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■ 5.1 INTRODUCTION

The ability to determine ages of fishes without bias is critical to effective manage-
ment and research. Accurate age information can provide valuable insights into
critical life history events. Often, migrations related to spawning or ontogenetic
changes in environmental requirements are also age dependent. Age data can be
coupled with numbers of individuals to produce an age-frequency distribution,
from which patterns in mortality can be determined. Similarly, deviations in ex-
pected numbers at age can provide insights into year-class strength variability and
the effects of environment on survival.

When age and size information are combined, we can evaluate growth. Growth
provides us with some indication of resource utilization and the effectiveness of
our management strategies. Our ability to model growth and to understand vari-
ables that affect growth both within and among populations is critical to our abil-
ity to manage fisheries effectively. When we evaluate age, growth, and mortality
(see Chapter 6) in combination, we begin to understand the complex relation-
ship between population size and biomass (see Chapter 8). This understanding is
the basis of modern fisheries resource allocation and management.

■ 5.2 AGE DETERMINATION AND VALIDATION

Primary methods employed by fisheries scientists to estimate ages of fishes are
recovery of known-age fish, evaluation of length-frequency distributions, and in-
terpretation of calcified structures. Under unique circumstances, additional meth-
ods employed by researchers include evaluations of isotope decay rates and chemi-
cal microanalysis.

5.2.1 Use of Known-Age Fish

The most direct method of determining age is by the recovery of known-age fish.
Although costly and time consuming, the method is most useful to validate ages
determined by other methods. In this method, fish of known age are reared under
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natural conditions or marked and released into the wild to be recaptured at a
later time. Dyes and stains that are incorporated in hard parts, such as oxytetracy-
cline or alizarin complexone, have been used to validate annual and daily growth-
increment formation (Brothers 1990). Individuals are either immersed into a bath
containing a dye or injected with a chemical that is incorporated into the aging
structure. After a minimum of one annual growth cycle (or several daily growth
cycles), the fish is recaptured and the structure is examined. Although the rela-
tionship between the number of annuli between the mark and the margin of the
structure is used to validate the annual deposition of increments, the technique
validates annual increment formation during only the time period of the study. It
is then inferred that all rings are similarly formed. It is important to examine a
variety of sizes and ages when employing this technique (Campana 2001).

5.2.2 Length-Frequency Method

Because fishes in temperate climates generally spawn over a relatively short pe-
riod each year, but grow over a relatively long period each year, there are natural
discontinuities in the length-frequency distribution between age-classes within a
population (Macdonald and Pitcher 1979; Macdonald 1987). At any given time,
the length-frequency distribution of a population is composed of a variety of age-
classes. In theory, each year-class forms a unique length distribution resulting in a
separate mode in the cumulative distribution. The method of estimating age by
separating overlapping length distributions has been used since the late 1800s.

Although this method works well to separate early age-classes, the decrease in
annual growth in length as individuals age, combined with natural variability in
growth among individuals, results in increasing overlap in age-specific length dis-
tributions with older cohorts (Figure 5.1). In most species, only the youngest two
or three cohorts are readily distinguished using this method. The method also
has several other disadvantages. Environmental conditions often result in disjunct
spawning or survival within a single spawning season, resulting in multi-modal
length-frequency distributions within year-classes. Geographic differences in en-
vironmental quality, density dependency, or other factors may also result in differ-
ential growth between groups spawned within the same time period. Differences
in year-class strength may result in an underrepresentation of one or more year-
classes that are masked by a more dominant cohort. Schooling species often asso-
ciate by size, resulting in little within-school variability in size across age-classes.
Most sampling and fishing gear are size selective and collect samples that are
biased by size or growth rates of individuals. As a result, most samples represent a
subset of the population length distribution that contains only the fastest-growing
younger fish and slowest-growing older fish along with normally growing fish of
intermediate age. The success of the length-frequency method of age estimation
requires a large sample drawn at random from the population. Although it is
useful in fast-growing, short-lived species, the technique is most useful to corrobo-
rate age distributions derived from some other method. Separating the overlap in
length-frequency distributions requires an iterative statistical procedure. Fournier
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Figure 5.1 Illustration of the effect of changes in the mean, standard deviation, and relative
sizes of cohorts upon a length-frequency distribution. The dashed lines represent the frequency
distribution of a hypothetical population and solid lines indicate cohorts. The contribution to
the population by each cohort is constant. Reprinted from Macdonald and Pitcher (1979) with
permission.
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et al. (1998) developed a length-based, age-structured model, MULTIFAN–CL,
which provides an integrated method of estimating age composition and other
parameters from length-frequency data. The method incorporates Bayesian pa-
rameter estimation and procedures for hypothesis testing to assist model develop-
ment. The reader is referred to Macdonald and Pitcher (1979) and Macdonald
(1987) for further information on the use of length-frequency distributions to
assign individuals to age-groups.

5.2.3 Interpretation of Calcified Structures

Intra-annual variability in environmental variables such as temperature, salinity,
dissolved oxygen, and productivity often produce a seasonal cycle in fish growth.
This seasonal cycle is recorded as discernible increments in calcified structures in
fishes because of the differential deposition of calcium and protein in relation to
growth. Structures commonly used to age fish include scales, otoliths, spines, fin
rays, vertebrae, and other bony structures (DeVries and Frie 1996). The success-
ful interpretation of calcified structures to age individuals relies on the ability to
recognize patterns in the layered deposition of material. As annual growth incre-
ments decrease with age, the spacing and distinctness of growth increments in
calcified structures also decreases, often resulting in a negative bias in age esti-
mates of older fishes.

5.2.3.1 Scales

Historically, scales were the most popular structure used to estimate age. Despite
their limitations, they remain an important and commonly employed tool for as-
sessing age and growth in many species. Scales were first recognized to contain
age information as early as 1890. The technique was commonly used in assess-
ments of European marine fisheries at the turn of the century but was not applied
widely in North America until the 1920s (Carlander 1987). A review by Van Oosten
(1929) described the methods and established guidelines for scale interpretation
that led to widespread employment of the method beginning in the 1930s. With a
few modifications, the techniques described by Van Oosten (1929) are still used
today. Although it is relatively easy and inexpensive to collect and prepare scales,
the identification of annuli requires skill and experience. The identification of
false annuli can be a critical component of age and growth studies utilizing scales.
Additionally, scales do not develop at hatching and may not appear until the fish
is at a relatively advanced stage of development (Ward and Leonard 1954; Sire
and Arnulf 1990; Sire et al. 1997).

The major advantage of the use of scales for aging is that the fish need not be
sacrificed for data collection. This is of particular importance in studies focusing
on endangered or threatened species as well as in situations where the removal of
fish from the study area would bias study results. However, the potential bias to-
ward underestimation of age is a major disadvantage.
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5.2.3.2 Otoliths

Otoliths, or ear stones, are acellular structures formed by the crystallization of
calcium carbonate in a protein matrix. This process is growth dependent and
occurs throughout the life of the fish (Popper and Lu 2000). Material is perma-
nently deposited and is not resorbed as in scales. Consequently, otoliths consti-
tute a permanent record of growth for a fish to the extent that fossil otoliths can
be used to reconstruct the life histories of ancient fishes (Woydack and Morales-
Nin 2001). Otoliths were first used to determine fish age in the late 1800s (see
review by Van Oosten 1929). However, the discovery in the 1970s that otoliths
form daily increments has become an important advancement in fisheries science
(Pannella 1971). Daily ages determined from age-0 fish have led to the incorpora-
tion of early life history information, such as cohort-specific growth and mortality,
into stock assessments and the evaluation of the effects of environmental condi-
tions on growth and mortality over short temporal scales. The analysis of daily
otolith increments in fisheries research has been reviewed by Campana and Neilson
(1985). Although otolith increments are usually easier to interpret than are scale
increments, the recognition of otolith annuli and daily growth increments still
requires skill and experience. There are two disadvantages to the use of otoliths
in age determination: sacrifice of the fish is necessary for otolith removal and a
large investment of time is required to prepare them for reading. These factors
should be considered when designing an age and growth study.

