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■ 11.1 INTRODUCTION

Quantitative assessment of food habits is an important aspect of fisheries manage-
ment. Successful management of sport fishes often hinges on our ability to man-
age prey resources (Noble 1981; DeVries and Stein 1990). As a result, knowledge
of prey resources can help guide management efforts aimed at increasing fish
production. Accurate description of fish diets and feeding habits also provides
the basis for understanding trophic interactions in aquatic food webs (Garvey et
al. 1998a; Vander Zanden et al. 2000). Diet composition analysis or other tech-
niques, such as stable isotope analysis, can be used to evaluate effects of ontogeny,
habitat, or the establishment of exotic species.

Diets of fishes represent an integration of many ecological components that
include behavior, condition, habitat use, energy intake and inter- and intraspe-
cific interactions. As a result, food habit studies can be incorporated in a variety of
different research objectives. In the simplest case, a food habits study might be
conducted to determine the most frequently consumed prey or determine whether
a particular food category is present in the stomach of fishes. In other instances,
we may be interested in more complex questions, such as (1) determining the
relative importance of different food types to fish nutrition, (2) quantifying the
consumption rate of individual prey types (Chapter 12), or (3) understanding
foraging trade-offs associated with predator avoidance (Chapter 16). Each of these
questions requires information on fish diets but necessitates different approaches
in how we collect and analyze data. In this chapter, we outline quantitative tech-
niques used to describe food habits and feeding patterns of fishes.

■ 11.2 QUANTIFYING DIET COMPOSITION

11.2.1 Sampling and Identifying Stomach Contents

Most studies of fish diets rely on examination of stomach contents to quantify prey
abundance. This information characterizes foraging choices made over a relatively
short time scale (e.g., usually <24 h). Hence, time of day, sampling location, prey
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availability, and even the type of collecting gear used need to be considered before
initiating a diet study or analyzing diet data. Investigators using historical diet samples
or processed data must be aware of the sampling protocols, laboratory procedures,
and preservation techniques used. Failure to understand how diet data were col-
lected may preclude accurate interpretation of foraging patterns.

Stomach contents can be collected from live fish by means of the lavage tech-
nique (Seaburg 1957), whereby food items are flushed from the stomachs by use
of pressurized water. Similarly, emetics can be used to induce regurgitation in live
fish (Jernejcic 1969; see Bowen 1996 for review). Regardless of the method, inves-
tigators should ensure that the removal technique effectively samples all items in
the gut. Otherwise, data will be skewed toward items that are more easily dis-
placed from the stomach. Alternatively, fish can be sacrificed and stomach con-
tents removed for analysis. If fish are to be sacrificed, they should be preserved
immediately either by freezing or by fixing in formalin (Bowen 1996). Stomach
contents will continue to digest, rendering rapid preservation of the fish or re-
moved contents necessary to prevent loss of resolution. Various taxa digest at dif-
ferent rates (Sutela and Huusko 2000; Kim and DeVries 2001). As such, recently
consumed taxa may be present in the foregut, but only resistant items remain in
the hindgut. Investigators must consider the relative digestibility of prey when
deciding on the section of the alimentary tract to sample. To avoid bias when both
easily digested prey and resistant prey are present, only the immediate foregut
(i.e., stomach) should be sampled (Sutela and Huusko 2000).

Prey items in fish stomachs are often not intact. Otoliths or other relatively
indigestible hard parts, such as scales, pharyngeal teeth, cleithra, or backbones,
have diagnostic, species-specific characteristics useful for identifying prey (Garman
1982; Holland-Bartels et al. 1990). Alternatively, partially digested prey may be
identified using biochemical signatures, such as allozyme electrophoresis (Hartman
and Garton 1992), immunoassays (Feller 1992; Schultz and Clarke 1995), or prom-
ising new techniques based on fatty acid analysis (Raclot et al. 1998).

Hard structures are often used to determine lengths or weights of prey items
by regressing the dimension of an indigestible hard part (e.g., head capsule of an
insect) against whole-body length or mass (least-squares regression models; Trippel
and Beamish 1987; Scharf et al. 1997). Combining back-calculated estimates in
this fashion may compound error in estimates of total prey weight (or volume).
Thus, it is imperative that biometric relationships and measurements of hard parts
used to reconstruct diet items are precise and not biased.

The proper taxonomic resolution for identifying stomach contents largely de-
pends on the research question. Coarse taxonomic resolution is appropriate when
quantifying ontogenetic changes in diet composition. Presence of fish in the diet
may prove adequate for determining the size or time at which fish switch to
piscivory. In other instances, finer taxonomic resolution may be needed, such as
determining seasonal or spatial differences in diet composition or comparing
percent composition of native versus exotic species.

Often, it is pragmatic to reduce the number of variables involved in the analysis
by pooling diet items into categories based on taxonomy or habitat. Three types
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of data pooling can be considered for prey items in fish stomachs: (1) necessary,
(2) intuitive, and (3) statistical (Crow 1979). Necessary pooling occurs when uni-
dentified prey are present in stomachs. If three categories of fish prey and one
category of unidentified fish prey arise, then we should consider either pooling
fish prey or dropping the unidentified category. An analysis with both identified
and unidentified fish may be misleading because we do not know what propor-
tion of unidentified fish were components of items we could successfully identify
(Crow 1979). Intuitive pooling is based on taxonomic or  ecological similarities
among prey. Three species of calanoid copepods might be pooled into a single
category (e.g., copepods) given similar morphological and behavioral character-
istics. Similarly, we could pool species by habitat so that categories represent benthic,
pelagic, or littoral prey. Finally, statistical pooling uses quantitative statistical pro-
cedures as a basis for pooling prey categories. Here, the investigator hypothesizes
that two or more prey categories act as a single resource (Crow 1979). This hy-
pothesis is tested using a 2 × 2 contingency table to identify whether prey are
either positively or negatively associated (Box 11.1). Positive association implies
that prey are acting as a single resource and may be pooled (Crow 1979).

11.2.2 Designing Appropriate Sampling Designs

11.2.2.1 Conducting Field Studies

Feeding patterns of fishes may be quantified in the field or with carefully de-
signed experiments. In either case, the sampling design should be well consid-
ered before data are collected. As with other field studies, appropriate sampling
designs for diet analysis include (1) simple random sampling, (2) stratified ran-
dom sampling, (3) systematic sampling, and (4) multistage sampling (see Chap-
ter 3). The choice of a particular sampling design depends on a variety of factors
that include the research question, logistics, accessibility, and costs.

Prior to collecting diet data, attention should be given to factors that influence
the quantity and quality of stomach contents. One important consideration in
diet studies is that foraging behavior of fishes often varies with time of day (Shepard
and Mills 1996). Hence, sampling plans should incorporate a diel component to
determine how stomach contents change through time. Failure to standardize
measurement times among sites or lakes may lead to erroneous conclusions about
foraging patterns (see section 11.3.4).

Moreover, sampling approaches, such as electrofishing or gillnetting, may cause
loss of stomach contents through regurgitation (Bowen 1996). Similarly, high-
speed tow nets can eviscerate larval fish resulting in a loss of information (K.
Arend, Ohio State University, personal communication). The use of active or pas-
sive gear types can also affect inferences about stomach fullness. Fish collected
with passive gears can have more food in their stomachs than do fishes collected
with active gears because passive gears often collect actively feeding fish (Hay-
ward et al. 1989). Careful consideration should be given to sampling time and
gear type to help reduce variability among samples.
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Box 11.1 Pooling Prey Items as a Single Resource

Prey items in fish stomachs can sometimes be pooled prior to analysis. To determine whether two
(or more) prey items act as a single resource, we can use chi-square contingency table analysis. In
the example below, we are interested in whether prey i and prey j can be pooled prior to analysis.

We construct a 2 × 2 contingency table by totaling the number of fish that contain both prey types,
either prey i or prey j , or neither prey type in the diet. In this example, the diets of 70 fish have been
examined for prey i and prey j .

Prey j present Prey j absent Total

Prey i present 18 9 27
Prey i absent 18 25 43

Total 36 34 70

Resulting output was obtained using the PROC FREQ procedure in SAS (SAS Institute1999). Here,
the likelihood ratio chi-square value (G-statistic), 4.145, is larger than the critical value of a chi-
square distribution (i.e., 1 df, P = 0.041), implying that the prey are either positively or negatively
associated. Prey can be pooled only if they are positively associated. To determine association (A),
we calculate the cross-product ratio of the contingency table as

A = (cell 11)(cell 22)/(cell 12)(cell 21)
= (18)(25)/(18)(9) = 2.8.

If A is greater than 1, then prey types are positively associated, implying that they are acting as a
single resource and can be pooled (Crow 1979).  If A were less than 1, then prey types would be
negatively associated and should not be pooled.

Before initiating a field study, it is desirable to know how many samples are needed
to describe the diet. Cumulative prey curves are useful for determining when a
sufficient number of stomachs have been sampled. In this approach, the cumula-
tive number of prey types is plotted against the cumulative number of pooled stom-
achs (Cortés 1997). The point at which the curve becomes asymptotic provides a
minimum number of stomachs needed to characterize prey composition.

