assess
whether the dependent variable (LOGIT) was normally distributed for each PERIOD (pre- versus post-
slot limit years). In this case the assumptions of normality were met (P > 0.05 for both PERIODS).

PROC MIXED;

CLASS PERIOD YEAR SITE;

MODEL LOGIT=PERIOD;

WEIGHT TOTAL;

RANDOM YEAR(PERIOD);

REPEATED YEAR/SUBJECT=SITE TYPE=AR(1);

LSMEANS PERIOD/PDIFF;

RUN;

The model tests whether the mean LOGIT differs significantly between periods (pre- versus post-
slot limit regulation). The WEIGHT statement weights each site based on the number of fish
collected (i.e., sites with large catch influence the test proportionally more). The RANDOM state-
ment assumes that among-year variation within each PERIOD was random. The REPEATED state-
ment indicates the consecutive years of sampling (i.e., time variable), and the SUBJECT statement
assigns each site as an individual station sampled through time. In this case, sites were not chosen
at random so sites are treated as a fixed effect in the model. In SAS, the TYPE statement allows the
researcher to investigate various covariance structures to model the time-dependence of the data
(discussed below). The LSMEANS statement is a means separation option that will give the overall
least-squares means for each period and their significance level (PDIFF).

Output

Table The following output is from the PROC MIXED statement presented above that tests whether
the mean LOGIT differs significantly between periods (PRE = pre-slot limit and POS = post-slot limit).

 Model Information

Data Set WORK.E
Dependent variable LOGIT
Weight variable TOTAL
Covariance structures Variance components, Autoregressive
Subject effect SITE
Estimation method REML
Residual variance method Profile

(Box continues)
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Fixed effects SE method Model-based
Degrees of freedom method Containment

Class Level Information

Class Levels Values

PERIOD 2 PRE POS
YEAR 9 1988 1989 1990 1991 1992 1993 1994 1995 1996
SITE 12 1 2 3 4 5 6 7 8 9 10 11 12

Dimensions

Covariance parameters 3
Columns in X 3
Columns in Z 9
Subjects 1
Maximum observations per subject 101
Observations used 101
Observations not used 0
Total observations 101

Iteration History

Iteration Evaluations –2Residual log likelihood Criteriona

0 1 269.51966315
1 2 268.00863114 0.00000795
 2 1 268.00828432 0.00000000

Covariance Parameter Estimates

Covariance parameter Subject Estimate

 Year (period) 0.04188
 AR(1) Transect 0.09518
 Residual 7.7798

Fit Statistics

–2Residual log likelihood 268.0
AIC (smaller is better) 274.0
AICc (smaller is better) 274.3
BIC (smaller is better) 274.6

Type III Test of Fixed Effects

Effect Numerator df    Denominator df F-value P > F

PERIOD 1 7 4.60 0.0691

Least Squares Means

Effect Period Estimate Standard error df t-value P > |t|

Box 9.7 (continued)
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PERIOD PRE –0.8506 0.1829 7 -4.65 0.0023
PERIOD POS –0.3602 0.1396 7 -2.58 0.0365

Differences of Least Squares Means

Effect Period Period Estimate SE df t-value P > |t|

PERIOD PRE POS –0.4905 0.2286 7 –2.15 0.0691

a The convergence criteria were met.

Results
The “Model Information” and “Class Level Information” output show the model configuration and
levels of each class going into the model. The “Iteration History” reveals whether the model
converged on a solution. The series of “Fit Statistics” allows one to compare various covariance
matrix structures to one’s data. The Akaike’s Information Criteria (AIC), small sample corrected AIC
(AICc), and Bayesian Information Criteria (BIC) are model fit statistics commonly used for many
ecological modeling applications (see Guthery et al. [2005] for a review and critique).  In this
example, the AIC statistic is used to assess how well the time-dependent structure of one’s data fit
the chosen TYPE covariance structure specified in the model (SAS 1999). In this case, TYPE = AR(1)
was used, which is the first-order autoregressive structure. The AR(1) structure models correlations
between time periods that are linear and decline with the distance in time that observations are
made (e.g., assumes years 1 and 2 are more closely related than years 1 and 4; Littell et al. 1996).
Littell et al. (1996) described various options for covariance structures in PROC MIXED, and the
investigator can choose the structure type with the lowest AIC score (i.e., lowest deviance between
the data and the specified structure type). The AR(1) structure is one option for data sampled at
regular time intervals, which in this example was appropriate because electrofishing occurred in
April of each year. The AR(1) model also obtained the lowest AIC score of several covariance
structures considered.