5.2.3.3 Spines and Fin Rays

In cases in which sacrifice is impractical and scales are inadequate or nonexistent,
spines or fin rays may be used to determine age. This method is most commonly
employed to age catfishes and sturgeons but can be applied to a wide range of
species (Beamish 1981). The reader is referred to Boyko (1946) and Sneed (1951)
for details regarding preparation and reading. A major disadvantage of this tech-
nique is that spines contain a central lumen, which expands as the fish grows. The
expanding lumen erodes early annuli and can cause age and growth estimates to
be biased (Nash and Irwin 1999; Buckmeier et al. 2002). Annuli can be somewhat
more irregular than those in scales and otoliths, potentially rendering them use-
less for back-calculating growth. However, the use of spines or rays in conjunction
with other structures or in cases where other structures fail to produce reliable
results warrants consideration (Beamish 1981).

5.2.3.4 Vertebrae and Other Bony Structures

Historically, other structures such as opercular bones (Bardach 1955) and cleithra
have been used to determine the ages of fishes. Studies utilizing these structures
are not common, despite yielding age estimates that are comparable to those
from scales and otoliths (Baker and Timmons 1991; Baker and McComish 1998).
The usual methods of age determination for bony fish do not work for cartilagi-
nous fish. However, some structures such as vertebrae contain mineralized calcium
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phosphate, which is deposited in proportion to size and has proven useful in
determining age (Stevens 1975; Clement 1992; Natanson et al. 2001). Other struc-
tures such as the thorns of skates and rays (Gallagher and Nolan 1999) and the
spines of dogfishes (McFarlane and Beamish 1987a) also have been employed for
determining age and growth in elasmobranchs.

5.2.4 Validation of Age Estimates from Calcified Structures

Common assumptions of estimating age from hard parts is that increments are
formed annually or daily and that all marks are readily identifiable. Although
generally correct, these assumptions are not always valid (Beamish and McFarlane
1983; Campana 2001). Variability in growth resulting from environmental extremes,
spawning, disease, or injury may result in marks that appear similar in structure to
annual increments (Mugiya and Uchimura 1989; Morales-Nin 2000). Allometric
growth and the slowing of growth with increasing age may render annual or daily
marks difficult to distinguish. In recent years, the potentially large effects of un-
derestimates in age on management decisions related to harvest and growth have
re-emphasized the importance of validating age estimation procedures (Beamish
and McFarlane 1983; Campana 2001).

5.2.4.1 Natural Marks

In some cases natural marks have been used as a method of age validation. Occa-
sionally a natural or anthropogenic event will create a reference mark on calcified
structures. For example, the eruption of Mount Pinatubo in 1992 resulted in re-
duced productivity in lakes throughout the northeastern United States and Canada.
This reduced productivity has manifested in slow growth of fishes during that
year, which can be seen across age-classes (King et al. 1999a; 1999b). This natural
mark has been used to validate the ages of fishes that were living in 1992. Another
widespread mark that has been used to validate ages in long-lived fishes is the
incorporation of radioactive carbon (14C) from nuclear bomb tests in the 1950s
into tissues (Kalish 1993; Kalish et al. 1997; Campana et al. 2002). Typically, the
nucleus of the otolith is used to determine the year of birth of the individual. The
technique can be used broadly to separate fish into individuals born prior to and
after nuclear weapons testing or to validate specific ages when used in conjunc-
tion with a reference chronology of atmospheric 14C levels. Other events such as
El Niño–La Niña events (Woodbury 1999) and oil spills (Gallego et al. 1995) that
are associated with a specific date have the potential to be used as marks for inde-
pendent validation of age estimates. However, to date, this method has not been
widely investigated.

5.2.4.2 Radiochemical Dating

The ages of fishes determined from otoliths can also be validated using radio-
chemical dating. This process takes advantage of the decay of radioactive trace
elements deposited in the otoliths during their formation. The ratio of parent to
daughter isotopes in the nucleus of the otolith can be used to estimate the time of
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its formation. This technique is dependent upon removal of the nucleus and can
be extremely sensitive to the removal of excess material. Additionally, the resolv-
ing power of the technique renders it suitable only for long-lived species (Francis
2003). The reader is referred to Bennett et al. (1982) and Andrews et al. (1999)
for detailed descriptions of this technique.

5.2.4.3 Marginal Increment Analysis

Marginal increment analysis (MIA) is a commonly used method for evaluating
both annulus and daily increment formation to validate age estimates. It tests the
assumption that a growth increment formed on an annual or daily cycle will fit a
saw-toothed pattern when the average state of completion of that increment in
the population is plotted against time (Figure 5.2). Marginal increment analysis is
popular because it is easy and cost effective relative to other validation techniques.
It uses repeated sampling at regular intervals through time to determine when an
annulus or increment is deposited. The application of the technique has come
under question, as reviewed by Beckman and Wilson (1995) and Campana (2001).
There are severe technological limitations in measuring a growth increment along
the increasingly thin and curved edge of an otolith. These limitations often lead
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Figure 5.2 Plot of marginal increment, the amount of translucent material between the last
increment and the otolith margin, for largemouth bass sampled monthly in a southeastern
reservoir. Increment width increases until another annulus is deposited, in this case, between
March and May.
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to subjective interpretation of results. There are also problems with applying the
results of MIA from a younger, faster-growing age-class to older cohorts within the
same population (Campana 2001). This tends to result in bias toward underesti-
mating age in older individuals. There also have been unexplained instances where
inconsistencies in the timing of increment formation among years and locations
have been observed (Beckman and Wilson 1995).

Campana (2001) outlined several aspects of a well-designed validation study
using MIA. The most important point is to interpret the results objectively by
means of an appropriate statistical analysis. It is essential that only a limited num-
ber of age-classes are used in a MIA and that samples from these age-classes be
randomized before reading to avoid subjectivity. Finally, at least two complete
annual or daily growth cycles should be examined during the course of MIA.

5.2.4.4 Date-Specific Marking

Validation of both annual and in some cases daily growth increments can be ac-
complished through the recapture of physically or chemically marked fish. The
use of chemical marks is perhaps the most powerful of the validation tools, but it
also carries the same drawbacks as any mark–recapture study (see DeVries and
Frie 1996 for details). Otoliths and other hard parts will incorporate chemicals
such as oxytetracycline, alizarin complexone, calcein, and strontium. These chemi-
cals bind to calcium, resulting in a mark on the growth increment forming at the
time that will fluoresce under ultraviolet light (Weber and Ridgway 1962, 1967;
Rahn and Perrin 1970; Hettler 1984; Wilson et al. 1987). For a review of the use of
these chemicals the reader is referred to McFarlane and Beamish (1987b) and
Brothers (1990). The marks have a high retention rate on internal structures
(Reinert et al. 1998) but may degrade on external structures, such as scales and
fin rays, which are exposed to sunlight.

Traditional marks such as externally visible marks or electronic tags such as
passive integrated transponder (PIT) tags have been used. With this technique,
known-age fish are released and recaptured some time later. By comparing a ref-
erence sample collected at the time of release with samples collected from recap-
tured marked fish, annual deposition can be validated.

5.2.4.5 Captive Rearing

Individuals held and reared in captivity can be used to validate daily growth incre-
ment formation. This technique generally is not considered suitable to validate
annulus formation because laboratory conditions cannot fully recreate the natu-
ral environment. Even daily increments differ in appearance in captive-reared
individuals. However, their frequency of formation is rarely influenced because of
the endogenous control of the process (Geffen 1987; Morales-Nin 2000).

5.2.5 Applications of Age Data

In addition to its use in estimating growth (see section 5.3), age data can be used
in several other applications. Data collected from otoliths and other hard parts
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are utilized to construct age- or cohort-specific models of mortality and survivor-
ship. Otoliths are increasingly being used as biological data recorders of tempera-
ture and salinity regimes (Campana 2005). However despite these advances, age–
length keys and hatch date analysis remain important tools frequently used to
evaluate population structure and events that are not easily observed, such as
spawning and migration.