It is not uncommon to find empty stomachs. However, investigators must be
cautious about how increasing sampling effort to find fish containing food affects
their estimates. To our knowledge, the impact of this practice remains unexplored.
Presumably, greater sample sizes arising when empty guts are frequent would af-
fect variance estimates relative to other samples. Often, investigators restrict their
analyses to the subset of individuals containing diet items (i.e., dropping individu-
als with empty guts) to explore diet preference (see section 11.3.7). This practice
also must be approached cautiously. Diet characteristics of fish populations for
which empty stomachs were frequent may be quite different than those for which
empty stomachs were rare.
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When sampling diets in the field, large numbers of fish are typically encoun-
tered, requiring subsampling across sizes. Stratifying samples as a function of body
size is important because size often affects both the quantity and composition of
items within diets (Schael et al. 1991; Bremigan and Stein 1994). The number of
subsamples taken can be stratified by the relative proportion of individuals within
each size-class or as some set number of individuals per size-class. Subsamples
taken randomly in proportion to the actual number within each size-class reason-
ably reflect size-based patterns within the whole sample (Kimura 1977). However,
this sampling design may poorly represent the diets of the largest individuals within
the population, which are infrequently encountered. To remedy this, many sam-
pling designs incorporate the set number per size-class approach. In a similar
example with length-at-age data, Bettoli and Miranda (2001) demonstrated how
simply pooling data from such a stratified sampling distribution poorly reflects
the distribution within the overall sample. As such, extrapolating diet patterns
within each size-class to that of the whole sample requires weighting the stratified
diet data by the relative proportion of individuals within each size-class.

11.2.2.2 Conducting Experimental Studies

Food can be a limiting resource to fish populations. As a result, we are often
interested in how competition for prey affects foraging success. Field data on
stomach contents are inadequate to address competition questions. Rather,
competition studies are generally performed under controlled experimental set-
tings. Several approaches can be used to determine whether one species affects
the foraging behavior of another. In all cases, it is important that densities of
species be manipulated within the range of those in the environment to deter-
mine how variation in abundance affects competition. Three approaches are gen-
erally recognized in competition experiments: (1) substitutive, (2) density-gradi-
ent, and (3) response surface experiments (Goldberg and Scheiner 2001). The
substitutive experimental approach involves varying treatment levels by substitut-
ing individuals of one species with an equal number of the other (Figure 11.1A).
Total density is kept constant across all treatments. This approach tests for only
the relative strengths of intra- and interspecific competition. The absolute magni-
tude of interspecific competitive effects is not isolated. A density-gradient approach
involves holding the density of one focal species constant while varying that of
another (Figure 11.1B). A problem with this approach is that foraging responses
of the focal species are potentially confounded by an increase in frequency of the
competitor and an overall increase in density (see Welker et al. 1994). A response
surface experiment, which includes all density combinations of both competitors,
avoids potential confounding effects but requires a large number of treatment
combinations (Figure 11.1C). Clearly, designing an experiment to determine how
competition affects foraging requires foresight about potential responses. The
design of any experiment in which diet is a response variable requires careful
consideration of the hypotheses being tested.

Field-derived patterns of foraging preference are by nature correlative. Only ex-
periments definitively show how changes in food quality or quantity affect dietary
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Figure 11.1 Three potential designs for competition experiments in which the impact of
species 1 on the diet composition of species 2 is assessed. These experiments are (A) substitu-
tive, (B) density gradient, and (C) response surface. Each point represents a single experimental
treatment (adapted from Goldberg and Scheiner 2001).
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choice. Size-dependent selection by larval fish for zooplankton prey in reservoirs
(Bremigan and Stein 1997), selection of spot by piscivorous southern flounder  in
marine estuaries (Wright et al. 1993), and foraging preference for snails by pump-
kinseed sunfish in natural lakes (Mittelbach et al. 1999) are examples of carefully
designed experiments that provided insight into field dietary patterns. The out-
come of foraging experiments such as these can be affected by many conditions.
Using the same prey or predators across experimental trials may influence learn-
ing, which may cause foraging patterns to change through time (Reiriz et al. 1998).
Using naïve consumers and prey in each replicate will remedy this confounding
problem. Interactions among prey items within experimental units may cause dif-
ferent patterns of vulnerability relative to prey being exposed to consumers inde-
pendently (Huang and Sih 1991). Similarly, changes in prey frequency as indi-
viduals are removed may influence their relative conspicuousness, thereby affecting
selection patterns through time (Werner and Hall 1974). Hence, investigators
may replenish prey throughout an experiment to keep densities as constant as
feasible. Hunger levels of the consumer and prey and the size and realism of the
experimental arena also may alter responses. In summary, foraging experiments
can be insightful but also greatly misleading. Their design and interpretation must
be carefully considered.

■ 11.3 ANALYZING FOOD HABITS DATA

11.3.1 Selecting a Diet Index

A variety of measures have been used to quantify diet composition of fishes (Bowen
1996). Selecting an appropriate diet measure is strongly dependent on the research
question; no single index is likely to provide a useful measure of prey importance
under all conditions (Bowen 1996). For questions regarding the seasonal use of a
prey resource, simple indices, such as frequency of occurrence, are usually ad-
equate. Alternatively, we may want to quantify the energetic contribution of dif-
ferent prey types—a process that requires data on the abundance, weight, and
caloric content of prey.

Traditional indices used for stomach content analysis include percent compo-
sition by number (Ni), percent composition by weight (Wi), and frequency of prey
occurrence (Oi) (Bowen 1996; Table 11.1). It is important to recognize that each
index emphasizes different information about the diet of fishes (Hyslop 1980;
Cortés 1997). When evaluating percent composition by number, small prey can
represent a dominant component of the diet. In contrast, percent composition by
weight tends to emphasize the relative contribution of larger prey. Frequency of
occurrence can provide information on how often a particular prey item was eaten
but provides no indication of the relative importance of prey to the overall diet.

When calculated from the entire sample, Ni and Wi represent single measures
with no corresponding variance estimate. If interest lies in evaluating the poten-
tial impact of predators on prey populations, then calculating Ni and Wi for the
entire sample is appropriate. However, if diet data are to be used for statistical
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comparisons then Ni and Wi should be calculated for individual fish and then
averaged for each prey type (see MNi and MWi in Table 11.1). In this way, we treat
individual fish as the sampling unit and assume that they represent a random
sample (Table 11.2). Diet items in the stomachs of individual fish are not inde-
pendent and generally should be measured to provide proportional data for indi-
vidual fish (Hurlbert 1984; Krebs 1989).

When one is evaluating diet composition, prey weights are often more useful
than are prey counts because weights are measured in comparable units. Consider

Table 11.1 Equations for calculating diet indices (adapted from Pope et al. 2001).  Symbols in
equations are food or prey item (subscript i); fish (subscript j ); number of fish (J); number of fish
with food in their stomachs (P); number of fish containing prey i (Ji);  number in food category i
(Ni); number of food types (Q); weight of prey type i (Wi);  weight of fish j (Fj); volume (mL) of
food category i (Vi);. caloric density (J · g–1 wet weight) of food type i (Xi); and stomach capacity
(mL) of fish j (Cj).

Diet index Index symbol Computational equation

Frequency of occurrence Oi

Proportion by number Ni

Proportion by weight Wi

Mean proportion by number MNi

Mean proportion by weight MWi

Mean proportion body weight MBWi

Mean stomach fullness MSFi

Prey importance index PIIi

Index of relative importance IRIi (%Ni  + %Wi )(%Oi )

Relative importance index RIi

Ji

P
=

Ni

� Ni

=

i = 1

Q

Wi

� Wi

=

i = 1

Q

�=
j = 1

P1
P ( (Nij

� Niji = 1

Q

�=
j = 1

P1
P ( (Wij

� Wiji = 1

Q

�=
j = 1

P1
P ( (Wij

Fj

�=
j = 1

P1
P ( (Vij

Cj

�=
j = 1

P1
P ( (Wij Xi

� Wij Xii = 1

Q

100AIi

�AIi

, where

AIi  = Oi  + Ni  + Wi 
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Table 11.2 Summary of prey weights for 10 bluegills. All weights are given in grams, and
values in parentheses represent prey proportions for each fish. Mean proportion by weight
(MWi) and frequency of occurrence (Oi) are given in the last two rows. Note that dipteran larvae
had the highest frequency of occurrence but contributed the least to the overall diet by
weight—illustrating some of the problems associated with interpreting different diet measures.

Total
Fish Dipteran Mayfly prey

Bluegill weight Amphipods Larval fish larvae nymphs weight

A 150 0.3 (0.52) 0.24 (0.42) 0.02 (0.03) 0.016 (0.03) 0.576
B   91 0.09 (0.78) 0 (0) 0.018 (0.16) 0.008 (0.07) 0.116
C   99 0.11 (0.66) 0 (0) 0.024 (0.14) 0.032 (0.19) 0.166
D 123 0.03 (0.25) 0 (0) 0.052 (0.43) 0.04 (0.33) 0.122
E 210 0 (0) 0.12 (0.83) 0.001 (0.01) 0.024 (0.17) 0.145
F 102 0.22 (0.92) 0 (0) 0.003 (0.01) 0.016 (0.07) 0.239
G 124 0 (0) 0 (0) 0.006 (0.10) 0.056 (0.90) 0.062
H 199 0.015 (0.09) 0.12 (0.71) 0.003 (0.02) 0.032 (0.19) 0.170
I 101 0.45 (0.91) 0 (0) 0.015 (0.03) 0.032 (0.06) 0.497
J 111 0.26 (0.39) 0.36 (0.53) 0.054 (0.08) 0 (0) 0.674

MWi        45%        25%          10%         20%
Oi        80%        40%        100%         90%

Prey weight and proportion

the difficulty in determining the relative importance of 1,500 zooplankton versus 1
fish. When measured as dry weight, we can directly compare 0.06 g of zooplankton
to 0.2 g of fish in the diet. For this reason, prey weights are more appropriate when
interest lies in comparing the energetic importance of different prey types (Bowen
1996). To correct for effects of fish size, it is often useful to express prey weight as
a percentage of predator body mass.

