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The quality of a climate change assessment depends heavily on the quality of
information about the climatic conditions that constrain populations within the area of interest.
For stream organisms, “climate” manifests most directly through the local thermal and
hydrologic regimes. Early climate assessments often represented these factors using variables
like air temperature, elevation, and latitude but the growing availability of inexpensive and
reliable sensors, stream databases, and analytical techniques is rapidly improving the amount
and accuracy of climate data available for streams. In our Bull Trout BN, for example, we used
temperatures predicted from a new type of spatial statistical stream network model (Peterson
et al. 2007; Ver Hoef and Peterson 2010; Ver Hoef et al. 2012) that was fit to a temperature
database compiled from several resource agencies (Isaak et al. 2010; Figure Al). Spatial
network models may be especially promising for such applications because they account for
autocorrelation among non-random, clustered samples that often characterize such databases
but provide unbiased parameter estimates and more accurate predictions than many non-
spatial techniques. However, a wide variety of statistical and mechanistic models are available
for modeling stream temperatures (Caissie 2006; Webb et al. 2008; Wehrly et al. 2009) and are
now being used in many areas (e.g., Flint and Flint 2008; Lyons et al. 2009; McKenna et al. 2010;

van Vliet et al. 2011; Ficklin et al. 2012).
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Figure Al. Maps of mean summer stream temperature and winter high flow (w95) in the Boise River Basin during historical and
2040s climate scenarios. These were among the individual variables integrated into the Bull Trout BN which was used to map the

probability of occupancy across the basin.



For information about stream discharge in our BNs, we used flow metrics derived from
the mechanistic Variable Infiltration Capacity (VIC) hydrologic model (Liang et al. 1994; Hamlet
and Lettenmaier 2007) after it had been validated for making predictions in small, headwater
streams (Wenger et al. 2010; Wenger et al. 2011; Figure Al). Similar flow metric predictions
have been made for both historical and future climate conditions for most stream segments
within the NHD+ national hydrography layer (Cooter et al. 2010) across the western U.S. and
are archived online for easy access

(http://www.fs.fed.us/rm/boise/AWAE/projects/modeled stream flow metrics.shtml). As

with stream temperature models, a variety of hydrologic models are available in different areas
and outputs from these models could be linked to biological parameters in climate vulnerability
assessments (Storck et al. 1998; Ajami et al. 2004; Gassman et al. 2007).

Regardless of which models are selected to provide information about stream
temperature and discharge, all require empirical measurements for calibration. For discharge
data, the best source is the U.S. Geological Survey National Water Information System (NWIS;
http://waterdata.usgs.gov/nwis/) that provides real-time and historical information from a
national network of flow gages (Falcone et al. 2010). Comparable stream temperature
databases that consist of long-term monitoring records are rare (Kaushal et al. 2010; Isaak et al.
2011) but large amounts of short-term temperature data (i.e., 1 — 3 years’ duration) often exist
and efforts are underway in many places to develop regional databases and establish better
monitoring networks. For both stream temperature and discharge, modern digital sensors
make data collection routine and inexpensive (Stone and Hotchkiss 2007; Isaak and Horan

2011) and expansion of these data types is occurring rapidly (Porter et al. 2012).
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