5.2.5.1 Age–Length Keys

The relationship between age and length is relatively stable within a population.
Consequently, age can account for a large amount of the variability in length.
Given a sample of fish that has been aged, we can produce a probability matrix of
the proportion of individuals within a certain length-class having a certain age
(Fridriksson 1934; Ketchen 1949; Isermann and Knight 2005). This table is often
referred to as an age–length key (Box 5.1). The age–length key can then be used
to estimate the age of fish of a given length so that length frequency from a much
larger sample can be converted to age frequency (Isermann and Knight 2005).
The use of ages estimated from age–length keys can significantly reduce the time
or cost associated with aging large numbers of fish. The method is particularly
valuable when applied to rare or endangered species, for which the collection of
tissues used in aging may be problematic. When applied to early life stages, age-
frequency information can provide insight into spawning and migration not avail-
able from length information alone. It is important to note that the usefulness of
age–length keys is generally restricted in time and space. Variability in growth
among years and geographic locations (Westrheim and Ricker 1978; Terceiro and
Ross 1993; Bettoli and Miranda 2001) may bias the results obtained from using
age–length keys developed from other times or places.

5.2.5.2 Hatch Date Analysis

By using information obtained from otolith daily growth increments, it is possible
to determine the hatch date of larval and juvenile fishes. In early life stages, hatch
date distributions can be used to glean information on the importance of density
dependent and independent factors on spawning, growth, and survival. This tech-
nique has numerous applications including identifying the periodicity of spawn-
ing events, locating spawning habitats, and examining cohort-specific patterns of
mortality. Although similar to age-frequency analysis, hatch date analysis uses age
to back-calculate hatch date; then adjustments are made for the effects of cumu-
lative mortality on the numbers produced at each date. By incorporating mortal-
ity information, scientists are better able to estimate egg production and other
variables important in assessing stocks.

■ 5.3 GROWTH

Growth is the addition of biomass to either a population or an individual. In fish-
eries management, we attempt to optimize the efficiency of harvest by balancing
individual growth, population biomass, and mortality. If we harvest young fish, we



196 Chapter 5

Box 5.1 Creating an Age–Length Key

Fisheries scientists often collect length data on large samples, but age data, because of the large
amount of effort involved, are generally collected on smaller samples (i.e., subsamples). In some
cases, we wish to convert our length data to age data. We do this through the use of an age–length
key. We start with a data set containing individual length and age data. By dividing length data into
a series of discrete intervals, we can determine the frequency of ages within each interval. These
frequencies are transformed into probabilities, which are later used to convert numbers at length
to numbers at age. In this example, we have age and length (tl) data for adult spotted sucker. We
create a series of length intervals and create a new variable (tlint) that is a discrete representation
of the length data. In this case, we develop 2 cm (20 mm) length-groups and name each group by
the low end of the interval. We then determine cell frequencies and calculate cell probabilities
using Proc Freq in SAS (SAS 2004). By adding some options to the tables statement, we can
suppress the printing of the frequencies and percentages we don’t need.

Program

data spotted;

input tl age;

if 90<= tl < 100 then tlint = 90;

else if 100<= tl < 120 then tlint = 100;

else if 120<= tl < 140 then tlint = 120;

else if 140<= tl < 160 then tlint = 140;

else if 160<= tl < 180 then tlint = 160;

else if 180<= tl < 200 then tlint = 180;

else if 200<= tl < 220 then tlint = 200;

else if 220<= tl < 240 then tlint = 220;

else if 240<= tl < 260 then tlint = 240;

else if 260<= tl < 280 then tlint = 260;

else if 280<= tl < 300 then tlint = 280;

else if 300<= tl < 320 then tlint = 300;

else if 320<= tl < 340 then tlint = 320;

else if 340<= tl < 360 then tlint = 340;

else if 360<= tl < 380 then tlint = 360;

else if 380<= tl < 400 then tlint = 380;

else if 400<= tl < 420 then tlint = 400;

else if 420<= tl < 440 then tlint = 420;

else if 440<= tl < 460 then tlint = 440;

else if 460<= tl < 480 then tlint = 460;

else if 480<= tl < 500 then tlint = 480;

else if 500<= tl < 520 then tlint = 500;

else if 520<= tl < 540 then tlint = 520;

datalines;

100 1

111 1

114 1

384 4

(input remaining data)

;

proc freq;

tables tlint*age / nocol nofreq nocum nopercent;

run;
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Program Output
The output consists of a table containing the row percent, which is equal to the probability that a
fish within a certain size interval is a certain age.

Table Output from the frequency procedure. Given is the probability that a fish within a given
length interval (tlint) is a certain age.

tlint
and total
number Total
fish 1 2 3 4 5 6 7 8 9 10 number

90 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100 66.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
120 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
240 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
300 0.00 0.00 9.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00
320 0.00 0.00 18.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
340 0.00 0.00 27.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
360 0.00 0.00 27.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
380 0.00 0.00 18.18 30.77 0.00 0.00 0.00 0.00 0.00 0.00
400 0.00 0.00 0.00 46.15 0.00 0.00 0.00 0.00 0.00 0.00
420 0.00 0.00 0.00 23.08 60.00 0.00 0.00 0.00 0.00 0.00
440 0.00 0.00 0.00 0.00 40.00 100.00 0.00 100.00 40.00 0.00
460 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 40.00 0.00
480 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 100.00

Total
number 6 4 11 13 10 5 2 3 5 2 61

Program

Once an age–length key is generated, the length-frequency distribution from the larger sample is
put into the same interval format as the aged sample. The cell frequencies are then multiplied by
the frequencies from the age–length key to estimate the age distribution of the sample.

data spotall;
input tl;

if 90<= tl < 100 then tlint = 90;
else if 100<= tl < 120 then tlint = 100;
else if 120<= tl < 140 then tlint = 120;
else if 140<= tl < 160 then tlint = 140;
else if 160<= tl < 180 then tlint = 160;
else if 180<= tl < 200 then tlint = 180;
else if 200<= tl < 220 then tlint = 200;
else if 220<= tl < 240 then tlint = 220;
else if 240<= tl < 260 then tlint = 240;
else if 260<= tl < 280 then tlint = 260;
else if 280<= tl < 300 then tlint = 280;
else if 300<= tl < 320 then tlint = 300;
else if 320<= tl < 340 then tlint = 320;
else if 340<= tl < 360 then tlint = 340;

(Box continues)

Age
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else if 360<= tl < 380 then tlint = 360;
else if 380<= tl < 400 then tlint = 380;
else if 400<= tl < 420 then tlint = 400;
else if 420<= tl < 440 then tlint = 420;
else if 440<= tl < 460 then tlint = 440;
else if 460<= tl < 480 then tlint = 460;
else if 480<= tl < 500 then tlint = 480;
else if 500<= tl < 520 then tlint = 500;
else if 520<= tl < 540 then tlint = 520;

datalines;
336
336
336
395
395
395
395
386
386
386
386
416
416
416
416
452
452
(input remaining data)
;

proc means mean;
class tlint;
run;

Program Output

The above program will produce a summary table of the number of fish per length interval.

Table Output from the means procedure. Summary statistics for the variable length (tl) for each
length intervals (tlint).

tlint  N Mean SD Minimum Maximum

300     3 318.0000000 0 318.0000000 318.0000000
320     6 335.5000000 0.5477226 335.0000000 336.0000000
340    12 350.7500000 6.3263518 344.0000000 359.0000000
360 12 372.2500000 7.8985039 360.0000000 379.0000000
380    30 392.3333333 6.1941760 382.0000000 399.0000000
400  28 413.0000000 4.4886689 405.0000000 418.0000000
420    48 432.5625000 5.5039879 420.0000000 438.0000000
440    51 449.7450980 4.5380310 443.0000000 459.0000000
460    61 466.9836066 4.1412229 462.0000000 474.0000000
480    83 492.4216867 6.2627830 480.0000000 499.0000000
500    29 512.2068966 2.0244807 510.0000000 514.0000000
520    36 528.4444444 1.6978044 526.0000000 530.0000000

Box 5.1 (continued)
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Program

By using the information from this table as a summary data set, we create a data set for each age-
group and then merge the data sets to create an aged sample.

data spotfreq;

input tlint num;

datalines;

300 3

350 6

340 12

360 12

380 30

400 28

420 48

440 51

460 61

480 83

500 29

520 36;

run;

data spotage1;

set spotfreq;

if tlint = 90 then age = 1;

else if tlint = 100 then age = 1;

else if tlint = 120 then age = 1;

if tlint = 90 then nage = (num* 100)/100;

else if tlint = 100 then nage = (num* 100)/100;

else if tlint = 120 then nage = (num* 100)/100;

if nage = . then delete;

run;

data spotage2;

set spotfreq;

if 240 then age = 2;

if 240 then nage = (num* 100)/100;

if nage = . then delete;

run;

data spotage3;

set spotfreq;

if tlint = 300 then age = 3;

else if tlint = 320 then age = 3;

else if tlint = 340 then age = 3;

else if tlint = 360 then age = 3;

else if tlint = 380 then age = 1;

if tlint = 300 then nage = (num* 100)/100;

else if tlint = 320 then nage = (num* 100)/100;

else if tlint = 340 then nage = (num* 100)/100;

else if tlint = 360 then nage = (num* 100)/100;

else if tlint = 380 then nage = (num* 33.33)/100;

if nage = . then delete;

run;