Other indices used for diet analysis include mean stomach fullness and the
prey importance index (Table 11.1). Early methods for measuring stomach full-
ness in fishes included subjective techniques such as the points method whereby
food items were awarded points proportional to their estimated contribution to
stomach volume (Swynnerton and Worthington 1940; Hynes 1950). Although easy
to apply, these techniques have been criticized for their subjectivity (Windell and
Bowen 1978). A more objective approach is to calculate the ratio of observed prey
volume to estimated stomach capacity (Kimball and Helm 1971; Knight and
Margraf 1982). Here, total volume of prey in each stomach is estimated either
directly by water displacement or indirectly by means of geometric measurements.
Maximum total prey volume is then regressed against fish size to estimate maxi-
mum stomach volume as

V = aLb, (11.1)

where V = maximum stomach capacity, a = regression coefficient, L = total length,
and b = instantaneous rate of change (Knight and Margraf 1982). The ratio of
observed prey volume (v) to maximum stomach volume (V ) provides an index of
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stomach fullness that accounts for fish length. The mean stomach fullness index
(MSFi) has several desirable advantages including it (1) eliminates subjectivity
associated with the points method, (2) is relatively quick and easy to apply, (3)
can be obtained from preserved or live fish, and (4) can be analyzed by a variety
of statistical procedures (Knight and Margraf 1982). Furthermore, the MSFi cor-
relates well with prey caloric contribution, providing a robust index for evaluating
the energetic contribution of different prey types (Pope et al. 2001).

The prey importance index (PIIi) combines information on the abundance,
weight, and caloric content of prey (Table 11.1). Given sufficient information
on prey assimilation efficiencies, the caloric densities of prey can be adjusted to
account for energy actually metabolized by fishes (Probst et al. 1984). In most
cases, this type of information is not readily available, so that total energy of prey
is used. The usefulness of a caloric-based index such as the PIIi is that it provides
a quantitative measure of the nutritional benefit of individual prey rather than
relative importance based on numbers, weight, or occurrence in the diet (i.e., Ni ,
Wi , or Oi).

Diet measures each provide unique information about relative prey importance.
In an attempt to consolidate the desirable properties of individual diet measures
(e.g., Ni , Wi , and Oi), compound indices were developed that combine two or
more diet measures into a single index (Table 11.1). The belief is that compound
indices capture more information than do single, component measures. Several
authors, however, argue that compound indices, such as the index of relative im-
portance (IRIi) and the relative importance index (RIi), provide little or no addi-
tional information than that provided by single indices (MacDonald and Green
1983; Hansson 1998). Proponents of compound indices, on the other hand, have
argued that (1) compound indices provide a more balanced view of fish diets
because they capture all of the unique properties affecting individual measures
(e.g., Ni, Wi, or Oi), and (2) there is a need for a standardized method for report-
ing relative prey importance (Cortés 1997). This argument has been criticized on
the basis that the addition or multiplication of percentages has no biological mean-
ing because both quantities are dimensionless ratios (Bowen 1996).

The usefulness of compound indices is constrained by several limitations. Com-
parisons with single measures indicate that compound indices can be a redun-
dant source of information (MacDonald and Green 1983). A more significant
problem, however, is that compound indices can be affected by the taxonomic
resolution of prey items (Hansson 1998). At different taxonomic resolutions, the
importance of different prey types can change, rendering the IRIi a poor choice
for a standard index in diet analyses (Hansson 1998).

The search for an index that best describes relative prey importance has led to
much controversy over which diet index is best (Hyslop 1980; Cortés 1997; Hansson
1998). No doubt much of this confusion stems from the fact that relative prey
importance is context specific and can be defined in a variety of ways. If we intend
to evaluate energy flow, prey composition by weight (or volume) would be a bet-
ter choice than composition by number. On the other hand, prey numbers could
be used to assess prey preference if corresponding information on in situ prey
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abundance was available (Hansson 1998). A general framework for selecting diet
measures is given in Figure 11.2.

11.3.2 Presenting Data with Graphical Techniques

Diet measures such as Ni , Wi , and Oi are usually presented in tabulated format,
making it difficult to interpret two or more indices simultaneously. Graphical tech-
niques attempt to overcome this problem by combining two or more diet measures
in two-dimensional space (i.e., bivariate plots). By examining relationships between
different diet measures, graphical techniques can be used to interpret (1) predator
feeding strategies, (2) relative prey importance, and (3) diet variability.

A graphical technique that relates prey abundance (Ni or Wi) to frequency of
occurrence (Oi) was developed by Costello (1990) and later modified by Amundsen
et al. (1996). In the Amundsen method, prey-specific abundance is plotted against
frequency of occurrence, where prey-specific abundance is defined as the propor-
tion a prey item constitutes of all prey items in only predators that contain prey i
(Amundsen et al. 1996). The equation used to calculate prey-specific abundance
(Pi) is

Pi = (�Si /�Sti)100, (11.2)
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Figure 11.2 Diet measures commonly used to address questions about predator impacts,
prey preference, or energy flow. See Table 11.1 for calculation of different diet measures.
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where Pi equals prey-specific abundance (numbers, mass, or volume) of prey i, Si

equals the abundance of prey i in stomachs, and Sti equals the total abundance of
prey in predators that contain prey i. As an example, consider three fish, respec-
tively with 1, 2, and 3 g of prey i and 8, 7, and 5 g of total stomach contents. We
calculate Pi as follows:

Pi =
1 + 2 + 3
8 + 7 + 5

(100) = 6
20

(100) = 0.3(100) = 30%.

When plotted against frequency of occurrence, prey-specific abundance can
be used to evaluate three important aspects of the fish diet: (1) feeding strategy
(specialized versus general), (2) prey importance (dominant versus rare), and
(3) niche width (Figure 11.3). In practice, four interpretations can be made by
relating prey-specific abundance to frequency of occurrence that could otherwise
not be determined from single diet measures (Box 11.2).

Because prey-specific abundance and frequency of occurrence are calculated
for the entire sample of fish, graphical techniques that use these indices repre-
sent analysis at the population level. To assess feeding patterns at the individual
level, graphical methods have been developed that incorporate the use of prey
diversity and number of prey in individual stomachs (Bridcut and Giller 1995). In
this approach, individual prey diversity for each fish is calculated using a diversity
index and then plotted against the total number of prey in the stomach. A gener-
alist feeding strategy is characterized by high prey diversity and low abundance of
each prey type, whereas a specialist strategy is represented by low prey diversity
and high utilization of a few prey types. Methods for defining high prey diversity,
however, have not been developed. As a result, this technique involves subjective
interpretation but can be useful for examining patterns of diet specialization across
time or space (Bridcut and Giller 1995).

11.3.3 Exploring Variation in Prey Size

Often investigators are interested in the relationship between prey size and preda-
tor size, particularly as it relates to gape limitation in fishes. Hence, the maximum
linear dimensions of each diet item are plotted against predator length (Juanes
1994). Resulting distributions are often wedge-shaped because small fish are gen-
erally limited to small prey, whereas large fish can incorporate a variety of prey
sizes in their diet (see example in Box 11.3). In many cases, identifying maximum
and minimum prey sizes, rather than the average size, is desirable. Although the
maximum and minimum edges of these bivariate scatter plots can be described
using least squares regression (LSR), the choice of what edge data to include in
the analysis is arbitrary. In addition, LSR is sensitive to the effects of outliers in the
chosen edge distribution. A promising method involves the use of a quantile re-
gression technique called least absolute values regression (Scharf et al. 1998; Cade
and Noon 2003), in which the sum of the absolute values of the residuals are
minimized (rather than the sum of squares of residuals as in conventional LSR).
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Estimates are obtained through minimization of

�
i
 |yi – �0 – �1Xi |hi , (11.3)

where hi is a multiplier equal to a chosen quantile value (e.g., 0.5 for the median)
if the residual within the absolute value symbols is positive or one minus the quantile
value if the residual is negative (Scharf et al. 1998, Cade and Noon 2003). This
technique was quite robust in identifying upper and lower bound slopes in scatter
diagrams (Scharf et al. 1998; Cade and Noon 2003) and is very useful for charac-
terizing prey size–predator length relationships (Box 11.3).

Figure 11.3 Graphical model that depicts feeding strategy (specialized or generalized),
relative prey importance (dominant or rare), and niche variation (individual versus population
patterns) based on the distribution of individual prey types. Prey-specific abundance is calcu-
lated from only those predators that contain prey i and is plotted against frequency of occur-
rence for each prey (Oi ).  Prey points located in the upper left of the plot indicate prey that are
consumed by few individuals displaying specialization; points located in the lower right reveal
prey items that have been eaten occasionally by most individuals (Amundsen et al. 1996).
Figure adapted from Amundsen et al. (1996) as first described by Costello (1990).
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Box 11.2 Presenting Diet Measures Graphically

By combining different diet measures in two-dimensional space, graphical techniques can relay
important information about feeding behavior of fishes. Using Figure 11.3, we can interpret feeding
strategies of each predator population in the graphs presented below.

Figure Graphs showing abundance of 13 prey types for four predator populations—A, B, C, and D.
Each point represents a different prey type and is expressed as prey-specific abundance plotted
against frequency of occurrence (adapted from Admundsen et al. 1996).