However, we note that the time dependency of the data were not strong based on covariance
parameter estimates of 0.095 for the AR(1) variable relative to a high residual value (7.78).  Analyses
showing strong time dependence typically exhibit covariance parameter estimates of equal or
greater magnitude compared with the residual values (authors, personal observation).  The lack of a
relationship between size structure data in successive years is not atypical given variation around
electrofishing data, and would be grounds to ignore time dependency and use a regular one-way
ANOVA to test for differences in LOGIT between PERIODS.  Thus, samples collected in successive
years do not automatically require repeated-measures analyses!  Here we’ll continue with the
output interpretation as an example of the analysis.

Results of this analysis showed that the LOGIT approached significance between pre- and post-size-
limit time periods (P = 0.069) at an � = 0.05. The LSMEANS procedure output the least-squares
means of the LOGIT (–0.85 and –0.36). By taking the inverse loge of these values, we find that the
ratio of fish 330 mm and larger to fish between 200 and 329 mm averaged 0.427 before the slot
limit and 0.698 after the slot limit was enacted. Thus, at an � level of 0.10, the ratio increased after
the slot was enacted, suggesting that the size structure increased. It is important to note that
although there is a significant difference, variables other than the slot limit (e.g., strong year-classes
or changes in large fish catchability) could have also influenced the result. This example shows how
time dependency in the data can be included in assessment of fish size structure.
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repeated-measures data). Maceina et al. (1994) described how a split-plot ANOVA
could be used to conduct repeated-measures tests. More recently, mixed-model
ANOVA provides multiple options to handle repeated-measures data. The advan-
tage of mixed models over split-plot analyses is that the split-plot ANOVA assumes
compound symmetry (Littell et al. 1996). Compound symmetry is defined as con-
stant dependence; in other words, each time period is assumed to be equally
related to all other time periods. Mixed-model ANOVA allows the investigator to
specify covariance matrix structures other than compound symmetry (Littell et al.
1996). For example, you might expect samples collected in consecutive years to
be more highly related than are samples collected 5 years apart. Box 9.7 provides
an example of using a repeated-measures ANOVA to test for size structure differ-
ences based on time-dependent data. When assessing population size structure
on one population through time, or across multiple populations sampled through
time, use of repeated-measures designs is recommended.

■ 9.5 INTERPRETATION OF SIZE STRUCTURE

9.5.1 Length-Frequency Distributions

Length-frequency distributions reflect an interaction of the rates of recruitment,
growth, and mortality of a fish population. Length-frequency data can provide
insight into the dynamics of fish populations and identify problems such as incon-
sistent year-class strength, slow growth, and excessive mortality (Anderson and
Neumann 1996). In most instances, a thorough assessment of a fish population
requires other population assessment tools, such as C/f, age and growth, or body
condition, in addition to length-frequency data.

Length-frequency data for black crappie collected with a trawl from two Florida
lakes are presented in Figure 9.5. Based on the length-frequency distribution for
Lake Jackson, a fisheries scientist may conclude that the black crappie population
is balanced. A balanced population is one that has moderate rates of recruitment,
growth, and mortality compared with what is expected for populations in the
same geographic region. A length-frequency histogram from a balanced fish popu-
lation will have a stable decline from the shorter to longer lengths, reflecting a
stable age structure produced by consistent recruitment and consistent, moder-
ate rates of mortality among successive age-classes. In exploited populations, the
term balance has also been referred to a population that produces sustainable
yields of harvestable-size fish. However, balanced populations can also occur in
unexploited water bodies (Anderson and Neumann 1996).

The length-frequency histogram for Alligator Lake (Figure 9.5) may indicate
that this population is unbalanced. The most striking difference between Lake
Jackson and Alligator Lake is that Alligator Lake does not show a stable decline in
the numbers of fish with increasing length. Instead, the length-frequency histo-
gram is “interrupted” by length-groups with many individuals bounded by length-
groups with fewer individuals. If the strong and weak interruptions corresponded
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Figure 9.5 Relative-frequency histograms for black crappie from Lake Jackson and Alligator
Lake, Florida, collected by means of a trawl. Data were provided by the Florida Fish and Wildlife
Conservation Commission.
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to age-groups, and if all lengths represented were vulnerable to the sampling
gear, then a fisheries scientist might conclude that year-class strength at Alligator
Lake is inconsistent compared with Jackson Lake. However, the clearest indication
of variable year-class strength would be determined from age-frequency analysis
(see Chapter 4).