(Box continues)
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data spotage4;
set spotfreq;
if tlint = 380 then age = 4;
else if tlint = 400 then age = 4;
else if tlint = 420 then age = 4;
if tlint = 380 then nage = (num* 66.67)/100;
else if tlint = 400 then nage = (num* 100)/100;
else if tlint = 420 then nage = (num* 33.33)/100;
if nage = . then delete;
run;

data spotage5;
set spotfreq;
if tlint = 420 then age = 5;
else if tlint = 440 then age = 5;
if tlint = 420 then nage = (num* 66.67)/100;
else if tlint = 440 then nage = (num* 28.57)/100;
if nage = . then delete;
run;

data spotage6;
set spotfreq;
if tlint = 440 then age = 6;
if tlint = 440 then nage = (num* 35.71)/100;
if nage = . then delete;
run;

data spotage7;
set spotfreq;
if tlint = 460 then age = 7;
if tlint = 460 then nage = (num* 50.00)/100;
if nage = . then delete;
run;

data spotage8;
set spotfreq;
if tlint = 440 then age = 8;
else if tlint = 480 then age = 8;
if tlint = 440 then nage = (num* 21.43)/100;
else if tlint = 480 then nage = (num* 33.33)/100;
if nage = . then delete;
run;

data spotage9;
set spotfreq;
if tlint = 440 then age = 9;
else if tlint = 460 then age = 9;
else if tlint = 480 then age = 9;
if tlint = 440 then nage = (num* 14.29)/100;
else if tlint = 460 then nage = (num* 50.00)/100;
else if tlint = 480 then nage = (num* 66.67)/100;
if nage = . then delete;
run;

data spotage;
set spotage1 spotage2 spotage3 spotage4 spotage5 spotage6 spotage7 spotage8

spotage9;
run;

proc print;
run;

Box 5.1 (continued)
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Program Output

The resulting data set contains the number of fish in each age-group (nage) by length category.

Table Number of fish in each age-group (nage) by length category (tlint) for the larger sample.

tlint Number Age nage

300 3 2 3.0000
350 6 2 6.0000
340 12 2 12.0000
360 12 2 12.0000
380 30 2 30.0000
400 28 2 28.0000
420 48 2  48.0000
440 51 2 51.0000
460 61 2 61.0000
480 83 2 83.0000
500 29 2 29.0000
520 36 2 36.0000
300 3 3 3.0000
340 12 3 12.0000
360 12 3 12.0000
380 30 1 9.9990
380 30 4 20.0010
400 28 4 28.0000
420 48 4 15.9984
420 48 5 32.0016
440 51 5 14.5707
440 51 6 18.2121
460 61 7 30.5000
440 51 8 10.9293
480 83 8 27.6639
440 51 9  7.2879
460 61 9 30.5000
480 83 9 55.3361
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may optimize numbers but lose biomass because we have not allowed individuals
to reproduce. Alternatively, if we harvest older fish, individual biomass may be
maximized, but a large portion of the population will be lost to natural mortality.
The interplay between growth and mortality is, therefore, critical in determining
management strategies. Growth is also an important component in understand-
ing the ecology of a species at both the individual and population level, as it is a
convenient method for assessing the quality of a habitat and tracing life histories.

On an individual basis, change in length is proportional to change in weight.
We can relate length and weight using the equation

W = aLb, (5.1)

where W  is weight, L is length, and a and b are constants. This relationship can be
expressed in linear form with the equation

logeW = a + b logeL . (5.2)

When change in all three dimensions is similar across all sizes, we consider
growth to be isometric. This results in the special case in which the exponent b =
3. In most species, body shape does not change with age; therefore, most species
grow isometrically. In species for which individuals change shape with age either
through metamorphosis, development of secondary sex characteristics, or senes-
cence, growth is said to be allometric, and b � 3.

For a variety of reasons including ease, we often measure length rather than
weight. One representation of growth can be obtained by simply comparing the
change in modal lengths through time within a population when the modes are
considered to represent distinct age-classes. Similarly, the progression of modes
through time can be used to estimate growth (Figure 5.3). This method of growth
determination assumes that the sample is drawn at random with respect to size
and that growth across age-classes is similar through time. Variation in growth
within and among years may result in biased estimates when different year-classes
are compared.

There are several different methods to express growth numerically (Ricker
1975; Busacker et al. 1990). If growth is reported as the change in length or weight
over a given time interval, then it is termed absolute growth and expressed as

�Labsolute = L2 –  L1 , (5.3)

where �Labsolute is absolute growth, L1 is initial length, and L2 is final length. How-
ever, growth can also be expressed as a percent increase in length or weight rela-
tive to an initial value. This is referred to as relative growth and is generally ex-
pressed as

�Lrelative =
L2 – L1

L1
100 , (5.4)
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Figure 5.3 Length-frequency distributions of molly miller from August through November
2000 showing an increase in total length (TL) through time of age-0 fish represented in the
samples.
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where �Lrelative is relative growth. Both absolute and relative growth also can be
expressed as a rate in terms of growth per unit time:

Gabsolute =
L2 – L1

t2 – t1
, and (5.5)

Grelative =
L2 – L1

L1(t2 – t1)
, (5.6)

where G is growth rate either absolute or relative, t1 is initial time, t2 is final time,
and L1 and L2 are the corresponding lengths for those times. In the case that
growth is exponential over a short period of time (<1 year) it is best reported as
an instantaneous rate:

G = loge L2 – loge L1

t2 – t1
. (5.7)

These calculations of growth rates yield an estimate of growth that is appropri-
ate over short time scales (days to months). Growth over longer time periods
tends to deviate from these simple, linear, or exponential estimates and requires
more complex models that will be discussed later.

5.3.1 Back-Calculation of Length from Calcified Structures

If we assume that the growth of calcified structures is proportional to overall fish
growth, a simple ratio or direct proportion method can be used to back-calculate
size at annulus formation (Box 5.2). If we know the length of the fish, the radius
of the calcified structure, and the radius to each annulus, we can use the equation

=Li

Lc
, or Li  = Si

Sc

Si Lc

Sc

, (5.8)

where Si is the radius at annulus formation, Sc is the overall radius, Li is the length
at annulus formation, and Lc is the fish length at capture (Box 5.2). Although this
relationship generally holds true, fisheries scientists have noticed that it often
results in an underestimation of length when scales are used. A tacit assumption
of proportionality is that scales are formed early in development. For many spe-
cies, this is not true. Scales may not form in some species until the individual
reaches lengths of 5 cm or greater. Work done by Fraser (1916) and Lee (1920)
suggested that a correction factor (a) be added to the equation to account for the
delay in scale formation. The resulting equation,
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Box 5.2 Determining Mean Back-Calculated Length at Age

In addition to providing estimates of age, hard parts are often used to back-calculate length at
younger ages. To demonstrate how this is accomplished, we will be using a data set determined
from scales and describing the age and growth of spotted sucker from the Savannah River. For each
fish, our data set contains an identification number (ID), sex, total length at capture (Lc ), year of
capture (date), age, radius of ageing structure (scale) at capture (Sc ), annulus i (inc), and scale radius
at each annulus i (Si ) for each individual annulus.

Dahl–Lea Method
We start with the simple case in which the growth of the structure used for ageing is directly
proportional to the growth of the fish. This method is generally referred to as the Dahl–Lea
method (Dahl 1907; Lea 1910) and allows one to back-calculate length at age for individual fish.
The formula is

Li = Lc (Si / Sc ) ,

where Li is back-calculated length at annulus i, Lc is length at capture, Si is ageing-structure radius at
annulus i, and Sc is ageing-structure radius at capture. Using the SAS code below, we can generate
back-calculated total lengths (Li ) and calculate mean length at age for the spotted sucker population.