We see that fish from population A specialize on individual prey types. As a result, these fish show a
high degree of between-individual variation in diet breadth. In population B, predators have a more
generalized diet and higher within-individual variation in diet breadth. In population C, the
predator population is specializing on a single prey type while occasionally consuming other prey.
Finally, population D represents a mixed feeding strategy in which some individuals have a
specialized diet and other fish have a more generalized feeding strategy. Graphical techniques,
such as the one illustrated here, provide insight about fish feeding patterns that might not be
inferred from single diet indices.
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Box 11.3 Determining the Minimum and Maximum Sizes of Prey

The maximum size of prey in fish diets often increases with body size. However, the minimum size
of prey may change relatively little. In addition to determining the mean or median size of prey
consumed by use of bivariate plots, investigators may want to characterize the maximum and
minimum sizes consumed (i.e, the edges of the scattergrams). Least absolute values regression
(LAV), also called least absolute deviations regression, can be used to evaluate these types of diet
data (Scharf et al. 1998). An extension of LAV, quantile regression, fits any specified quantile as a
linear regression model. The LAV is the 50th percentile (median) in quantile regression. Such an
analysis is available in the Blossom Statistical Software Package (Cade and Richards 2000; available
at http://www.mesc.usgs.gov). This program generates test statistics by permutations of the
original data through re-randomization.

For example, we want to characterize the upper and lower bounds of lengths of fish prey in age-0
largemouth bass diets from Tappan Lake, Ohio, during 1994 through 1996 (data from Garvey et al.
1998b).

Using quantile regression, we first determine the median regression model that minimizes the least
absolute differences between the observed values and the residuals. We then determine the
quantile regression models that fit the 5th and 95th percentiles of the data. The form of each linear
regression model is y = �0 + �1x. The test statistic generated for the LAV regression (i.e., quantile =
0.5) is equivalent to that of a typical least-squares regression comparing the proportional reduction
in deviations when passing from a reduced to a full model. Because quantile regression involves
weighted absolute deviations (see equation [11.3]), we cannot assume identical error distributions
across the independent variables. As such, Cade and Richards (2000) recommend using a rank-sums
test for quantile regression (i.e., quantile � 0.5), in which the statistic is based on the sign of the
residual from the reduced parameter null model.

Figure Prey length versus age-0 largemouth bass length (from Garvey et al. 1998b).
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11.3.4 Evaluating Nonindependence of Diet Data

The compositional nature of diet measures (i.e., proportions) has important impli-
cations for data analysis. Interpretations about the relatedness of prey items or sites
can be very different when using compositions relative to unstandardized (e.g.,
raw) data (Jackson 1997). In practice, arcsine transformations are often applied to
compositional data prior to analysis in attempts to normalize the data. Such trans-
formations should not be applied arbitrarily; rather, data should be examined (for
normality) to verify that transformations are needed. Traditional statistical tech-
niques (e.g., t-test and analysis of variance [ANOVA]) can be applied when assump-
tions of normality are met or large sample sizes are obtained. In cases in which
compositional data are not normally distributed, nonparametric rank procedures
can be useful for detecting differences in individual prey proportions.

Fisheries scientists must be aware of the nonindependence trait of diet data. A
well-considered experimental design will avoid the pitfall of pseudoreplication
(Hurlbert 1984). Diets from individual fish often contain multiple items that can-
not be treated independently. In addition, fish diets are usually sampled either
repeatedly through time or at the same location. A variety of statistical techniques
can be used that account for autocorrelation within diet data. When designing a
study, fisheries scientists should determine if the assumptions of these tests are met.

Temporal and spatial variation in diet data may be analyzed using conventional
parametric statistical techniques such as ANOVA if stomachs of individual fish are
collected from independent experimental units. For example, temporal dietary
patterns in an experiment may be analyzed using ANOVA if they derive from

Table Model values for the full LAV (median), 95th percentile, and 5th percentile regressions. The
absolute values of the residuals for the 95th and 5th quantile regression are weighted, and the P-
value is based on a rank-sums test.

Sum of absolute
Quantile �0 �1 values of residuals P

0.5 –0.5748 0.3541 433.07 0.0002
0.95 –1.0507 0.7930 112.92 0.077
0.05 5.9543 0.0957 41.73 0.055

The full LAV regression model (quantile = 0.50) was significantly different than the reduced model.
The quantile regression models describing the 95th and 5th percentiles had slopes greater than 0,
and only 7.7% and 5.5% of the corresponding test statistics generated by the permutation
procedure had more significant values. We conclude that this technique effectively characterizes
the median as well as the upper and lower bounds of prey sizes consumed by age-0 largemouth
bass in Tappan Lake.

Box 11.3 (continued)
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independent mesocosms or aquaria sampled only once during an experiment. In
this case, each stomach would represent a one date–replicate combination. Obvi-
ously, meeting this assumption may require a large number of replicates in an ex-
periment because variation among individuals within treatments will likely be high.

In field studies, stomach contents are often collected from groups of fish at the
same location during multiple sampling trips. Diet data also may be collected
from the same live fish multiple times during an experiment. In these cases, diet
data are not independent. For fish captured at the same location, time, or both,
stomach samples will likely be more similar than those collected at other times
and locations. These potentially confounding problems of spatial or temporal
autocorrelation may be addressed statistically using several techniques including
repeated-measures ANOVA.

Repeated-measures designs use the same subject (e.g., site or fish) for each of
the treatments in a study (Neter et al. 1990). The subject is considered a block,
and the treatment(s) are applied to each subject in random order. In a random-
ized-complete-block repeated-measures ANOVA, each subject receives all of the
treatment combinations. If the subject is being followed through time, then time
is the repeated measure within each subject (i.e., the within-subject effect; Box
11.4). It is assumed that the variance within each subject (i.e., individual) will be
less than that among subjects (Neter et al. 1990). The randomized-complete-block
approach is often difficult to employ because it may be impossible to apply all
treatments to all subjects. A split-plot ANOVA is a special case of the repeated-
measures design that allows subjects to be included in only some of the treat-
ments (see Maceina et al. 1994). To illustrate, let us explore temporal variation in
fish diets both within days and among weeks. If we consider each fish to be a fixed
subject, then biomass consumed by each may be quantified during morning for
half of the fish, while the remaining half is sampled during afternoon. All diets
are quantified on a weekly basis. In this case, variation in biomass consumed must
be partitioned due to (1) individual fish, (2) time of day, (3) week, and (4) inter-
actions among fish, time of day, and week. Fish with similar characteristics are
blocked in pairs, and each is randomly assigned a morning or afternoon sampling
time (Table 11.3). Samples are then taken for several weeks. We perform an ANOVA
exploring the effects of block, time of day, and their interaction, called the main-
plot effects. We also determine the subplot effects of week and the week × time of
day interaction. The allure of this approach is that individual fish can be followed
through time, and not all fish need to be handled twice each sampling date.

Randomized-complete-block repeated-measures ANOVAs involve strict assump-
tions about the sphericity of the variance–covariance matrix of the within-subject
factor (e.g., time). For the matrix to be spherical, the variance of the difference
between any two levels of the within-subject factors must be constant. This prop-
erty is tested by determining the sphericity of the variance–covariance matrix,
such as with a Mauchly’s test of sphericity (SAS Institute 1999). If assumptions of
sphericity are not met, then the likelihood of rejecting the null hypothesis of no
within-subject effect (e.g., time) is inflated, and an adjusted test must be used
(Box 11.4).
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Other techniques are available for analyzing autocorrelation in temporal or
spatial diet data. Long-term observations of diets may be analyzed using time-
series techniques, which are particularly useful in unreplicated systems such as
lakes or reservoirs. Autoregressive integrated moving average (ARIMA) models
and related techniques may be used to identify nonrandom patterns through time
(Rasmussen et al. 1993), assuming that observations are available in discrete, evenly
spaced intervals. These models can be extended to compare the treatment response

Box 11.4 Analyzing Diet Data with Repeated-Measures Analysis of Variance (ANOVA)

Diet data often arise from multiple samples within the same system or from multiple observations
of the same individual. A repeated-measures ANOVA approach is useful for teasing apart variation
as a function of independent effects (e.g., between subject) and nonindependent effects (e.g.,
within subject).

In this hypothetical example, we conducted a 5-week experiment to determine the effect of gizzard
shad on the mean percent by weight (MWi ) of zooplankton in diets of bluegill. Four bluegills were
sampled from each replicate once weekly. The resulting data were MWi  for each replicate and date.
Data were arcsine(x) transformed prior to analysis.

Table Zooplankton (MWi ) in diets of bluegill (n = 4 per replicate per sampling period) in treat-
ments with and without gizzard shad. Data in the table are untransformed.

Treatment
(gizzard shad)
and replicate 1 2 3 4 5

Absent
1 0.6 0.57 0.59 0.68 0.67
2 0.36 0.37 0.4 0.41 0.49
3 0.43 0.39 0.48 0.49 0.48
4 0.55 0.54 0.6 0.58 0.52

Present
1 0.72 0.45 0.4 0.32 0.29
2 0.65 0.4 0.38 0.27 0.1
3 0.53 0.46 0.38 0.29 0.23
4 0.45 0.4 0.29 0.23 0.25

Program
data one;

input treat $ rep week1-week5;

cards;

[input data];

proc glm;

class treat;

model week1-week5=treat;

repeated time/ printe;

run;

Week
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Interpretation
The test for the gizzard shad effect (between subjects) was significant at P = 0.057.

Table The effect of gizzard shad on the MWi of zooplankton in diets of bluegill.