The length-frequency distribution for largemouth bass collected by means of
night electrofishing in a South Dakota pond is presented in Figure 9.6. Note that
all largemouth bass sampled were less than quality length; thus PSD = 0. Mortality
in this population possibly is high, demonstrated by the lack of largemouth bass
greater than quality length. When examining the size structure, a fisheries scientist
might arrive at one of several conclusions about the status of this population: (1)
low recruitment, slow growth, and moderate to high mortality due to poor habitat;
(2) overharvest of largemouth bass greater than quality length; or (3) high den-
sity of small, slow-growing largemouth bass due to excessive recruitment. The last
condition is often referred to as stunting. In this example, length-frequency infor-
mation alone could not be interpreted to arrive at the cause for the poor popula-
tion structure. Other information such as C/f, growth, or body condition assess-
ment would be necessary. In Knox Pond, C/f was 306 stock-length largemouth

Figure 9.6 Absolute-length-frequency histogram of stock-length (�20 cm) largemouth bass
sampled by electrofishing from Knox Pond, South Dakota.
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bass per hour of electrofishing (Neumann et al. 1994), which was high compared
with other populations in the state. Mean relative weight (Wr) was 77, and growth
rate was well below the state average. Thus, this population represented condi-
tion 3 listed above. Condition 1 might be confirmed if C/f was low, growth was
slow, and poor habitat was documented. Condition 2 might be confirmed if growth
was moderate to fast, habitat conditions were favorable, and creel statistics showed
a high harvest of quality-length fish. This example also demonstrates the value of
statewide or regional summaries of sampling data for comparative purposes.

9.5.2 Stock Density Indices

The use of stock density indices in size structure assessment should be thought of
as a complement, and not a replacement, to other methods of length-frequency
analysis. Any size structure assessment should begin with a thorough inspection of
length-frequency histograms, as they can provide detail that may be lost when
length data are summarized in wide length categories or by an index. A benefit of
calculating stock density indices is that the index values can be used to test corre-
lations between size structure and other factors. An appropriate question con-
cerning the use of stock density indices is whether the index value (i.e., size struc-
ture) reflects density and dynamics of fish populations (Willis et al. 1993). As the
density of a population increases, PSD tends to decrease; declines in size structure
can be attributed to slowing of growth and increased mortality as resources be-
come scarce. However, a low PSD value may also occur at low population densities
due to overharvest or poor habitat. Negative correlations between PSD and den-
sity, C/f, or biomass have been observed for many species, including largemouth
bass (Reynolds and Babb 1978; Gabelhouse 1984a; Boxrucker 1987; Guy and Willis
1990; Saffel et al. 1990; Hill and Willis 1993), black crappie (RSD-P; Guy and
Willis 1995), black bullhead (Brown et al. 1999), and brook trout (Johnson et al.
1992). Such negative correlations are more likely in small water bodies with simple
fish communities.

As growth increases, there is a tendency for PSD to increase. Low density may
result in fast growth, whereas high density may result in slow growth. Correlations
between stock density indices and growth have been observed for largemouth
bass (Miranda 1983; Jacobs and O’Donnell 1996), smallmouth bass (Jacobs and
O’Donnell 1996), bluegill (Novinger and Legler 1978; Paukert and Willis 2000),
northern pike (Willis and Scalet 1989), yellow perch (Willis et al. 1991; Paukert
and Willis 2000; Paukert et al. 2002), and black crappie (Guy and Willis 1995;
Paukert and Willis 2000; Paukert et al. 2002).

Several studies have demonstrated that body condition is positively correlated
to growth rate (see Chapter 10). Individuals from low-density populations in which
PSD is high tend to have high body condition values, and individuals from high-
density populations in which PSD is low tend to have low body condition values.
Positive correlations between PSD and Wr for species such as largemouth bass
(Wege and Anderson 1978), white crappie and black crappie (Gabelhouse 1984a),
northern pike (Willis and Scalet 1989), walleye (Murphy et al. 1990), sauger (Guy
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et al. 1990), yellow perch (Willis et al. 1991), and brook trout (Johnson et al.
1992) have been observed. However, body condition is an instantaneous mea-
sure, and slow-growing fish may exhibit high body condition at times of the year
when food is abundant or when gonads are mature during the spawning period.

As total annual mortality increases, there is a tendency for PSD to decrease. In
situations in which recruitment is high, as in the Knox Pond example (Figure
9.6), mortality tends to be high and PSD tends to be low. High mortality due to
overharvest and poor habitat also results in low PSD values. Negative correlations
between PSD and mortality have been observed in largemouth bass (Reynolds
and Babb 1978; Miranda 1983; Jacobs and O’Donnell 1996) and smallmouth bass
(Jacobs and O’Donnell 1996).