Program

data sucker;

input ID$ sex$ Lc date age Sc inc Si;

Li = LC * (Si/Sc);

cards;

07447 M 336 2004 3 16.3 1 5

07447 M 336 2004 3 16.3 2 12.9

07447 M 336 2004 3 16.3 3 16.3

35334 F 395 2004 4 18.4 1 4.8

35334 F 395 2004 4 18.4 2 9.9

35334 F 395 2004 4 18.4 3 16.5

35334 F 395 2004 4 18.4 4 18.4

44736 F 386 2004 4 18.6 1 4.9

44736 F 386 2004 4 18.6 2 8.5

44736 F 386 2004 4 18.6 3 13.6

44736 F 386 2004 4 18.6 4 18.6

(input remaining data)

;

run; quit;

proc means data=sucker mean stderr std;

title ‘Mean back-calculated TL at age for spotted sucker’;

class inc;

var Li;

run; quit;

(Box continues)
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Program Output

The above SAS program will yield the following output for our spotted sucker data set.

Table Mean back-calculated total length (Li) at age for spotted sucker generated the means
procedure.

Number of
Annulus i observations Mean SE SD

1 65 93.2168665 2.3905126 19.2729288
2 65 217.2709364 5.0262681 40.5230692
3 65 328.9349467 5.6120787 45.2460251
4 52 373.7611035 6.1277514 44.1878437
5 35 388.8813533 7.3027812 43.2038363
6 27 404.2197909 7.3382603 38.1307192
7 21 413.5260280 6.5852539 30.1774246
8 18 430.0907986 6.5060450 27.6028112
9 18 452.1169315 6.6510322 28.2179397
10 14 464.0779850 7.4847926 28.0055297
11 11 478.1245135 9.1952021 30.4970351
12 9 488.7881206 8.7617199 26.2851596
13 6 498.4247331 10.1487390 24.8592322
14 4 501.2899579 10.1750810 20.3501620
15 3 516.9213162 17.0469489 29.5261816
16 2 540.9583333 26.9583333 38.1248406
17 1 580.0000000

Fraser–Lee Model
In some cases, structures such as scales may take some time to form after hatch or metamorphosis.
Consequently, early length estimates are biased. The Fraser–Lee model (Fraser 1916; Lee 1920)
accounts for this bias by including a biological intercept in the model. The model is

Li = a + (Lc – a)( Si / Sc ).

The variable a is the intercept determined from the ageing-structure radius and fish length
relationship and the other variables are previously defined.

Because we are using scales to back-calculate length at age, we will likely require a correction
factor. Because we did not collect empirical data or find information in the literature regarding the
length of scale formation in spotted sucker, then we must estimate this parameter by modeling the
known relationship between ageing-structure radius and fish-length at capture from our spotted
sucker data set. Even had we found this information in the literature, performing the below
calculations is another good way to check one’s data.

Box 5.2 (continued)

Back-calculated total length
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Program

proc glm data=sucker;

title ‘Estimate of biological intercept’;

model Li = Si;

run; quit;

We use regression analysis to determine the relationship between scale radius at age and back-
calculated total length at age. In a larger data set, it may be possible to use Lc and Sc directly to
estimate the Fraser–Lee correction factor. However, our spotted sucker data set does not have any
individuals younger than age 3. Using Lc and Sc provides us with unrealistically large estimates.

Another important consideration is that units of measurement for Li and Si are the same for this
calculation. Whereas this is not a concern during calculations of length at age because the units
cancel, it will yield inaccurate estimates for the correction factor. In our spotted sucker data set,
scales were magnified 24× and measured in centimeters. A conversion will be necessary as total
length was measured in millimeters. Therefore, we will create a new variable containing the
converted scale radii with the following statement.

data sucker_Si2;

set sucker;

Li = Lc * (Si/Sc);

Si2 = (Si*10)/24;

run; quit;

proc glm data=sucker_Si2;

title ‘Estimate of biological intercept’;

model Li = Si2;

run; quit;

This will convert scale radius from centimeters to millimeters and account for making the measure-
ments under magnification. The program will now yield the following output.

Program Output

Table Estimate of biological intercept for the dependent variable mean back-calculated total
length (Li ) based on the general linear model (GLM) procedure. The number of observations used
and read was 416. Abbreviations are given for coefficient of variation (CV), mean square error (MSE),
and sum of squares (SS).

General linear model

Source df Sum of squares Mean square F-value P > F

Model 1 6486640.962 6486640.962 3672.42 <0.0001
Error 414 731253.767 1766.313
Corrected total 415 7217894.729

R2 0.898689 Root MSE 42.02753
CV 13.00363 Li mean 323.1985

(Box continues)
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Source df Type I SS Mean square F-value P > F

Si2 1 6486640.962 6486640.962 3672.42 <0.0001

Source df Type III SS Mean square F-value P > F

Si2 1 6486640.962 6486640.962 3672.42 <0.0001

Variable Estimate SE t-value P > |t |

Intercept 35.49138299 5.17548973 6.86 <0.0001
Si2 50.88336354 0.83965286 60.60 <0.0001

The intercept of this linear model will be an estimate of the Fraser–Lee correction factor. Therefore,
we must be able to reject the null hypothesis that the intercept is not different from 0. If we cannot
reject this null hypothesis, then a correction factor is not likely to be necessary. In the case of our
spotted sucker data, a correction factor is necessary. Now, the correction factor a can be used to
calculate mean back-calculated total length (Li) at age with the Fraser–Lee correction.

Program

data sucker_a;

set sucker;

Li = Lc * (Si/Sc);

Si2 = (Si*10)/24;

a = 35.5;

Li_corrected = a + (Lc - a) * (Si/Sc);

run; quit;

proc means data=sucker_a mean stderr std;

title ‘Corrected mean back-calculated TL at age for spotted sucker’;

class inc;

var Li_corrected;

run; quit;

Box 5.2 (continued)

Lc  – a
Sc

Si  + a ,Li  = (5.9)

where a is the size of the individual at the time of scale formation, provides an
unbiased estimate in length when scales are used and is referred to as the Fraser–
Lee or intercept-corrected direct proportion model. While this formula is widely
used, it may not be the most precise estimate of length at age. There can also be
differences in the precision of back-calculation depending upon the structure,
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Program Output

The above program produces the following output.

Table Corrected mean back-calculated total length (Li) at age for spotted sucker generated by the
means procedure.

Number of
Annulus i observations Mean SE SD

1 65 120.8801223 2.1454817 17.2974263
2 65 234.5165149 4.4996539 36.2773695
3 65 336.8015953 4.9458073 39.8743735
4 52 379.4639509 5.3958210 38.9098182
5 35 394.8724181 6.4986305 38.4464168
6 27 409.7792454 6.5739649 34.1593235
7 21 419.0105377 5.9427822 27.2332491
8 18 434.8327817 5.9630989 25.2992861
9 18 455.2899399 6.1182144 25.9573855
10 14 466.9561266 7.0110838 26.2330736
11 11 480.5614840 8.7472611 29.0113831
12 9 490.6474731 8.3865848 25.1597543
13 6 499.9279199 9.9833260 24.4540545
14 4 502.6128845 10.6974006 21.3948012
15 3 517.8177039 17.4957374 30.3035062
16 2 541.3281250 27.3281250 38.6478050
17 1 580.0000000

This method is very useful when sample sizes are small and additional growth information is
needed. It can also be used to develop data to test for size-selective mortality (or Lee’s phenom-
enon), a common occurrence in commercial fisheries. Growth histories from specific year-classes
can be compared or data can be converted to year-specific growth to compare inter-annual
variations.

Back-calculated total length

necessitating careful selection of the model used (Campana 1990; Klumb et al.
2001). The reader is referred to Francis (1990) for a review of alternative meth-
ods. Once calculated, size-at-age information between sexes and populations can
be compared (Box 5.3).

Often times, back-calculated lengths fall below the mean of observed lengths
from the same population. This apparent change in growth over time was first
described by Lee in 1920 and is discussed by Ricker (1975) and others to a greater
extent. Interestingly, Lee’s phenomenon can be related to (1) failure to use the
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Box 5.3 Assessing Differences in Length at Age between Groups

Now that we have corrected back-calculated length at age, we can test for differences between
groups. For example, we commonly want to test for a sex effect on length at age.  We can use our
previous example to evaluate differences between sexes by means of an analysis of covariance
(ANCOVA) approach. We start with our spotted sucker data set containing fish identification
number (ID), sex, total length at capture (Lc ), year of capture (date), age, radius of aging structure
(scale) at capture (Sc ), annulus increment number (inc), and radius of aging structure at inc (Si ). We
calculate the length at each increment using a direct proportion method and incorporate the
Fraser–Lee correction factor calculated in Box 5.2. Given that growth has a curvilinear component,
we create a dummy variable (incsq) to be incorporated into the model.