Effect df Mean square F-value P

Treatment 1 0.222 5.51 0.0572
Error 6 0.040

When testing for a time effect (within subjects), a Mauchly’s test for sphericity was rejected (P =
0.0021), indicating that the variance–covariance matrix was not circular.  This is typical for data that
are sampled repeatedly through time. A test such as the Greenhouse–Geisser epsilon (G–G) must
be used to adjust the error rate. These tests are automatically computed by the SAS procedure.

Table Test for time effect and time*treatment effect of gizzard shad on zooplankton in
bluegill diet.

G–G
Effect df Mean square F-value adjusted P

Time 4 0.0350 10.06 0.0040
Time*treatment 4 0.0746 21.42 0.0002
Error 24 0.0034

We conclude from this analysis that MWi  changed in both treatments through time. The
time*treatment effect indicates that the treatments changed in different ways through time,
probably because zooplankton increased in diets in the absence of gizzard shad but declined
in treatments with gizzard shad.

of a single, unreplicated experimental system to that of a reference system. A
limitation of these moving average techniques is that they usually require large
sample sizes (>50 dates; Rasmussen et al. 1993).

Autocorrelated spatial patterns in diet data can be analyzed in a variety of ways.
The Mantel test is a randomization test that determines whether differences
between two n × n distance matrices are random (Fortin and Gurevitch 1993).
Spatial variation among individuals (distance matrix 1) can be compared to the
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relative proportion of a specified diet item in the stomachs (distance matrix 2).
The Mantel test will determine if nonrandom spatial patterns in diet composition
exist. Alternatively, two or more bivariate plots of spatial distributions of prey
occurrence in diets of individual fish may be compared using a multiway, two-
dimensional Kolmogorov–Smirnov test (2DKS; Garvey et al. 1998c). The 2DKS
test can also be used to determine if spatial distributions within single plots differ
significantly from randomly generated ones. An example of using 2DKS to assess
spatial variation in predator diets is given in Box 11.5.

Diel changes in diet have important implications for choosing sampling times
or understanding gastric evacuation patterns for fishes (see section 11.2.2.1). Using
analysis of covariance (ANCOVA), the content of fish stomachs (e.g., weight) can
be regressed against fish weight (the covariate) using conventional least-squares
regression during each sampling time. If these relationships can be transformed
such that they are linear, the slopes of each line can be compared (Box 11.6). If
slopes are the same (i.e., parallel), then the intercepts among the regression lines
can be compared. Significant among-intercept differences indicate a diel pattern
in the abundance of prey in stomach contents.

11.3.5 Comparing Diet Composition

11.3.5.1 Employing Multivariate Analysis of Variance with Randomization

The multivariate nature of fish diets often requires approaches other than
univariate statistics when interest lies in the simultaneous evaluation of all prey
categories. By example, consider the decisions we make when buying fishing gear.
Before making a purchase, we (e.g., anglers) often consider at least four factors:
(1) price, (2) quality, (3) brand name, and (4) style. One angler may rate their
decision on (1) style, (2) quality, (3) brand name, and (4) price, whereas another
angler may consider the purchase based on (1) price, (2) quality, (3) style, and
(4) brand name. Here, we are interested in asking whether anglers use the same

Table 11.3 Split-plot repeated-measures ANOVA design for biomass consumed by individual
fish (n = 6) blocked into pairs and then randomly selected to be sampled in the morning or
evening (effect A). Consumption of each fish was quantified once a week (effect B).

Time of day
Block and fish (effect A) 1 2 3

Block 1
1 AM AAMB1 AAMB2 AAMB3

2 PM APMB1 APMB2 APMB3

Block 2
3 PM APMB1 APMB2 APMB3

4 AM AAMB1 AAMB2 AAMB3

Block 3
5 AM AAMB1 AAMB2 AAMB3

6 PM APMB1 APMB2 APMB3

Week (effect B)
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Box 11.5 Assessing Spatial Patterns in Diet with the Two-Dimensional Kolmogorov–
Smirnov Test

Several statistical methods are available to relate diet patterns to the distribution of habitat in
aquatic systems. Mantel and partial-Mantel tests are powerful techniques that test whether spatial
patterns are random or due to some treatment (or time). These tests are not specifically discussed
here. More information can be obtained in Fortin and Gurevitch (1993) and Chapter 18. If spatial
data can be arranged into bivariate spatial coordinates, a two-dimensional Kolmogorov–Smirnov
(2DKS) test can be used to (1) identify whether a single distribution has arisen by random effects or
(2) compare two bivariate distributions (see Garvey et al. 1998c for a review). This nonparametric
test finds the maximum difference, Dbks (where bks represents bivariate Kolmogorov–Smirnov), in
integrated probabilities for four quadrants around each point in a plane. If the maximum Dbks

between two distributions exceeds that expected randomly, we conclude that they differ. The
significance of the test statistic Dbks is determined by rerandomizing the original data 5,000 times
and then comparing this randomly generated distribution to the observed value.

In the following hypothetical example, we want to know how vegetation in a large lake affects
piscivory in age-0 smallmouth bass. We partition the bottom of a shallow lake into 80 habitat
quadrants (20 × 4) and determine whether each contains vegetation. Within each quadrant, we
sample smallmouth bass diets by means of gastric lavage and note whether piscivory is present or
absent.

Figure Two hypothetical scenarios of smallmouth bass in a shallow lake. The bottom of the lake is
partitioned into 80 habitat quadrants (20 × 4), and it is determined whether each contains vegeta-
tion. Within each quadrant, smallmouth bass diets are sampled to determine whether piscivory is
present or absent.
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decision factors before purchasing fishing gear. To address this issue, we treat the
purchase as a multivariate response by evaluating these decisions simultaneously.
In the same way, we can treat the diet of fish as a multivariate response defined by
the abundance of different prey items in the stomach.

There are a variety of approaches for analyzing multivariate diet data. For the
convenience of modeling and performing statistical tests, techniques such as multi-
variate analysis of variance  (MANOVA) require the assumption of multivariate nor-
mality (Khattree and Naik 1999). Other multivariate methods, such as cluster analy-
sis and ordination techniques, are largely distribution free in nature and are useful
for generating biologically meaningful patterns from multivariate data.

When diets are expressed as prey weight or volume, MANOVA can be useful
for testing differences in diet composition. The assumptions of MANOVA require
that prey proportions have a multivariate normal distribution and a similar vari-
ance–covariance structure among samples. Prior to performing MANOVA, tests
for multivariate normality should be applied to data to evaluate this assumption
(Khattree and Naik 1999). When diet composition data do not meet the assump-
tion of multivariate normality (as is often the case), a nonparametric-based ran-
domization procedure can be applied to test for differences in diet composition
between samples (Crow 1979; Somerton 1991). In this approach, MANOVA is
combined with a randomization procedure. Randomization procedures are not
new to ecological analysis but have received little attention in the analysis of fish
diets (but see Somerton 1991). Randomization procedures are relatively straight-
forward and proceed as follows.

1. Combine diet proportion data from time or area samples.
2. Randomly sort data into n new samples equal in size to the original data.
3. Calculate a test statistic based on the new samples.
4. Repeat steps 2 and 3 a large number of times (e.g., 5,000).

In the scenario depicted in the upper panel (A), piscivorous smallmouth bass (closed circles)
appeared to be closely associated with quadrants containing vegetation (open triangle). In
confirmation, a 2DKS test comparing the bivariate distributions of vegetation and piscivorous
smallmouth bass revealed no difference (Dbks = 0.143, P = 0.999). In the scenario depicted in the
lower panel (B), the distribution of vegetation is identical to that in A.  However, the spatial
distribution of piscivorous smallmouth bass appears to be associated with some other factor. The
2DKS test detected a difference between the spatial distributions of vegetation and piscivorous fish
(Dbks = 0.714, P = 0.002).

Of course, the 2DKS test is useful for determining only presence and absence in this example. We
also must assume strong site-fidelity of fish within habitats and that fish are homogeneously
distributed among vegetated and nonvegetated sites. Cells with missing data are acceptable. It is
important to note that Mantel tests incorporate quantities within each cell, allowing us to compare
other responses such as the frequency of occurrence of fish in diets.

Box 11.5 (continued)
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Box 11.6 Determining Diel Patterns in Diet Data with Analyis of Covariance (ANCOVA)

We often want to determine if diel patterns in diet data occur. This has important implications for
designing sampling protocols and interpreting diet data. One way to determine whether diel
variation in feeding occurs is by sampling fish during different times of the day.

Figure The total weight (mg) of food found in the diets of different size fish are given for three
time periods—morning, noon, and evening.
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Program
An ANCOVA was used to test the null hypothesis that the three regression lines are equal. For an
ANCOVA to be valid, the slopes of the regression lines must be parallel (slopedawn = 0.0322; slopenoon

= 0.0380; and slopedusk = 0.0377). If this assumption holds, then we can use the general linear model
(GLM) procedure in SAS in which length is the continuous covariate and time is the categorical
variable. The assumption of parallel slopes is rejected if a length*time interaction is detected.

data one;
input time $ length diet;
cards;
[input data];
proc glm;
class time;
model diet = time length;
run;

Interpretation

Table Effect of time of day and length of fish on weight of items in fish stomachs.