Correlations between stock density indices and density or  dynamic rate func-
tions are often moderate in strength, and there is a wide variability in the strength
of correlations observed among studies. One reason for this may be that stock
density indices may lack sensitivity in some cases; two populations can have the
same stock density index value and actually have different length-frequency distri-
butions. Variations in factors such as productivity and growing season can affect
establishment of a clear relationship between stock density indices and popula-
tion parameters (Willis et al. 1993). Additionally, variability in PSD may be related
to water body size. For example, largemouth bass in small impoundments may be
more recruitment driven than recruitment limited. Jakes (1987) found that size
structure of largemouth bass increased in three impoundments ranging in size
from 9 to 1,100 ha. Stock density indices also provide more interpretive informa-
tion when populations are relatively steady state, (i.e., when recruitment, growth,
and mortality remain somewhat constant) (Willis et al. 1993). For example, PSD
will provide little interpretive information for populations with highly variable
recruitment. Willis et al. (1993) provided an example in which the PSD of a black
crappie population increased from 3 in spring to 100 in fall. This was the result of
a single cohort of black crappies growing over the course of one season. Allen and
Pine (2000) found that PSD would often not change significantly in response to
minimum length limits if recruitment was highly variable (e.g., coefficients of
variation in recruits to age 1 that are greater than 70–90%).

Correlations between predator and prey stock density index values are listed in
Table 9.3. Because largemouth bass is a common predator in ponds and small
impoundments, most examples listed deal with largemouth bass as the predator,
although several examples of prey are listed. In ponds and small impoundments,
predator PSD tends to decline as predator density increases. As predator density
increases, prey fish density decreases. Thus, prey PSD tends to increase as preda-
tor density increases, resulting in an inverse correlation between predator PSD
and prey PSD (Willis et al. 1993).

The likelihood of an inverse relationship between predator PSD and prey PSD
tends to decline in large water bodies. Carline et al. (1984) suggested that in Ohio
impoundments, inverse relationships between size structure of largemouth bass
and bluegills may not be expected in impoundments greater than 15 ha in size. In
some instances, inverse relationships have been observed in impoundments larger
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than 15 ha (Gabelhouse 1984b; Boxrucker 1987; Guy and Willis 1991; Paukert
and Willis 2000; Paukert et al. 2002).

Stock density indices are useful tools not only to report size structure but also
to reflect density and population dynamics in certain situations. However, because
of the variability in correlations and confounding factors, stock density indices
should be used in association with other assessment tools to evaluate fish popula-
tions properly.

■ 9.6 CONCLUSIONS

Factors influencing the accuracy and precision of size structure data such as gear
selectivity and time of collection should be considered prior to data analysis and
interpretation. Standardized sampling that allows for relative comparisons through
time or across water bodies provides the most powerful inferences, and planning
the study design prior to data collection is imperative. Traditionally, fisheries sci-
entists pool individual fish data from multiple collection events (e.g., electrofishing
runs or nets) to develop and test length-frequency histograms. In this chapter, we
provided alternative analysis methods that consider the collection event as the
experimental unit rather than individual fish. Using the collection event as the
experimental unit has advantages because the analysis considers among-sample
variation in size structure rather than among-individual-fish variation. Addition-
ally, using individual fish as the experimental unit often causes the error degrees
of freedom to be very high, resulting in significant differences when distributions

Table 9.3 Summary of correlation coefficients (r) between stock density indices of predator
and prey species and other parameters. Parameters compared are  proportional stock density
(PSD); relative stock density of preferred-length fish (RSD-P); and catch-per-unit-effort (C/f).

Predator Parameter Prey Parameter r Reference

Largemouth bass PSD Black bullhead Mean length –0.81 Saffel et al. (1990)
C/f Bluegill PSD  0.71 Guy and Willis (1990)
PSD PSD –0.83 Guy and Willis (1990)
RSD-P Growth –0.64 Guy and Willis (1990)
PSD PSD –0.49 Paukert and Willis (2000)
C/f PSD  0.52 Paukert and Willis (2000)
PSD Crappiea PSD –0.85 Gabelhouse (1984a)
RSD-P PSD –0.84 Gabelhouse (1984a)
PSD C/f  0.73 Boxrucker (1987)
RSD-P C/f  0.88 Boxrucker (1987)
C/f PSD  0.56 Boxrucker (1987)
PSD PSD –0.56 Boxrucker (1987)
C/f Yellow perch PSD  0.81 Guy and Willis (1991)
PSD PSD –0.82 Guy and Willis (1991)
PSD Growth –0.95 Guy and Willis (1991)
C/f PSD  0.82 Paukert and Willis (2000)

Northern pike C/f Black bullhead PSD –0.54 Brown et al. (1999)
a Includes white crappie and black crappie.
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appear quite similar (e.g., Kolmogorov–Smirnov two-sample test). Thus, the use
of collection events as the experimental unit results in a more conservative test of
size structure differences, and we recommend these methods when possible. The
fisheries scientist should understand the advantages of various statistical tests and
match analysis methods as best as possible to design experiments properly. Size
structure data can be analyzed as categorical (e.g., chi-square), proportional (e.g.,
PSD), or continuous (e.g., LOGIT) data, depending on the study design and
sample size. Examples in this chapter provide guidance for comparisons across
systems,  through time, or both, depending on the study objectives. Experimental
design and hypothesis testing methods for analyses of length-frequency data will
continue to improve.
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