Program

data sucker;

input ID$ sex$ Lc date age Sc inc Si;

a = 35.5;

Li_corrected = a + (Lc - a) * (Si/Sc);

incsq = inc*inc;

cards;

07447 M 336 2004 3 16.3 1 5

07447 M 336 2004 3 16.3 2 12.9

07447 M 336 2004 3 16.3 3 16.3

35334 F 395 2004 4 18.4 1 4.8

35334 F 395 2004 4 18.4 2 9.9

35334 F 395 2004 4 18.4 3 16.5

35334 F 395 2004 4 18.4 4 18.4

44736 F 386 2004 4 18.6 1 4.9

44736 F 386 2004 4 18.6 2 8.5

44736 F 386 2004 4 18.6 3 13.6

44736 F 386 2004 4 18.6 4 18.6

(input remaining data)

;

run; quit;

Once the data are entered we can run the GLM procedure to test the null hypothesis that there is
no difference between males and females in the slope of the length at age regressions.

proc glm data=sucker;

title ‘Testing for equal slopes between males and females’;

class sex;

model Li_corrected= sex inc incsq sex*inc sex*incsq;

run; quit;

This program will yield the following output.



Age and Growth 211

Program Output

Table Test of the assumption of equal slopes for male and female spotted suckers (ANCOVA) by
means of the GLM procedure with Li-corrected (back-calculated total length, Li , with the Fraser–Lee
correction factor) as the dependent variable.

General linear model

Source df Sum of squares Mean square F-value P > F

Model 5 5486250.292 1097250.058 589.40 <0.0001
Error 410 763266.344 1861.625
Corrected total 415 6249516.636

R2 0.877868 Root MSE 43.14656
CV 12.92255 Li-corrected mean 333.8859

Source df Type I SS Mean square F-value P > F

Sex 1 116871.182 116871.182 62.78 <0.0001
Inc 1 4286871.155 4286871.155 2302.76 <0.0001
Incsq 1 937786.528 937786.528 503.75 <0.0001
Inc*sex 1 9742.781 9742.781 5.23 0.0227
Incsq*sex 1 134978.646 134978.646 72.51 <0.0001

Source df Type III SS Mean square F-value P > F

Sex 1 49896.978 49896.978 26.80 <0.0001
Inc 1 1974734.921 1974734.921 1060.76 <0.0001
Incsq 1 688068.591 688068.591 369.61 <0.0001
Inc*sex 1 143885.275 143885.275 77.29 <0.0001
Incsq*sex 1 134978.646 134978.646 72.51 <0.0001

The value of interest here is the P-value for the interaction terms inc*sex and incsq*sex. This tests
the null hypothesis that the slopes are equal between males and females. In this case, it appears
that males and females have different slopes and thus grow at different rates. We would use this
information to justify modeling the growth of the two sexes separately.

Similarly, differences in growth rates between populations or other treatment variables can be
evaluated by placing a population or treatment identifier in the data set and substituting it for sex
in the analysis.
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corrected body–scale relationship, (2) a bias resulting from size-selective sampling
or harvest, or (3) variation in mortality rates as a function of growth. Size selectiv-
ity may be the most common bias, as fish tend to be sampled or harvested by size-
selective gear rather than by age-selective gear, so the fastest-growing individuals
are sampled or harvested first. Consequently, individuals that live the longest tend
to be the slowest-growing individuals in the population, resulting in smaller back-
calculated sizes at younger ages.

5.3.2 Growth in Weight

Theoretically, in an unlimited environment growth is exponential and can be
modeled using the equation

wt = w0e gt, (5.10)

where wt is weight at time t, w 0 is initial weight, e is the base of the natural loga-
rithm, and g is a growth coefficient. Although this equation could be used to
estimate population growth as well as individual growth, it is seldom applicable
for either over long periods. This model assumes no limitations on growth, and
this is rarely the case. The model is useful, however, to estimate production of
growth within a single growing season or early in development. As previously
mentioned, growth in weight is not used as commonly as growth in length. How-
ever, weight can be substituted for length in the growth models presented below
and will maintain the same form. Coefficients estimated for the resulting equa-
tions, obviously, will be different.

5.3.3 Growth in Length

The weight model presented above is not useful to represent growth in length.
Early in life, length and weight both increase very rapidly. However, as fish age,
small changes in length can result in large changes in weight (equation [5.1]).
Although fish are thought to exhibit indeterminate growth, length often ap-
proaches an asymptote. A number of models have been used to model length, but
the model developed by von Bertalanffy (1938) generally fits fish length data well.
It has become a standard among fisheries scientists. The model is represented as

lt = L �(1 – e –K(t – t0)), (5.11)

where lt is length at time t, L � is the asymptotic length, K is a growth coefficient,
and t0 is a time coefficient at which length would theoretically be 0.

Unlike the simple exponential model, obtaining estimates of L�, t0, and K re-
quires an iterative solution. Most statistical and graphics software packages now
contain programs that calculate maximum likelihood estimates (see Chapter 8
for explanation of maximum likelihood) of nonlinear regression parameters such
as those in the von Bertalanffy growth equation. Historically, these parameters
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were estimated using a graphical solution. Walford (1946) observed that when
length at age t + 1 was plotted against length at age t, the slope of the line was
equal to e–K, where K is the same growth coefficient as in the von Bertalanffy model
(Figure 5.4). If a line with a slope of 1 (i.e., a 45° line) is drawn through the

Figure 5.4 (a) Walford plot (solid line) of spotted sucker  and the resulting von Bertalanffy
growth curve  parameters (L� = asymptotic length and K = growth coefficient) estimated from
the Walford plot. Dashed line with a slope of 1 is drawn through the origin to provide an
estimate of L� at its intersection with the Walford plot. (b) The von Bertalanffy growth curve
generated from a Walford plot (solid line) is compared with one generated using iterative
procedures illustrated in Box 5.4 (dotted line).
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origin, the intersection of the two lines indicates the size at which change in length
is theoretically 0 and provides an estimate of L� . The parameter t0 may be esti-
mated by substituting known values for length and age, and the estimates of K
and L � derived from the Walford plot may be placed into the von Bertalanffy
equation. Although this method produces reasonable estimates, mathematical
solutions are more precise (Box 5.4).

The von Bertalanffy model often works well across the entire life history of a
fish, meaning it can be applied to a single sample integrated across year-classes or
can be developed for individual year-classes. Data also may be stratified by sex or
geographic area, modeled independently, and compared using analysis of covari-
ance (ANCOVA) (Box 5.5).

In some mark–recapture studies, we may know size at capture and recapture
and time at large, but we may not know age. Fabens (1965) proposed a modifica-
tion of the von Bertalanffy equation to model growth under this unique circum-
stance. This model is useful for work on relatively rare or endangered species for
which collection of materials on which to base age is impractical or on marine
reptiles and other organisms for which a method to determine age has not been
identified. The Fabens model is

Rî = Mi + (L� – Mi)(1 – e –K�ti) (5.12)

where Rî is the length at recapture of the ith individual, Mi is the length at mark-
ing (or first capture) of the ith individual, L � and K are parameters of the von
Bertalanffy growth equation, and �ti is the time at large. Model parameters can be
estimated using a maximum likelihood estimator, or nonlinear fit program, as
with the von Bertalanffy model (Box 5.6). Note that this method does not provide
and estimate for the time at zero length, t0, which must be estimated through
some other method, by using empirical early growth data, or by substituting known
age and length values and parameter estimates into the equation as above.

Although the von Bertalanffy model has become the method of choice for
modeling growth in length, other growth models may be more appropriate de-
pending upon the species of interest and the specific circumstances (Ricker 1975).
Other commonly applied growth models are included below.