Effect df Mean square F-value P

Time 2 6.770 28.65 0.0001
Length 1 14.431 61.06 0.0001
Error 32 0.236

No length × time interaction occurred in the initial model. We then assumed that slopes were
parallel and dropped the interaction from the model. The ANCOVA revealed that total weight of
items increased in guts with increasing body size. In addition, the amount of food varied with time
of day, suggesting that sampling time be carefully considered when developing a protocol.
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From these data, a probability distribution of the randomized test statistic is
generated. If the observed test statistic is within the upper (or lower) 5% tail of
the randomized distribution, then the result is significant at the 5% level. Simi-
larly, if our observed value falls within the 1% tail, then we can conclude that the
difference is significant at the 1% level and so on. The choice of a test statistic
depends on the research question being addressed and the characteristics of the
test statistic. In a two-sample case, we could perform a randomization procedure
on the Hotelling’s T2-statistic and test for a difference between sample means.
Similarly, the F-statistic could be used to test for a treatment effect among three or
more factors (e.g., lakes, seasons, and sites). An example of a nonparametric
MANOVA that tests for diet differences is given in Box 11.7.

11.3.5.2 Examining Prey Numbers with Log-Linear Contingency Tables

When diet data are expressed as prey numbers, a multiway contingency table
analysis can be used to assess diet variation (Cortés 1997). In this approach, data
are arranged in an R × C contingency table, where R is the number of prey catego-
ries and C is the number of predator categories. Each cell in the table contains
the total number of the ith prey category found in the stomachs of the jth preda-
tor category. One limitation of contingency table analysis is that large samples
sizes are needed so that less than 20% of the cells have an expected frequency less
than five. One way to remedy this situation is to pool prey species, so that we
reduce the total number of categories and increase the sample size for the re-
maining categories (see section 11.2.1; Crow 1979).

Contingency table analysis begins by testing for significant interactions. In this
way, we are testing a hierarchy of models starting with the most complex. In a
three-way contingency table, we would start by examining the three-way interac-
tion. If this term were not significant, we would delete it from the model and then
proceed to test all the two-way interactions. The advantage of this approach is that
by proceeding with posthoc tests, we can readily identify the rows (prey types)
and columns (predators) that contribute the most to diet variation (Cortés 1997).
An example of a three-way contingency table is given in Box 11.8.

11.3.5.3 Applying Ordination Techniques

Ordination techniques, such as principal components analysis (PCA), are widely
used in ecological data analysis. Because diet data are often measured as propor-
tions, analytical techniques are affected by the constant-sum constraint (i.e., as
the abundance of one taxa increases, one or more taxa must decrease; Jackson
1997). To deal with compositional data, two alternative ordination methods have
been proposed. The first approach is a log-ratio analysis performed on the loga-
rithms of the percentages; this approach is most appropriate when compositional
data do not contain zeros (Aitchison 1983). Although not new to the ecological
literature, log-linear PCA techniques have only recently been applied to fish diet
data (De Crespin De Billy et al. 2000). Termed %PCA, this technique is based on
a PCA performed on a proportion table in which each column is defined by a prey
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Box 11.7 Comparing Diet Data from Different Locations or Times with Multivariate
Analysis of Variance (MANOVA)

Because of the multivariate nature of diet data, we are often interested in determining whether diet
composition differs among fishes sampled from different locations or at different times. When diet
data are measured as prey mass (or volume), MANOVA can be useful for testing an overall location
(or time) effect.

Table Hypothetical diet data for three bluegill populations. Data are presented as mean percent
composition by weight (MWi ) for four different prey items.

Prey type

Bluegill Chironomids Amphipods Odonates Copepods

Lake A
1 0.12 0.35 0.44 0.09
2 0.09 0.22 0.63 0.06
3 0.12 0.35 0.5 0.03
4 0.26 0.38 0.22 0.14
5 0.27 0.29 0.27 0.17

Lake B
6 0.49 0.01 0.38 0.12
7 0.36 0.04 0.59 0.01
8 0.34 0.05 0.57 0.04
9 0.42 0.03 0.24 0.31
10 0.57 0.11 0.21 0.11

Lake C
11 0.08 0.34 0.49 0.09
12 0.06 0.27 0.59 0.08
13 0.02 0.33 0.58 0.07
14 0.11 0.57 0.28 0.04
15 0.01 0.57 0.31 0.11

Program
Here, we are interested in testing for an overall lake effect in diet composition and perform a
MANOVA analysis. The MANOVA procedure was used in the following SAS program to generate
output.

data test;

input lake $ fish chiro amph odon zoo;

cards;

[input data];

proc glm;

class lake;

model chiro amph odon zoo=lake;

manova h=lake / printe printh;

title ‘Manova of diet data’;

run;
(Box continues)
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type and each row represents an individual fish. An advantage of this technique is
that individual fish and their prey are analyzed simultaneously and can be dis-
played on the same graph (De Crespin De Billy et al. 2000). A second approach
offered as a solution to the problem of compositional data is correspondence
analysis (CA; Jackson 1997). This approach is particularly well suited to handle
compositional data and provides advantages over other methods (e.g., PCA; Digby
and Kempton 1987; Jackson 1997). Furthermore, unlike log-ratio analysis, CA is
not constrained by the presence of zeros in the data, providing a robust approach
for analyzing compositional data.

Although the mathematical derivation of these techniques is beyond the scope
of this chapter, a user-friendly program for running these analyses is CANOCO

Box 11.7 (continued)

Interpretation
Results from the MANOVA test for the hypothesis of no overall lake effect are presented below.
Several statistics are produced from MANOVA analysis and provide similar results. For randomiza-
tion procedures, we will consider the Wilk’s lambda test statistic. From the output shown below, we
would conclude that there is an overall lake effect on bluegill diets.

Table Test statistics comparing MANOVA results of diet composition for bluegills among three
lakes.

Statistic Value F-value P

Wilk’s lambda 0.079 8.52 0.0001
Pillais trace 0.92 3.16 0.021
Hotelling–Lawley trace 11.58 17.38 0.0001
Roy’s greatest root 11.58 42.46 0.0001

To determine which prey types vary among bluegill populations, individual ANOVAs are performed
on each prey type. Because these tests are a posteri, an appropriate alpha level can be obtained
using the Bonferroni inequality by which adjusted alpha levels are equal to the overall alpha
divided by n.  In this case, we would consider individual ANOVAs to be significant at 0.0125. In the
table below, we see that chironomids and amphipods vary significantly among lakes.

Table Analysis (ANOVA) of which prey types vary among the three bluegill populations.

Prey item Source of variation df Sum of squares F-value P

Chironomid Lake 2 0.379 31.38 0.0001
Amphipod Lake 2 0.363 20.98 0.0001
Odonate Lake 2 0.007 0.13 0.87
Copepod Lake 2 0.004 0.34 0.71
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for Windows (ter Braak and Smilauer 1998). To demonstrate the usefulness of log-
ratio analysis (%PCA), we used diet data provided in Table 11.2 to assess individual
variation in bluegill food habits (Box 11.9).

11.3.6 Estimating Diet Overlap

Niche overlap indices are often used to measure the magnitude of resource over-
lap among different species. Although these indices are sometimes used to infer
competition, we should recognize that high resource overlap between two species
may not indicate competitive bottlenecks. Rather, it may be indicative of high re-
source abundance, such as seasonal peaks in prey availability.

Once we obtain our observed test statistic (e.g., Wilk’s lambda = 0.079), we then perform a random-
ization test (Crystal Ball 7.0, Decisioneering, Inc., Denver, Colorado; http://crystalball.com/
crystal_ball/) to evaluate the significance of our statistic. After performing 4,999 simulations, we
obtain the following probability distribution of the test statistic based on our data.

Figure Randomized frequency distribution for Wilk’s lambda based on 4,999 simulations.
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From the randomized frequency distribution, we see that our observed value (0.079) easily falls in
the lower 5% of the observations. In fact, only 75 observations were less than our observed Wilk’s
value (0.079). We can estimate a P-value as 75/5,000 or 0.015.  Hence, it is unlikely that we would
obtain a value of 0.079 if the null model is true, and we would conclude that diets are significantly
different among lakes. Similarly, randomization procedures could be performed on the individual
ANOVAs (e.g., F-value) to confirm that chironomids and amphipods account for these differences.
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Box 11.8 Testing Prey Counts with Multiway Contingency Table Analysis

When diet data are measured as prey counts, multiway contingency table analysis can be used to
test for treatment effects.

Table The following data represent numbers of prey for two different life stages of fish collected
from two different environments. A three-way contingency table is used to test for differences
among the three different levels: (1) life stage, (2) habitat, and (3) prey type.

Prey type

Habitat and life stage Amphipods Chironomids   Mayflies   Ostracods

Littoral
Adult 29 69 9 10
Juvenile 19 43 4 6

Pelagic
Adult 6 21 6 4
Juvenile 1 8 5 4

Program
The following SAS program was used to generate output.

data test;

input prey $ stage $ habitat $ number;

cards;

[input data];

proc catmod;

weight number;

model prey*stage*habitat=_response_ / pred=freq;

loglin prey|stage|habitat;

run;

The summary statistics below show that the three-way interaction, prey*stage*habitat, is not
significant. If this term were significant, there would be no reason to examine two-way interactions
or main effects.

Table Summary statistics for multiway contingency table analysis.

Source df �2 P

Prey 3 71.27 0.0001
Stage 1 8.99 0.002
Habitat 1 26.75 0.0001
Prey*stage 3 1.70 0.637
Prey*habitat 3 12.88 0.0049
Stage*habitat 1 0.18 0.674
Prey*stage*habitat 3 3.09 0.377
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Deleting the prey*stage*habitat term from the model, we obtain a significant interaction for
prey*habitat (P = 0.0095).  To determine which prey items are responsible for the significant
prey*habitat interaction, we can delete individual prey categories and revaluate the interaction
term.  Below, we see that by deleting individual prey types, we are unable to obtain a nonsignificant
interaction term for amphipods, chironomids, or ostracods. However, when we delete two groups of
prey from the analysis we find that amphipods and chironomids are responsible for the significant
interaction observed in the prey*habitat term.