Richards (1959):

lt = D + (L � – D)(1 + He –k(t – t0))–1/H ; (5.13)

Gompertz (1825):

lt = L�e –ke –gt (5.14)

and the logistic (Verhulst 1838, 1845):

L�A
A + (L� – A)e –ktlt  = . (5.15)
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Box 5.4 Fitting a von Bertalanffy Growth Curve

The length-at-age data on spotted sucker illustrated in Figure 5.4 and Box 5.2 will be used here. For
each individual in the data set, we have entered total length (tl) and age. Therefore, each fish
represents a single degree of freedom in the analysis. To minimize bias, similar numbers of fish from
each year-class should be included in the model. If older or younger age-classes are not well
represented in the analysis, confidence limits at the extremes of the curve may expand dramatically
or the model will fail to converge. Parameters for the growth curve can now be estimated iteratively
using a nonlinear regression approach with the following SAS program.

Program

data spotage;
input tl age;
cards;
388 4
418 4
438 4
428 5
539 10
432 4
444 7
421 4
438 4
(input remaining data)
;
run;

proc nlin data = spotage;
model tl = linf*(1-EXP(-k*(age–t0)));
parameters linf = 1000 k = 0.1 t0 = 0.1;
output out = explen p = extl;
run;

The model statement expresses the von Bertalanffy model in SAS format. Other models may be
substituted. Here are some examples of common growth models expressed in SAS format.

Richards:

model Lt = D+(Lmax–D)*(1+ He**(–k*(t–t0)))**( –1/H) ;

Gompertz:

model Lt = Lmax*exp(–k*exp(–g*t)) ; and

logistic:

model Lt = (Lmax*A)/(A+(Lmax –A)*exp(–k*t) .

The parameters statement provides initial parameter estimates. These values can be estimated
from traditional methods such as the Walford plot or by using reasonable values obtained from the
literature or from similar species. For example, the asymptotic length, L� (linf ), can be estimated as
the average length of the oldest age-group. The output statement creates a data set with expected
(predicted) values for length at each age, which can then be plotted or analyzed further.

(Box continues)
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Program Output
The output consists of the results of the iterations, the associated sums of squares, a regression
analysis containing the statistical significance of the model, the parameter estimates and associ-
ated confidence limits, and a correlation matrix for the parameter estimates.

Table Nonlinear regression analysis (NLIN procedure) of the total length (tl) of spotted sucker and
estimates of the von Bertalanffy growth model parameters: asymptotic length (linf ), growth
coefficient (k), and time coefficient (t0) where length would theoretically be 0. Iterations based on
the based on the Gauss-Newton method; convergence criterion was met. The acronyms PPC
(prospective parameter change measure) and RPC (retrospective parameter change measure) refer
to how well the model met its convergence criteria; the reader is advised to see SAS for details of
definitions and procedures.

Iterative phase

Iteration linf k t0 SS

0 1000.0 0.1000 0.1000 469817
1 776.8 0.1027 –1.5355 326499
2 579.8 0.1096 –4.5622 302753
3 549.8 0.1226 –6.6931 44520.3
4 542.7 0.1382 –6.3290 30574.0
5 535.5 0.1505 –5.8205 30269.8
6 530.3 0.1599 –5.4872 30190.3
7 526.6 0.1670 –5.2450 30171.2
8 523.9 0.1725 –5.0682 30165.6
9 522.0 0.1766 –4.9377 30163.7
10 520.5 0.1798 –4.8406 30163.0
11 519.5 0.1822 –4.7680 30162.6
12 518.7 0.1841 –4.7134 30162.5
13 518.1 0.1855 –4.6723 30162.4
14 517.6 0.1865 –4.6412 30162.3
15 517.3 0.1874 –4.6177 30162.3
16 517.1 0.1880 –4.5999 30162.3
17 516.9 0.1885 –4.5864 30162.3
18 516.7 0.1888 –4.5761 30162.3
19 516.6 0.1891 –4.5683 30162.3
20 516.5 0.1893 –4.5624 30162.3
21 516.5 0.1894 –4.5579 30162.3
22 516.4 0.1896 –4.5544 30162.3
23 516.4 0.1897 –4.5518 30162.3
24 516.3 0.1897 –4.5498 30162.3
25 516.3 0.1898 –4.5483 30162.3
26 516.3 0.1898 –4.5472 30162.3
27 516.3 0.1899 –4.5463 30162.3
28 516.3 0.1899 –4.5457 30162.3
29 516.3 0.1899 –4.5451 30162.3
30 516.3 0.1899 –4.5448 30162.3

Box 5.4 (continued)
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Estimation summary

Method Gauss-Newton
Iterations 30
Subiterations 1
Average subiterations 0.033333
R 9.028 × 10–6

PPC(t0) 0.000065
RPC(t0) 0.000085
Object 2.48 × 10–10

Objective 30162.26
Observations read 95
Observations used 95
Observations missing 0

Regression analysis

Approximate
Source df SS Mean square F-value P > F

Model 2 38328.9 19164.4 58.45 <0.0001
Error 92 30162.3 327.9
Corrected total 94 68491.2

Parameter estimates

Approximate Approximate 95%
Parameter Estimate SE confidence limits

linf 516.3 48.8409 419.3 613.3
k 0.1899 0.1194 –0.0473 0.4271
t0 –4.5448 3.4102 –11.3178 2.2283

Approximate correlation matrix

linf k t0

linf 1.0000000 –0.9872305 –0.9616729
k –0.9872305 1.0000000 0.9927332
t0 –0.9616729 0.9927332 1.0000000

The model indicates that growth of spotted sucker can be estimated using the equation

lt = L�[1 – e–K (t – t0)],

where

lt = 516.3[1 – e–0.1899(t + 4.5448)].
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Box 5.5 Identifying Environmental Effects on Growth

Often, fisheries scientists are interested in evaluating the effects of some management strategy on
growth. Length limits, fertilization, and water level manipulations, for example, may all produce time-
specific effects. We cannot simply compare pre-treatment length with post-treatment length. Weisburg
and Frie (1987) demonstrated a method of isolating annular growth effects by calculating growth
increment and assigning this not only to a specific age but to a specific year. We will use data collected
from a population of spotted sucker to test the effects of an extended drought on growth. The drought
occurred from 2000 through 2003. Rather than test for the effect of a specific individual year, we group
years together by rainfall. Although it would have improved the statistical performance of the model,
note that it is not necessary to sample pre-treatment fish length as long as the post-treatment sample
contains a representative sample of fish that were alive during the pre-treatment period. In this case,
year-classes from normal and drought (dry) years were present in the sample.

Program

data spotted_weather;
input id $ sex $ tl w year age bcyear bcage bctl growth;
if bcyear < 2000 then group = “normal”;
else if bcyear >1999 then group = “dry”;
cards;
04111 F 486 710 2004 9 1995 1 76 76
04111 F 486 710 2004 9 1996 2 181 104
04111 F 486 710 2004 9 1997 3 275 94
(input remaining data)
;
run;

proc glm;
class bcage group;
model growth = bcage group bcage*group;
run;

The model statement evaluates annual length increment (growth) as a function of weather
conditions (group), age (bcage), and the interaction between age and weather (bcage*group). In
cases in which the interaction is significant, results can be interpreted that the treatment affected
age-classes differently. For example, we could conclude that during a drought, younger fish might
grow slower because of poor habitat but that older fish would grow faster due to a concentration
of prey caused by decreased water levels.

Program Output
The output consists of a standard F table including model degrees of freedom, the associated
model and partial sums of squares, model and partial F-values, and significance levels.

Table Evaluation of annual length increment (growth) as a function of weather conditions (group)
and age (bcage).

General linear model

Source df SS Mean square F-value P > F

Model 13 341678.9817 26282.9986 60.18 <0.0001
Error 230 100453.0305 436.7523
Corrected total 243 442132.0123

R2 0.772799 Root MSE 20.89862
CV 23.71861 Growth mean 88.11066
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Source df Type I SS Mean square F-value P > F

bcage 8 333756.1313 41719.5164 95.52 <0.0001
group 1 6500.5460 6500.5460 14.88 0.0001
bcage*group 4 1422.3044 355.5761 0.81 0.5173

Source df Type III SS Mean square F-value P > F

bcage 8 210629.6102 26328.7013 60.28 <0.0001
group 1 3025.6062 3025.6062 6.93 0.0091
bcage*group 4 1422.3044 355.5761 0.81 0.5173

The model indicates that both age (bcage) and weather (group) accounted for significant propor-
tions of variation in growth, but that no significant interaction between age and weather was
detected. Therefore, we can reduce the model and further evaluate the effects of age and year on
growth. Using the same data, we now run the following model.

Program

proc glm;

class bcage group;

model growth = bcage group;

means group;

lsmeans group / adjust=dunnett pdiff=control(‘dry’);

run;

The reduced model drops the interaction term. We then calculate mean growth for each category
of rainfall. The lsmeans statement calculates least-squares means for normal and drought levels and
then compares mean values using a t-test. The following output is produced.

Program Output

Table Comparison of growth of spotted suckers in dry and normal years. The number of observa-
tions read and used was 244. The least-squares means (lsmeans) comparisons are made with the
Dunnett–Hsu adjustment for multiple comparisons. The null hypothesis being tested LSMean1 =
LSMean2 compares mean growth in dry and normal conditions.

Class level information

 Class Levels Values

bcage 9 1 2 3 4 5 6 7 8 9
group 2 dry normal

(Box continues)
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The GLM procedures

Source df SS Mean square F-value P > F

Model 9 340256.6774 37806.2975 86.84 <0.0001
Error 234 101875.3349 435.3647
Corrected total 243 442132.0123

R2 0.769582 Root MSE 20.86539
CV 23.68090 Growth mean 88.11066

Source df Type I SS Mean square F-value P > F

bcage 8 333756.1313 41719.5164 95.83 <0.0001
group 1 6500.5460 6500.5460 14.93 0.0001

Source df Type III SS Mean square F-value P > F

bcage 8 340056.3180 42507.0398 97.64 <0.0001
group 1 6500.5460 6500.5460 14.93 0.0001

Group statistics

Level of group N Growth mean Growth SD

Dry 195 87.6564103 45.5918683
Normal 49 89.9183673 28.3870839

Least-squares means

Growth Group lsmean P > |t|

Dry 60.7771191 0.0001
Normal 47.1788748

The model indicates that growth of spotted suckers was higher during drought conditions than
during normal conditions. In this case, there were only two groups and the results of the pairwise
t-test are the same as for the general model. However, the same procedure could be used when
more than two groups are present.

Box 5.5 (continued)
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Box 5.6 Estimating Growth from Mark and Recapture Data

In this example, data on the carapace length of loggerhead turtles at mark and at recapture will be
used to fit a von Bertalanffy growth curve by means of the Fabens (1965) method. For each
individual in the data set, time at large (days) has been calculated from the mark and recapture
dates. Carapace length at mark (clmark) and at recapture (clrecap) and time at large (timeoutd) has
been entered for each individual. To calculate the von Bertalanffy growth parameters in a standard
form, time at large has been converted from days to years (timeouty). Each individual, therefore,
represents a single degree of freedom in the analysis. If older and younger age-classes are not well
represented in the analysis, or if time at large is long with respect to the expected age of the
animal, convergence criteria for parameter estimation may not be met. Parameters for the growth
curve can now be estimated iteratively using a nonlinear regression approach with the following
SAS program.

Program

data turlen;

input markd $ clmark recapd $ clrecap timeoutd;

timeouty = timeoutd/365;

cards;

6/28/00 70.3 6/24/03 76.0 1091

7/20/00 60.5 7/15/03 64.7 1090

8/3/00 65.6 7/18/02 67.9 714

8/3/00 61.2 6/25/03 65.2 1056

7/9/01 76.9 6/24/03 79.1 715

7/12/01 64.4 6/9/03 67.5 697

7/18/01 97.4 6/17/02 97.9 335

3/30/98 60.9 6/21/02 67.7 1544

6/27/00 62.5 6/19/03 69.1 1087

5/12/99 67.0 7/12/00 69.5 427

6/18/89 41.0 9/21/91 52.0 1187

8/28/91 60.412/24/94 70.5 1945

7/14/86 19.3 8/28/91 42.0 1869

6/29/90 40.5 2/6/93 49.8 890

5/10/92 28.0 6/23/96 48.0 1503

6/30/92 26.011/15/95 42.0 1230

8/8/96 64.0 6/19/98 69.6 680

;

run;

proc nlin data = turlen;

model clrecap = clmark + (linf - clmark)*(1 - exp(-K*timeouty));

parms linf = 100 k = 0.1;

output out = pturlen p = pclrecap;

run;

The model statement expresses the von Bertalanffy model in SAS format without the usual t0

parameter. The parameter t0 can be estimated independently or by using a known-age individual to
“anchor” the growth curve once L� (linf ) and K (k) have been estimated. As with our initial nonlinear
fit exercise, the Fabens (1965) approach can be used to estimate parameters of other growth
models.

(Box continues)



222 Chapter 5

In these models,  lt is the size at time t, L� is the asymptotic length, t0 is the time
at size 0, k  and g  are generalized growth parameters that vary slightly in definition
between models, and A, D, and H are position parameters used to constrain the
inflection point. The logistic model differs from the von Bertalanffy, Richards,
and Gompertz models in that it is symmetrical in relation to the inflection point.
These models are not commonly employed in fisheries but are frequently used
for other organisms.

Again, the parameters statement provides initial parameter estimates, and the output statement
creates a data set with expected (predicted) values for carapace length at recapture, which can
then be plotted or analyzed further.

Program Output
The output consists of the results of the iterations and the associated sums of squares, a regression
analysis containing the statistical significance of the model, parameter estimates and associated
confidence limits, and a correlation matrix for the parameter estimates.

Table Nonlinear regression analysis (NLIN) of loggerhead turtle carapace length at recapture
(clrecap). Estimates of growth model parameters L� (linf ) and K (k) are produced; convergence
criterion was met. An intercept was not specified for the regression model.

Iterative phase

Iteration linf k SS

0 100.0 0.1000 375.4
1 89.5614 0.0839 30.3416
2 87.4962 0.0857 28.9656
3 88.0507 0.0847 28.9197
4 88.0477 0.0845 28.9169
5 88.0490 0.0845 28.9169
6 88.0481 0.0845 28.9169

Estimation summary

Method DUD
Iterations 6
Object 4.114 × 10–9

Objective 28.91686
Observations read 17
Observations used 17
Observations missing 0

Box 5.6 (continued)
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Regression model

Approximate
Source df SS Mean square F-value P > F

Regression 2 74210.9 37105.4 19247.7 <0.0001
Residual 15 28.9169 1.9278
Uncorrected total 17 74239.8
Corrected total 16 3257.3

Parameter estimates

Approximate Approximate 95%
Parameter Estimate SE confidence limits

linf 88.0481 3.5192 80.5471 95.5491
k 0.0845 0.00820 0.0671 0.1020

Approximate correlation matrix

linf k

linf 1.0000000 –0.9079249
k –0.9079249 1.0000000

The model indicates that growth (as carapace length, Cl) of loggerhead turtle can be estimated
using the equation

Clt = L�(1 – eKt ),

where

Clt = 88.0481(1 – e–0.0845t ).

The model assumes t0 = 0.  If t0 can be estimated independently, then the model can be adjusted
accordingly.

■ 5.4 SUMMARY

In this chapter, we learned about the unique properties of fish calcified structures
to record growth history and the importance of validating the interpretation of
these structures. We learned that unbiased age determination is the backbone of
modern stock assessment. Because of the close relationship between age and length,
ages determined from a subsample can be used to estimate the age distribution of
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the population. If we know age and size, we can determine growth and compare
growth attributes between populations. If our age data are frequent relative to the
age of the fish, we can model the change in size through time using nonlinear
models such as the model proposed by von Bertalanffy (1938). We can also com-
pare current growth with historic or back-calculated growth to evaluate size-selec-
tive processes in fisheries. Age and growth data are a critical component in the
effective management of fisheries resources. While age and growth analyses are
generally straightforward, collection and interpretation requires skill and experi-
ence. The application of age and growth data to recruitment, mortality, and other
population models can be expensive and time consuming but are critical to the
conclusions drawn from these studies. All attempts should be made to incorporate
them whenever possible. One of the most important recent advances in the field of
age and growth has been the detection of daily increments in otoliths. This discov-
ery has allowed fisheries scientists to apply analytical techniques to age-0 fish that
were previously reserved for adult fish. Consequently, we now have a better ability to
evaluate factors affecting recruitment and year-class strength formation.
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