Table Analysis to determine which prey items are responsible for the significant prey*habitat
interaction.

Prey type deleted P-value for interaction term

Single prey
Amphipods      0.024
Chironomids      0.007
Mayflies      0.115
Ostracods      0.006

Combined prey
Amphipods & chironomids      0.377
Amphipods & ostracods      0.010
Chironomids & ostracods      0.002

By tabulating the observed and expected frequencies (in parentheses) for amphipods and
chironomids, we can make inferences about how these prey types differ across fish life stages and
habitats. Here we see higher than expected numbers of chironomids in adult diets from both
habitats. For both prey types, adult fish also showed higher than expected values compared to
juvenile fish.

Table Comparison of prey type across life stage and habitats. Given are observed and expected
(in parentheses) frequencies of prey type in diet; note that observed and expected frequencies are
not equal because other prey types are not shown.

Prey type and life stage Littoral habitat Pelagic habitat

Amphipod
Adult 29 (22)   1 (5)
Juvenile 19 (22)   6 (5)

Chironomid
Adult 69 (57)   8 (12)
Juvenile 43 (57) 21 (12)
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Box 11.9 Exploring Diet Data with Principal Component Analysis (PCA)

Traditional multivariate techniques, such as PCA, can be constrained by the compositional nature of
diet data in so much as the row sums must equal one. Log-ratio analysis, such as %PCA (see text), is
performed on the logarithm of proportions and can be useful for exploring individual variation in
diet data. For values equal to zero, very small numbers (e.g., 0.00001) are entered prior to analysis as
recommended by Aitchison (1983). A %PCA analysis was performed on the diet composition data
given in Table 11.2. The first two components accounted for 94% (%PC1 = 60%; %PC2 = 34%) of the
total variation in diet data.

The patterns represented in the figure above can be compared to physical or biological characteris-
tics to help identify factors affecting diet variability. For example, we might be interested in
whether fish size accounts for variation in stomach contents. Correlation analysis reveals a signifi-
cant relationship between the first axis scores (%PC1) and fish size (r = –0.84; P = 0.002). Smaller fish
(i.e., B, C, I, and F) consumed more amphipods, whereas larger fish (i.e., H and E) were more likely to
contain larval fish in their diet. Similarly, this approach could be used to assess a variety of factors
such as habitat characteristics, limnological parameters, or fish community attributes.

Figure The graph shows each prey type linked to an arrow for which the length of the arrow is
proportional to the relative abundance of the prey. The %PCA results for individual bluegills (A–J)
are then superimposed on the prey distribution to show individual variation in diet composition.
Amphipods, larval fish, and mayflies accounted for much of the variation in individual diets,
whereas dipterans accounted for little variation and were distributed near the population centroid
(origin).
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A variety of indices have been proposed to quantify diet overlap, and there is
controversy as to which index is best (Krebs 1989). In cases where prey numbers
are available, Morista’s index has been recommended as the most robust index
(Smith and Zaret 1982). Morista’s index is calculated using the equation

M  = 
� pij

;
[(nij – 1)/(Nj – 1)] + � pik[(nik – 1)/(Nk – 1)]

2� pij pik
n n
i i

n
i

(11.4)

M = Morista’s index of niche overlap between species j and k;
pij = proportion resource i is of the total resources used by species j;
pik = proportion resource i is of the total resources used by species k;
nij = number of individuals of species j that use resource category i;
nik = number of individuals of species k that use resource category i; and
Nj, Nk = total number of individuals of each species in sample.

If data are not expressed as prey numbers (e.g., biomass or volume), then
Horn’s index is recommended (Krebs 1989) and is calculated as

H  = ,
2log2

�(pij  + pik)log(pij  + pik) – �pij logpij  – �piklogpik
(11.5)

where H = Horn’s index of overlap between species j and k. In equation (11.5),
any base of logarithms may be used.

Confidence limits or tests of significance can be calculated for diet overlap
values. One way to estimate confidence limits on diet overlap values is to use
bootstrapping techniques. Bootstrap techniques are relatively simple and proceed
as follows.

1. Using the original data with n observations, randomly select n diet overlap
values with replacement. Because we are sampling with replacement, some
values may be selected one or more times or not at all. Repeat this step at
least 100 times (preferably 1,000).

2. Calculate a mean diet overlap value for each bootstrap sample.
3. Estimate the mean and standard error from the replicate bootstrap values.

Because bootstrap procedures estimate the sample mean, rather than the popu-
lation mean, they contain a bias that can be corrected using the equation,

Bootstrap meanadj =  2x–s – x–B , (11.6)

where x–s = observed mean of original sample and x–B  = bootstrap estimate of mean
(Krebs 1989).
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11.3.7 Estimating Prey Preference

When given a variety of prey types, most fishes select some food categories over
others. To measure this selectivity, a variety of indices have been developed that
incorporate measures of prey use and prey availability (see review in Bowen 1996).
While prey use can be easily determined from gut content analysis, accurate de-
scription of prey availability can be problematic. What we quantify as prey avail-
ability may be quite different than what fish perceive under natural conditions.
Furthermore, because different prey can occupy different habitats, a single sam-
pling technique may not adequately quantify the relative abundance of different
prey items in the environment. This is important because we cannot use volumet-
ric estimates of zooplankton abundance (e.g., number/L) and real densities of
benthic invertebrates (e.g., number/m2) as simultaneous measures of prey avail-
ability. Only in cases where prey are collected with the same gear type, such as
open-water zooplankton, can we begin to compare use versus availability.

Like diet and overlap indices, there is much controversy over which preference
index is best (Wallace and Ramsey 1983). Comparisons of different indices have
revealed that the Manly–Chesson (Chesson 1983) and the linear (Strauss 1979)
indices are good choices for quantifying prey preference (Smith and Zaret 1982;
Wallace 1981; Krebs 1989). The Manly–Chesson index is frequently used to quan-
tify prey preference and can be calculated for two scenarios (Krebs 1989).

Constant prey abundance. This form of the Manly–Chesson index is used when
the number of prey eaten is very small relative to that prey item’s total population
or when prey are replaced, as in laboratory studies. The equation for the Manly–
Chesson index under constant prey abundance is

� i = r i
ni

;1
�(r j /nj )

(11.7)

�i = Manly’s alpha for prey type i;
ri , rj = proportion of prey type i or j in the diet;
ni , nj = proportion of prey type i or j in the environment; and
m = total number of prey types.

Values of �i are normalized so that
Prey preference is indicated when �i values are greater than 1/m. Conversely,

�i values less than 1/m imply that prey species i is avoided in the diet because it is
used in lower proportion than its availability in the environment.

Variable prey abundance. This form of the Manly–Chesson index is used when
the number of prey eaten is large relative to that prey item’s total population in
the environment or when, in experimental studies, prey are not replaced after
being eaten. The Manly–Chesson index for variable prey populations is calcu-
lated using the equation

� i = ;
logPi

�Pj
j = 1

m (11.8)

�� i = 1.0.
m

i =1
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�i = Manly’s alpha for variable prey populations;
Pi , Pj = proportion of prey i or j remaining at the end of the experiment (ei /ni);
ei = number of prey type i remaining at the end of experiment;
ni = number of prey type i at the beginning of the experiment; and
m = total number of prey types.

In equation (11.8), any base of logarithms can be used.
It is recommended when using the Manly–Chesson index for variable prey

populations that the number of prey eaten and the number of prey remaining are
greater than 10 (Manly 1974; Chesson 1983; Krebs 1989). In practice, indices
such as the Manly–Chesson can be used to test for differences in prey selectivity
providing important information about preferred (or vulnerable) prey types (Box
11.10).

Box 11.10 Assessing Prey Preference

Differences in prey selectivity provide important insight about foraging patterns of fishes.  In many
cases, these type of data are collected under controlled, experimental settings in which changes in
the absolute abundance of prey can be accurately determined.

Catalano et al. (2001) examined the effects of tag color on vulnerability to predation. Age-0 bluegills
were marked with either brightly colored fluorescent tags or cryptic tags and then exposed to
largemouth bass predators in a series of tank experiments. Manly’s alpha was calculated using the
equation for variable prey populations (equation [11.8]).

Table Vulnerability of age-0 bluegills with differently colored tags to predation by largemouth
bass (data from Catalano et al. 2001).

Initial number Final number Proportion Manly’s
Trial and tag color of prey  of prey remaining alpha

1
Bright 120 22 0.183 0.618
Cryptic 60 21 0.350 0.382

2
Bright 96 26 0.271 0.529
Cryptic 48 15 0.313 0.471

3
Bright 150 64 0.427 0.528
Cryptic 75 35 0.467 0.472

Here, we are interested in whether marking pattern (bright versus cryptic tags) influences prey
selectivity. A Student’s t-test reveals a significant difference in selectivity between brightly colored
and cryptic tags (t  = 2.76, P = 0.05 ); fish marked with brightly colored tags had a higher selectivity
( x– = 0.56) than did fish marked with cryptic tags (x– = 0.44).
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■ 11.4 TRACKING ENERGY FLOW WITH STABLE ISOTOPE ANALYSIS

Stomach content analysis provides a high degree of taxonomic precision but is
limited in many ways because it provides only a snapshot in time of consumer
diets. Stable isotope analysis is an alternative approach to traditional food habit
studies that provides time-integrated information useful for tracking energy flow
in aquatic food webs (Fry and Sherr 1984; Peterson and Fry 1987). Stable isotope
analysis has several advantages as a method for quantifying feeding patterns: (1)
it reflects materials actually assimilated by fish, enhancing our ability to detect
subtle but important feeding interactions that might go undetected by traditional
gut content analysis; (2) it allows more efficient use of sampled fish because there
is no loss of information when stomachs are empty; and 3) it can be used to evalu-
ate within-population variation in fish feeding habits.

Carbon (�13C) and nitrogen (�15N) are the most commonly used isotopes in
aquatic food web studies. In general, �13C signatures of consumers are similar to
those of their prey and can be used to identify carbon sources at the base of the
food chain. Conversely, �15N signatures exhibit a step-wise increase from prey to
predator. A 3–4‰ enrichment of the heavy nitrogen isotope represents a typical
trophic level increment (e.g., zooplankton to fish). Hence, �15N signatures can be
used to identify important feeding relationships and energy pathways.

Stable isotope ratios are expressed in delta (�) notation, defined as the parts
per thousand (ppt; ‰) deviation from a standard material (Peterson and Fry
1987). The formula for calculating �13C or �15N is

�13C (or �15N) = ([Rsample/Rstandard] – 1) × 1,000, (11.9)

where R equals the ratio of 13C/12C (or 15N/14N). Standard materials are repre-
sented by Pee Dee belemnite limestone for �13C or atmospheric nitrogen for �15N,
where both standards have a ppt value set to 0. A positive (or less negative for
carbon) isotopic value indicates the sample is “isotopically” enriched and con-
tains more of the heavy stable isotope (13C or 15N; Vander Zanden et al. 2000).

Samples for stable isotope analysis are usually collected from white dorsal
muscle tissue (1–2 g wet weight) of individual fish and frozen until analysis.
Although samples are usually collected from sacrificed fish, biopsy punches (6–
8 mm) are useful for obtaining nonlethal samples in the field where fish can be
quickly treated with an antibiotic ointment and released. For invertebrates or
larval fish, whole samples are obtained in the field and then frozen. Prior to
freezing invertebrates and larval fish, it is recommended that they be placed in
filtered water for up to 12 h to allow gut evacuation. Prey items in the guts of
small invertebrates and larval fish can affect �15N signatures (Yoshioka et al.
1994). Because 0.1 g dry weight is usually required to analyze stable isotopes,
samples should consist of about 1–2 g wet weight. Samples are then dried at
70°C to a constant weight, ground into a fine powder, and packed into 4 × 6-mm
tin capsules for isotopic analyses. Isotope analysis of �13C and �15N is performed
using a mass spectrometer.
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11.4.1 Applying Stable Isotope Data

A promising new technique for assessing energy flow in aquatic ecosystems in-
volves the calculation of fish trophic position, a continuous variable that quanti-
fies the average energy pathway to a consumer (Vander Zanden and Rasmussen
1999). Trophic position is useful for assessing feeding patterns because it incorpo-
rates the relative contribution of different trophic levels to fish diets. Both dietary
data and stable isotope ratios can be used to calculate trophic position of fish.
Because trophic position incorporates omnivorous feeding behavior, it provides
an advantage over food chain studies that fail to consider omnivorous trophic
interactions and food web studies that fail to weight food links according to their
energetic importance (Polis 1991; Gaedke et al. 1996; Vander Zanden and
Rasmussen 1999).

To demonstrate how trophic position can be estimated from dietary data, con-
sider a lake trout population that has a diet consisting of 20% herbivorous zoop-
lankton (trophic level = 2) and 80% planktivorous fish (trophic level = 3). These
data, usually obtained from numerous fish within a size-class, can be used to calcu-
late trophic position (TPdiet) as

TPdiet = �(ViTi) + 1, (11.10)

where Vi is the percent volumetric contribution of the ith prey item (e.g., 0.2 or
0.8) and Ti  is the trophic position of the ith prey item (e.g., 2 or 3; Vander Zanden
et al. 1997). Hence, the size-specific trophic position for this lake trout popula-
tion is 3.8.

Alternatively, trophic position can be estimated for individual fish from stable
isotope ratios as

TPfish = [(�15N fish – �15N baseline)/3.4] + 2, (11.11)

where �15Nfish is the isotope signature of the fish, �15Nbaseline is the “corrected” iso-
tope signature of the fish, 3.4 is the assumed per mil increase in �15N per trophic
level, and 2 represents the number of trophic levels involved (Vander Zanden
and Rasmussen 1999).

Because �15N values vary greatly among organisms at the base of the food chain,
the �15N value of a consumer cannot be regarded as an absolute measure of trophic
position. Hence, it is necessary to correct the �15N signatures of fish to account for
�15N variation among primary consumers (e.g., zooplankton, chironomids, and
amphipods; Angradi 1994; Vander Zanden and Rasmussen 1999). To accomplish
this, bivariate plots of �15N – �13C are used to describe the relationship between
nitrogen and carbon signatures for primary consumers. This relationship can then
be used to calculate baseline conditions (�15N baseline) that are used to correct �15N
values of secondary consumers (see Vander Zanden and Rasmussen 1999).

Isotopically derived measures of fish trophic position can be used to assess diet
variability within a population. Bivariate plots that depict trophic position–body
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size relationships are first constructed to assess variation in energy flow among
different-sized fish. Because trophic position normally increases with fish size,
variance estimates may be higher for populations with steep trophic position–
body size slopes. To remedy this, variance estimates can be estimated as the mean
absolute residual value from trophic position–body size relationships (Box 11.11).
This variation is independent of body size and can be used to assess factors affect-
ing fish trophic position (Vander Zanden et al. 2000).

Variation in trophic position reflects the magnitude of two diet components:
(1) diet breadth–the overall range of prey consumed, and 2) diet consistency–the

Box 11.11 Determining Trophic Position of Fishes with Stable Isotope Analysis

Stable isotope data is often used to estimate the trophic position of fishes (Vander Zanden et al.
2000). Variation in trophic position can then be used to evaluate factors affecting fish foraging
patterns across space or time.

In this example, isotope data were used to calculate the following trophic position estimates (TP)
for different size walleyes. The relationship between TP and walleye size was then used to develop
the equation

TPpredicted = 2.797 + 0.001445(L),

where predicted trophic position (TPpredicted) is estimated as a function of walleye length (L = total
length in mm).

Table Trophic position (TP) versus walleye size. From this relationship, predicted TP and residuals
are calculated.

Walleye size (mm) TP TPpredicted |Residual|

152 3.5 3.0166 0.4834
254 3.6 3.1640 0.4360
305 3.4 3.2377 0.1623
355 3.5 3.3100 0.1900
381 3.61 3.3475 0.2625
457 3.42 3.4574 0.0374
508 3.45 3.5311 0.0811
584 3.61 3.6409 0.0309
609 3.59 3.6770 0.0870
660 3.7 3.7507 0.0507

Mean residual 0.1821

Residual values were calculated from the trophic position–body size relationship as the difference
between TP – TPpredicted. Absolute residual values are then averaged to obtain a measure of trophic
position variation that is independent of fish body size (i.e., 0.1821). Variation in trophic position can
then be compared across time or space or correlated with biotic or abiotic variables to assess
factors affecting diet variation of walleyes.
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degree to which an individual fish repeatedly consumes the same prey type. High
levels of variation indicate high diet breadth and high diet consistency, whereas low
variation can represent either (a) high diet breadth and low consistency (all indi-
viduals consume similar proportions of a wide range of prey), or (b) low diet breadth
(e.g., all individuals specialize on a few prey types; Vander Zanden et al. 2000).
Variables, such as lake area, prey diversity, number of competitor species, food chain
length, and lake productivity, are just a few parameters that can be compared with
trophic position variation in an attempt to understand factors affecting feeding
patterns. Similarly, variation in trophic position can be compared across seasons as
a method for evaluating temporal changes within a population.

■ 11.5 CONCLUSIONS

Food habit assessments are an integral part of many research and management
plans. While specific goals of food habit studies vary, the usefulness of diet data
relies on the accurate quantification of diet composition. Factors such as time of
year and sample location can profoundly affect prey availability and diet composi-
tion of fishes. At smaller scales, time of day, habitat characteristics, and collecting
gear can influence diet composition. The degree to which these factors affect
interpretation of fish diets largely depends on the research question. As a result,
it is important in diet studies to have well-defined research objectives that account
for factors affecting diet composition.

Because diets can be quantified in many different ways, it is unlikely that a
single diet index will be useful in all circumstances. Rather, we should rely on the
unique properties of individual measures to select a method that is most appro-
priate for our study. As previously discussed, single indices based on prey number,
weight (or volume), or occurrence each have their place in studies of diet compo-
sition. Similarly, graphical techniques that incorporate two or more single indices
can provide important insight into feeding strategies, niche breadth, and relative
prey importance. For questions concerning energy flow in aquatic ecosystems,
techniques such as stable isotope analysis can provide powerful tools for quantify-
ing important energy pathways to fishes.

Diet data have several important characteristics that affect analysis and inter-
pretation: data are usually (1) multivariate in nature, (2) proportional, (3) vari-
able at the individual level, and (4) autocorrelated across space and time. By ap-
preciating and understanding these characteristics, we can design appropriate
studies and select sound analytical techniques for assessing food habits and feed-
ing patterns of fishes.
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